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I. INTRODUCTION

The most common groups you encounter as a nu-
clear/particle researcher will be what are known as “con-
tinuous groups”. Of these, the groups SU(N) and
SO(N) play an especially important role in particle
physics.

This document is not intended to offer a complete, or
mathematically rigorous, treatment of the subject. In-
stead, the intention of this document is to introduce con-
tinuous groups to students of particle physics so that they
will gain a level of comfort with the subject that they can
then utilize in furthering their understanding with future
study.

II. DEFINITION OF A GROUP

To define what a group is I will use the two-dimensional
rotation group, SO(2), with group elements Rθ as an
example, where

Rθ ≡
[

cos θ sin θ
− sin θ cos θ

]
.

We say that elements gi form a group if they obey the
following

1. Closure: For any group members gi, and gj ,
then gi · gj is also a member of the group.

In our SO(2) example we have Rα · Rβ =
Rα+β , which is clearly within the group.

2. Associativity: gi · (gj · gk) = (gi · gj) · gk
In our SO(2) example we have Rα·(Rβ ·Rγ) =
(Rα · Rβ) · Rγ . And from our experience
with Rθ elements, we know that associativ-
ity holds.

3. Identity: There exists an identity element I
such that gi · I = I · gi = gi

In our SO(2) example we have I = Rθ=0.

4. Inverse: For every group element gi there ex-
ists an element g−1i within the group such

that gi · g−1i = I.

In our SO(2) example we have R−1θ = R−θ.

III. DEFINITIONS OF THE GROUPS SU(N)
AND SO(N)

Special unitary matrices of dimension N are the group
of all N by N unitary matrices (i.e. U†U = 1), repre-
sented here as U , that have det(U) = 1 (special) This
group is denoted as SU(N).

Similarly, the group of all N by N orthogonal ma-
trices (i.e. OTO = 1), represented here as O, that have
det(O) = 1 are called the group of special orthogonal ma-
trices of dimension N . This group is denoted as SO(N).
In short:

• S → unit determinate

• O → orthogonal matrix

• U → unitary matrix

• N → dimension of the group.

What do these groups do? The group members of
SO(N) can be used to transform N -component real vec-
tors, while group members of SU(N) are used to trans-
form N -component complex vectors. It is important to
note that both of these transformations will maintain an
invariant length (i.e. ~v · ~v = constant, where ~v · ~v ≡ ~v†~v
for the complex case).

IV. THE GROUPS U(1), SO(2), SU(2), SO(3), AND
SU(3)

A. U(1)

One of the simplest groups that can be studied is the
U(1) group. This group is comprised by all unitary ma-
trices of dimension 1. Since this group is dimension 1,
we do not need to worry about the determinate. For this
reason, we do not talk of SU(1), instead we will only con-
sider U(1) and find that the unitarity constraint “fixes”
the overall size of these complex numbers.

We start out by letting U be a group member of U(1).
Furthermore, since U is just some complex number, we
can set U = reiθ, with r and θ being free real parameters
that are consistent with the unitarity requirement U†U =
1. When employing the unitary requirement it is easy to
see that r2 = 1, and since r ∈ the group of purely real
numbers <, then r = ±1. Thus, we take

U = eiθ.
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What does the U(1) group do? A U(1) group member
simply takes a complex number and changes the phase
of that number.

The group U(1) is the gauge group that is responsible
for electrodynamics. It is beyond the scope of this docu-
ment to fully describe what is meant by a “gauge symme-
try”, however, I will briefly sketch the highlights: When
the Lagrangian for a spin-1/2 Dirac-field is demanded to
be invariant under a local phase transformation of that
Dirac-field (ψ → eiθ(x)ψ, where θ(x) means θ is position
dependent), extra terms must be introduced. These extra
terms are identical to the terms one would include if the
original Lagrangian included, in addition to the spin-half
Dirac field, the photon field (and the interaction between
the two). For this reason, it is sometimes said that elec-
trodynamics is a result of U(1) gauge symmetry.

This would be a mere curiosity if it were not for the
fact that the weak and strong forces can be similarly gen-
erated by gauge groups. The strong force is generated by
a SU(3) gauge symmetry and the weak force is gener-
ated by a SU(2) gauge symmetry. This is why you will
sometimes see the entire physics of these forces in the
Standard Model described simply as

SU(3)× SU(2)× U(1).

