
Making sense of field-theory Lagrangians for η and η
′ photoproduction

M. Dugger
Arizona State