B. SO(2)

The most intuitive group for us to study is SO(2). Un-
doubtedly, you have worked with this group many many
times, but did not know the group theory terminology for
it. Because of your familiarity with calculating quantities
using this group, this group provides a great opportunity
to build up your knowledge of group theory terminology.

The group SO(2) is the group of all 2 × 2 orthogonal
matrices that have unit determinate. The orthogonality
requirement is defined as OTO = 1, where OT is the
transpose of O (i.e. for each oi,j matrix element of O,
(oi,j)

T = oj,i).
Since this group is so familiar and is of low dimension,

it will not be too bothersome to present the details of
how one might derive the group members of SO(2) in
two different ways. In the first method we will derive
the group members by directly calculating the individual
matrix elements of O. In the second method we will
derive the group members by finding the “generator” of
the group SO(2).

In the first method we want to calculate the matrix
elements of O. If we write the matrix O as

O =

[
o11 o12
o21 o22

]
then the condition OTO = 1 reads

OTO =

[
o11 o21
o12 o22

] [
o11 o12
o21 o22

]
=

[
1 0
0 1

]
.

This implies that

o211 + o221 = 1 (1)

o11o12 + o21o22 = 0 (2)

o212 + o222 = 1. (3)

While the condition det(O) = 1 gives

o11o22 − o12o21 = 1. (4)

Eqns. 1 and 3 tells us that −1 ≤ o11, o12, o21, o22,≤ +1 .
This means that we can parameterize one of these matrix
elements by a function that spans from -1 to +1. In
particular, we can choose o11 ≡ cos θ, where θ is a free
parameter (that may end up being restricted in value
when satisfying Eqns. 1 through 4). After performing
some rudimentary algebra we have

O =

[
cos θ sin θ
− sin θ cos θ

]
,

and we see there was no need to make any restrictions on
the θ parameter. We can now identify the group members
of SO(2) as the rotation matrices for two-dimensional
space.

Now, we will derive the group members of SO(2) a sec-
ond way. This derivation is easier but will use some more
advanced matrix algebra. I’ll try to be careful about in-
troducing the matrix algebra. First let me define a ma-
trix A and the matrix eA. The matrix eA is defined as
follows,

eA =

∞∑
j=0

Aj

j!
= I +

A

1!
+
A2

2!
+
A3

3!
+ · · ·

We will need a couple more matrix identities:

(A+B)T = AT +BT

(AB)T = BTAT

This means that

(eA)T =

∞∑
j=0

(Aj)T

j!
=

∞∑
j=0

(AT )j

j!
= eA

T

The orthogonality condition can now be written as:

OTO = (eA)T eA = eA
T

eA

At this point is is tempting to write eA
T

eA = e(A
T+A),

but we need to be careful! In general, eAeB = eA+B ,
ONLY IF [A,B] = 0. For this case we are in luck,
[AT , A] = 0.

We can now write the constraint

e(A
T+A) = 1⇒ AT +A = 0
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Therefore A is anti-symmetric. This means that we can
write A as

A =

[
0 1
−1 0

]
θ,

where θ is a free real parameter. Also, we can now clearly
see that [AT , A] = 0.

At this point we should check that eA is equal to the
rotation matrix we obtained earlier. Also, this is a good
opportunity to introduce a new group theory term: gen-
erator. Let us define J such that

A = iJθ =

[
0 1
−1 0

]
θ.

This J is called the generator of the SO(2) group and is
given by

J =

[
0 −i
i 0

]
.

Now lets see how eiJθ is equal to the 2-dimensional
rotational matrix:

O = eiJθ = I + i
Jθ

1!
− (Jθ)2

2!
− i (Jθ)

3

3!
+

(Jθ)4

4!
· · ·

We notice that

J2 =

[
0 −i
i 0

] [
0 −i
i 0

]
=

[
1 0
0 1

]
= I.

Which allows us to write

O = eiJθ = I + iJ
θ

1!
− θ2

2!
− iJ θ

3

3!
+
θ4

4!
· · ·

= I

{
1− θ2

2!
+ · · ·

}
+ iJ

{
θ

1!
− θ3

3!
+ · · ·

}
= I cos θ + iJ sin θ

=

[
cos θ sin θ
− sin θ cos θ

]
,

as we saw above.
We have now seen two ways to calculate the group

members of SO(2): By direct calculation, and by deter-
mination and use of the group generator.

C. A relationship between U(1) and SO(2)

What about the generator for U(1)? Well, it is simply
equal to 1. One interesting detail regarding the gener-
ators for SO(2) and U(1) is that there is exactly one
generator for each of these continuous groups. Knowing
this, we might expect there to be some connection be-
tween these two groups. There is, in fact, a connection.

Let me define a complex vector V with a real x-
component Vx and a real y-component Vy such that
V = Vx+ iVy. What does a U(1) transformation V → V ′

look like?

V ′ = e−iθ(Vx + iVy)

= (Vx cos θ + Vy sin θ) +

i(Vy cos θ − Vx sin θ)

This implies that

V ′x = Vx cos θ + Vy sin θ

V ′y = Vy cos θ − Vx sin θ.

We obtain a 2-dimensional rotation using the U(1)
group when we define a vector as V = Vx+ iVy. This ex-
ample nicely illustrates the connection between the U(1)
and SO(2) groups ,.

D. SU(2)

SU(2) is another group with which you have some ex-
perience. We will investigate this group by looking at the
generators of the group. One nice feature of this group
is that we will have three separate generators that will
allow us to talk about the concept of a Lie algebra.

Let U be a group member of SU(2) and define the
matrix A such that U = eA. In what follows we will need
the useful matrix identity:

det(eA) = etr(A),

where the trace of A is the sum of the diagonal elements
(i.e. tr(A) =

∑
iAi,i). Now, if we set an arbitrary group

object U of SU(2) as U = eA, then the requirement that
det(U) = 1 becomes

det(U) = det(eA) = etr(A) = 1.

This implies that tr(A) = 0.
Note: Since, in the previous subsection, the A matrix

of SO(2) was antisymmetric, we did not have to worry
about tr(A) = 0. An antisymmetric matrix automati-
cally has diagonal elements all equal to zero.

The unitarity condition U†U = 1 implies that A†+A =
0 (i.e. A is anti-hermitian). The condition tr(A) = 0
gives us

a11 + a22 = 0. (5)

That A is anti-hermitian tells us that

a∗11 + a11 = 0 (6)

a∗21 + a12 = 0 (7)

a∗22 + a22 = 0. (8)

From equation 6 and 8 we can see that a11 and a22 are
completely imaginary. The other two elements a12 and
a21 can have both real and imaginary parts. From this
we can see that there are six independent quantities. In
addition to a11 and a22 being imaginary, Eqn 5 tells us
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that a11 = −a22. This reduces the number of indepen-
dent elements to five. The last equation at our disposal,
Eqn. 7, tells us that the real part of a21 equals the real
part of −a12, and that the imaginary part of a21 is equal
to the imaginary part of a12. We have exhausted all of
our equations (Eqns 5 through 8), and have three inde-
pendent matrix elements. Summarizing we have:

Im(a12) = Im(a21) (9)

−Re(a12) = Re(a21) (10)

−Im(a11) = Im(a22) (11)

Re(a11) = Re(a22) = 0. (12)

We have a matrix A with three independent matrix
elements. This means that we can construct the matrix
A as a linear combination of three independent matrices.
Let me define three such independent matrices as A1, A2,
and A3. A convenient choice is:

A1 =
1

2

[
0 −i
−i 0

]
, A2 =

1

2

[
0 1
−1 0

]
, A3 =

1

2

[
i 0
0 −i

]
,

where we have utilized Eqn. 9 to construct A1, Eqn.
10 to construct A2, and Eqns. 11 and 12 to construct
A3. Note: The factor 1

2 is not absolutely necessary, but
introduced for later convenience. In fact, there are an
infinite number of ways one could define A1, A2, and A3.

The linear combination can be written

A = A1θ1 +A2θ2 +A3θ3,

where the θi are independent parameters.

If we write eA = ei
~S·~θ, then we find that the generators

of the SU(2) group are the spin matrices in the Pauli
basis:

S1 =
1

2

[
0 1
1 0

]
, S2 =

1

2

[
0 −i
i 0

]
, S3 =

1

2

[
1 0
0 −1

]
.

This means that the SU(2) group is the group that deals
with spin. It should be noted that at no time did we
use quantum mechanics. The mathematics of spin in
quantum mechanics is a natural consequence of group
theory!

We can now introduce the concept of Lie algebra. The
Lie algebra is simply the commutation relations between
the generators of the group. For SU(2) we have as the
Lie algebra

[Si, Sj ] = iεijkSk. (13)

The constants εijk are called the “structure constants.”
Previously, I mentioned that the electromagnetic field

could be seen as a consequence of U(1) gauge symme-
try and that the weak interaction was a consequence of
SU(2) gauge symmetry. Now that we have seen that
there is one generator for the U(1) group and three gen-
erators for SU(2), it is natural to ask how the number
of generators is related to the produced fields. It turns

out that for each generator there is a field. In the case
of SU(N), there are N2 − 1 generators. For electromag-
netism (U(1)) we have one generator and one field (pho-
ton). For the weak interaction (SU(2)) we have three
generators and three fields (W+, W−, and Z0). For the
SU(3) gauge-field (QCD, or the strong interaction) there
are eight generators and eight colored gluon fields.

E. SO(3)

As you probably have suspected, SO(3) is the group
that is responsible for rotations in three dimensional
space. Because you already have worked with this group
many times and are comfortable with it, I will not at-
tempt to construct the group members but merely state
a few results.

If we write the group member O of SO(3) as ei
~J~θ, the

generators of the SO(3) group can be written as

J1 =

0 0 0
0 0 i
0 −i 0

 , J2 =

0 0 −i
0 0 0
i 0 0

 , J3 =

 0 i 0
−i 0 0
0 0 0

 .
The Lie algebra for SO(3) is

[Ji, Jj ] = iεijkJk. (14)

We also know that ~B× ~C transforms as a vector under
an SO(3) transformation. Because of this, we have grown

accustomed to writing quantities like ~L = ~r × ~p. A dif-
ferent way to write this is Lk =

∑
i,j εijk ri pj (or simply

Lk = εijk ri pj , if we suppress the summation notation).
NOTE: Being able to write antisymmetric combina-

tions of vector quantities εijk Ai Bj , that also transform
as vectors, will be very useful when we talk about multi-
plets under SU(3).

F. A relationship between SU(2) and SO(3)

The case for there to be a relationship between SU(2)
and SO(3) is very strong. We can see from Eqns. 13 and
14 that SU(2) and SO(3) share the same Lie algebra! To
clearly see the connection between the two groups, let me

define the vectors ~V and ~V ′ as

~V ≡ Vxσx + Vyσy + Vzσz, (15)

~V ′ ≡ ei
~Ṡ~θV e−i

~Ṡ~θ (16)

To make life easier, I will only consider rotations about
the z-axis:

~V ′ =

[
cos(

θ

2
) + iσzsin(

θ

2
)

]
~V

[
cos(

θ

2
)− iσzsin(

θ

2
)

]
(17)

= [Vx cos θ + Vy sin θ]σx + [Vy cos θ − Vx sin θ]σy

+Vzσz, (18)
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where a whole bunch of algebra was performed between
Eqn. 17 and Eqn. 18. We can now make the identifica-
tions:

V ′x = Vx cos θ + Vy sin θ

V ′y = Vy cos θ − Vx sin θ.

Therefore, if we make the definitions shown in Eqns. 15
and 16, we can perform a three-vector spatial rotation by
using SU(2) group members. Sometimes you will hear
this type of relation referred to as an isomorphism. For
this particular situation the terminology is: SU(2) is iso-
morphic to SO(3).

You will probably hear that SU(2) “double covers”
SO(3). This terminology is due to the fact that the group

members of SU(2) are given by U = ei
~Ṡ~θ = ei~σ

~θ
2 . This

means that a full rotation in SU(2) requires θ = 4π. If

we had, instead, defined U = ei~σ
~θ (i.e. without the factor

1
2 on ~σ), the transformation ~V → ~V ′ would result in

V ′x = Vxcos(2θ) + Vysin(2θ)

V ′y = Vycos(2θ)− Vxsin(2θ).

At this point we would not be able to associate θ as
a spatial angle. Instead, we would have to define the
spatial angle associated with the SU(2) transformation
as θ/2. This is why the factor of 1

2 was included in the
definition of the SU(2) generator. This factor allows the
free parameters of SU(2) to be equal to the angles of
SO(3).

G. SU(3)

I will conclude this section with a very brief look at
SU(3). As stated earlier, this group has eight generators.
Because of the large number of generators it would be
good to have some sort of simple algorithm to find them.
One such algorithm relates the generators of SU(N) to
those of SU(N − 1). I will describe this algorithm for
obtaining the SU(3) generators using the SU(2) genera-
tors.

Let the generators of SU(3) be denoted as λi, where
i = 1, 2, 3, ..., 8. For each generator of SU(2) (in this case,
we are using the Pauli matrices to be the generators),
create a matrix that includes that SU(2) generator in
the upper left-hand part of the matrix. This gives us λ1,
λ2, and λ3.

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 .
The next two matrices we construct will be obtained by
taking a 3× 3 matrix that has all elements equal to zero,
and then placing in the last column and last row, the
numbers 1 and 1 symmetrically

λ4 =

0 0 1
0 0 0
1 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 .

We then construct the next two matrices by placing −i
and i symmetrically in the last row and column:

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 .
Finally, we put the 2×2 unit matrix in the left top corner
of the 3× 3 matrix and demand that the matrix is trace-
less and that the trace of the matrix-squared is equal to
2:

λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .
These matrices are called the Gell-Mann “λ-matrices”
and can be found in most particle physics books. One
of the nice features about this simple algorithm is that
it allows an easy way to remember the form of the λ-
matrices. Note: We could use this same algorithm to
construct the generators of SU(4) by starting with our
newly created SU(3) generators (if interested, see pages
372-373 of “Quantum Field Theory”, by Michio Kaku).

For completeness, the Lie algebra for SU(3) is

[
λi
2
,
λj
2

] = ifijk
λk
2
,

where the structure constants fijk are

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
.

It is worth noting that these Gell-Mann λ matrices
were constructed in a manner that left, explicitly, SU(2)
as a subgroup. The way to see this is by noticing that
λ1, λ2, and λ3 are just the Pauli matrices with an extra
row and column of zeros thrown in. This means that we
can use the λ1, λ2, and λ3 generators to form the SU(2)
group. Thus, if we restricted ourselves to transforma-
tions that only utilized the λ1, λ2, and λ3 generators,
we would only be mixing two out of the three complex
vector components.

V. GROUP MULTIPLICATION

A. SO(2)× SO(2)

Let the vectors ~A and ~B be arbitrary two-component
real vectors. We know that each these vectors can be
transformed such that the scalar length of each vector
is invariant under the transformation. In particular, the
transformation for real two-component vectors that pre-
serves length is provided by the two-dimensional rotation
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group. This group, as we have already seen, is called
SO(2).

We are interested in constructing something called the
“fundamental representation” of SO(2) × SO(2). This
fundamental representation will simply be the direct

product of ~A and ~B, and will be defined as

T i,j = AiBj .

Since the representation is rather small, it takes little
effort to write out the matrix form of T and count the
number of independent elements:

T i,j =

[
AxBx AxBy

AyBx AyBy

]
: 4 independent elements.

We are now interested in finding ways of “breaking
up” the fundamental representation into parts that will
transform only among themselves. To accomplish this
break-up, we will notice that we can create an antisym-
metric tensor A out of our fundamental representation T
by the simple construction Ai,j = (T i,j−T j,i)/2. We can
also make a symmetric tensor Si,j in a similar manner,
Si,j = (T i,j + T j,i)/2. Another quantity that is easy to
construct is the trace (dot product): tr(T i,j). Since A is
antisymmetric it has no trace, but S has a trace, and if we
want to break-out the trace from T so that it is indepen-
dent of the other quantities, we will have to remove this
trace from Si,j . If we let Q be the symmetric and trace-
less matrix corresponding to T , then Qi,j = Si,j− 1

2 tr(T ).
In summation, we have a fundamental representation T
that is broken into three independent parts: An antisym-
metric tensor A; a traceless symmetric tensor S, and a
trace tr(T ). We can write out these tensors and count
the number of independent elements:

A = 1
2

[
0 (AxBy −AyBx)

(AyBx −AxBy) 0

]
: 1.

Q = 1
2

[
(AxBx −AyBy) (AxBy +AyBx)
(AyBx +AxBy) (AyBy −AxBx)

]
: 2.

tr(T ) = AxBx +AyBy : 1.

We cannot decompose this down any further. We say
that the fundamental representation has been “reduced”
into its “irreducible representations”. We count the num-
ber of independent elements of each irreducible represen-
tation and write

SO(2)⊗ SO(2) = 2⊕ 1⊕ 1.

We say that we have the decomposition of SO(2)⊗SO(2).
It will be instructive to find the explicit transformation

rules for these tensors. Immediately, we can see that
the antisymmetric tensor represents the cross product,
and that the trace represents the dot product. Since we
know that the cross product (in 2-dimension) and dot
product are invariant under rotation, then tr(T ) and the
antisymmetric tensor A are invariants (as is required by
them having only one independent element). We only

need to worry about how the components of the traceless
antisymmetric tensor Qi,j transform:

(AxBx −AyBy)′ =

C1(AyBy −AxBx) + C2(AyBx +AxBy)

(AyBx +AxBy)′ =

C2(AyBx −AxBy) + C1(AyBy +AxBx)

where C1 = (cos2(θ)− sin2(θ)), and C2 = 2 cos θ sin θ.

If we now define the vector ~Virreducible as

~Virreducible =

 V 1

V 2

V 3

V 4

 ≡

AxBx −AyBy
AyBx +AxBy

| ~A× ~B|
~A · ~B

 , (19)

then the transformation ~Virreducible → ~V ′irreducible can be
written

~V ′irreducible =


[
C1 C2

C2 C1

]
0 0
0 0

0 0
0 0

1 0
0 1

 ~Virreducible.
Thus, we can write the transformation of an irreducible
representation as a block diagonal matrix.

Hopefully, you can now see that writing SO(2) ⊗
SO(2) = 2⊕1⊕1 makes a lot of sense. The term 2⊕1⊕1
tells us how big the block diagonals are in the irreducible
representation.

In short, if we had two real two-component vectors,

then we could create the vector ~Virreducible and any coor-
dinate rotation would result in mixing only the V1 and
V2 components in Eqn. 19. For two-dimensional real
vectors all this group theory is overkill. You have gotten
along just fine without all of this mathematical jargon
and machinery. The only real reason I wrote all of this
stuff for SO(2)⊗ SO(2), is that it is easy and intuitive.

In particle physics we classify the hadrons by there ir-
reducible representations. Later, you will see how all of
this machinery relates to the quark composition of the π
mesons. First, however, we will see how the decomposi-
tion we performed here relates to SO(N)⊗ SO(N).

B. SO(N)⊗ SO(N)

To see that the reduction we used for SO(N)⊗SO(N)
(traceless-symmetric, trace, and antisymmetric decom-
position) applies generally for SO(N)⊗ SO(N), we just
need to show that, in general, Qi,j , tr(T ), and Ai,j trans-
form among themselves.

Since the transformation of symmetric and antisym-
metric tensors is written as,

(S′)i,j =

N∑
l

N∑
m

Oi,lOj,mSl,m

(A′)i,j =

N∑
l

N∑
m

Oi,lOj,mAl,m,
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and Sl,m = Sm,l, and Al,m = −Am,l. We can rewrite
these as

(S′)i,j =
∑N
l

∑N
mO

i,lOj,mSm,l = (S′)j,i

(A′)i,j = −
∑N
l

∑N
mO

i,lOj,mAm,l = −(A′)j,i.

Thus, the symmetric and antisymmetric tensors trans-
form only among themselves. Also, since the trace trans-
forms as

tr(T ′) =

N∑
i

(T ′)i,i =

N∑
i,j,k

Oj,iOk,iT j,k

=

N∑
j,k

T j,k(OTO)j,k =

N∑
j

T j,j

= tr(T ),

then we have shown that the reduction into symmet-
ric traceless, trace, and antisymmetric tensors form valid
representations of SO(N)⊗ SO(N).

C. SU(2)⊗ SU(2) flavor symmetry

It is probably more common to see SU(2)⊗SU(2̄) (or

even 2 ⊗ 2̄) than SU(2) ⊗ SU(2). The reason I titled

this subsection as SU(2)⊗ SU(2), rather than the more
common notation, is to make it very clear that there is
an important distinction being made. In particle physics
the over-bar on a particle represents anti-particle. (So,
for example, the u quark has as its anti-particle ū.)

The SU(N) transformation properties are different for
particles and anti-particles. To see that this should be
true, you need to know that the anti-particle scalar-field
is obtained by complex conjugation of the particle scalar-
field. (For a Dirac field you need, in addition to the con-
jugation, a factor of the gamma matrix γ2.) For a particle
that respects SU(N) symmetry we have the transforma-
tion for the field φi representing that particle as

φi → φ′ i = U ijφ
j ,

where we have used the convention that AiBi ≡∑N
i A

iBi (i.e. upper and lower indices that match are
automatically summed). For a scalar-antiparticle we get

φ∗i → (U ij)
∗φ∗j =

N∑
i

(U†)jiφ
∗j ,

This is a bit of a mess! One way to make this a bit cleaner
is to define the anti-particle field for φi as having a lower
index instead and defining the transformation as

φi → φ′i = (U†)jiφj .

For right now, we just want to know that the SU(2)
transformation properties of a particle are different than

that of an anti-particle, and that we can keep track of
this difference by using an upper index for particles and
a lower index for anti-particles.

Lets define two arbitrary two-component complex vec-

tors ~A and ~̄B that have components

~A =

(
Au

Ad

)
, ~̄B =

(
Bu
Bd

)
,

where we are using the upper index to define a particle
and the lower index to define an anti-particle.

The fundamental representation of SU(2)⊗SU(2) can
be written

T ij =

[
AuBu AuBd
AdBu AdBd

]
: 4 independent elements.

In contrast to SO(N) ⊗ SO(N), we can no longer form
symmetric and antisymmetric tensors that transform
only among themselves. We do, however, have the trace
that transforms correctly:

tr(T ′) = (T ′)ii = U ij(U
†)ki T

j
k = (UU†)kjT

j
k = T jj = tr(T ).

This means that we can only form the trace (denoted as
φ) and traceless (φij = T ij − 1

2 tr(T )) tensors:

φ = AuBu +AdBd : 1

φij =

[
(AuBu −AdBd)/2 AuBd

AdBu (AdBd −AuBu)/2

]
: 3.

In group theory terminology we say SU(2) ⊗ SU(2) =
3⊕ 1.

If we make the substitutions Au → u,Ad → d,Bu →
ū, Bd → d̄, make the meson identifications as given in the
PDG, and normalize, then the triplet gives us

π0 = (uū− dd̄)/
√

2

π+ = ud̄

π− = dū

The pions are constructed as elements of the irreducible
triplet representation of SU(2)⊗SU(2) flavor symmetry.
We say that in isospin space, the pions transform among
each other. We can make the irreducible representation
vector as

~Virreducible =

 π+

π−

π0

singlet


What about the singlet? At first glance it looks to be

the ω! Well, we don’t have the complete story yet. To
have a better picture of what is going on, we will need to
look at SU(3)⊗ SU(3).
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D. SU(3)⊗ SU(3)

We can construct SU(3)⊗SU(3) in a similar manner to
that of SU(2)⊗SU(2). In fact we can start out by writing
SU(3)⊗SU(3) = 8̄⊕ 1, since we know that there will be
nine states and the only thing we can do is form a singlet
representation that is the trace, and a representation that
is traceless. Immediately we can write

φ = uū+ dd̄+ ss̄

αij =

 1
3 (−2uū+dd̄+ss̄) ud̄ us̄

dū 1
3 (uū−2dd̄+ss̄) ds̄

sū sd̄ 1
3 (uū+dd̄−2ss̄)

 .
We can identify the singlet as the η′ = (uū+dd̄+ss̄)/

√
3,

but where did our π0 = (uū+ dd̄)/
√

2 go?
We know that SU(2) flavor symmetry is a “good” sym-

metry. It certainly is better than SU(3) (since mu =
0.002, md = 0.005, and ms = 0.1 GeV). It seems reason-
able to see if we can form the SU(2) ⊗ SU(2) subgroup
explicitly in our octet representation. In fact, we ex-
plicitly constructed our Gell-Man λ matrices to maintain
2⊗ 2̄ as a subgroup. It would be somewhat unusual if we
could not construct 3⊗ 3̄ with a 2⊗ 2̄ subgroup!

To make 3⊗3̄ with an explicit 2⊗2̄ subgroup we simply
define

φij =

 1
3 (uū−dd̄) ud̄ us̄

dū −2
3 (uū−ss̄) ds̄

sū sd̄ 1
3 (uū+dd̄−2ss̄)


Once we make the meson identifications as given in the
PDG, and normalize, then the octet gives us

η = (uū+dd̄−2ss̄)/
√

6

π0 = (uū− dd̄)/
√

2

π+ = ud̄

π− = dū

K+ = us̄

K− = sū

K0 = ds̄

K̄0 = sd̄.

Note: Since 2
3 (uū−ss̄) = π0+η, then the −23 (uū−ss̄) term

is not independent, and does not belong in our particle
listing.

E. The SU(3)⊗ SU(3)⊗ SU(3) baryons

So far we have only concerned ourselves with the
qq̄ mesons. If we take three quarks we can construct
baryons.

Just as in the case of SO(3) ⊗ SO(3) we can form a
vector from a rank 2 tensor. In the case of SU(3) ⊗
SU(3) the resulting vector will have the transformation

characteristics of SU(3). In particular, we can form the
vectors

φk = φi,jεijk

and

φk = φi,jε
ijk.

These vectors within SU(3) are the complex analog of
~A × ~B within SO(3). Note, this only gives a non-zero
result when φi,j or φi,j is antisymmetric in i↔ j.

One thing that is important for you to keep in mind:
The vector φk = φi,jεijk, transforms like an antiparticle
transforms. We are NOT saying that the vector φk rep-
resents an antiparticle. We are just saying that φk has
the same transformation properties under SU(3) as an
antiparticle would have.

We can always form objects that have definite sym-
metry properties under interchange of the upper indices,
and definite symmetry properties under interchange of
the lower indices. Pay careful attention, this is the impor-
tant part: for any two upper (lower) indices that are anti-
symmetric under interchange, we can reduce the number
of indices by one and lower (raise) that index by the op-
eration φk = φi,jεijk (φk = φi,jε

ijk). This means that
we only have to consider irreducible representations that
are totally symmetric in lower and upper indices!

Let me form the direct product representation of
SU(3)⊗ SU(3)⊗ SU(3) as

T i,k,j = φiφjφk

We can obtain an irreducible representations that are

• totally symmetric: φi,j,k

• φ = φkk = φi,j,kεijk (antisymmetric trace)

• antisymmetric in i↔ j: φkm = φi,j,kεijm traceless

• antisymmetric in i↔ k: φjn = φi,j,kεink traceless

But what about antisymmetric in j ↔ k? It turns out
that the states that are antisymmetric in j ↔ k can be
made out of the other states. (See handout.)

In short we can write

φi ⊗ φj ⊗ φk = φi,j,k ⊕ φkm ⊕ φjn ⊕ φ,

or

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A,

where we have a symmetric decuplet, two mixed symme-
try octets, and an antisymmetric singlet. We can even
write:

(1, 0)⊗ (1, 0)⊗ (1, 0) = (3, 0)⊕ (1, 1)⊕ (1, 1)⊕ (0, 0),

where the notation (m,n) means m upper indices and n
lower indices.

Note: We already found that φkm → 8. To determine
φi,j,k → 10 we simply count the possible quark states:
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• no indices matching → 1 state: |uds >

• two indices matching → 6 states: |uud >, |uus >,
|ddu >, |dds >, |ssu >, |ssd >

• all indices matching → 3 states: |uuu >, |ddd >,
|sss >.

F. A couple more SU(3) decompositions

Let’s do a couple more decompositions.
If I want to do a group multiplication of 3⊗ 3 I get

φi ⊗ φj = φi,j ⊕ φk.

Since φi,j is symmetric under i ↔ j, there are six inde-
pendent states. Thus,

3⊗ 3 = 6⊕ 3̄.

Note: we obtain a 3̄ decomposition instead of 3 since this
triplet transforms the same way as an antiparticle triplet.

If I want to do a group multiplication of the baryon
octet with the meson octet, I get

φij ⊗ φkl = φi,kj,l ⊕ φ
i,k,m ⊕ φj,l,n ⊕ φmo ⊕ φpn ⊕ φ.

To count the number of states within φi,kj,l we notice

that there are six ways to have (i, k) symmetric and six
ways to have (j, l) symmetric. This implies 6 · 6 = 36
states symmetric in i ↔ k and j ↔ l. We just have to
subtract out all of the traces to find the number of states
within φi,kj,l .

To count the number of traces we notice that if one
upper and one lower index are summed to form a trace,
there are three ways to choose the remaining upper index
and three ways to choose the remaining lower index. This
means that there are 3 · 3 = 9 states that include at least
one trace. Now, to find the number of states within φi,kj,l
we just need to subtract the nine traces from the 36 states

symmetric in i ↔ k and j ↔ l. Thus φi,kj,l contains 27
states.

We can now make the identification:

8⊗ 8 = 27⊕ 10⊕ 1̄0⊕ 8⊕ 8⊕ 1.

So, finding multiplets within SU(3) is a fairly straight-
forward process. The most challenging part is counting
the number of states within any given irreducible repre-
sentation.

VI. CONCLUSION

In this document, an introduction to continuous
groups has been presented. The symmetry groups have
many applications in particle physics, particularly SU(2)
flavor symmetry (isospin), SU(3) flavor symmetry (the
quark model with u, d and s quarks), and SU(3) color
symmetry (with R, G, and B color charges).
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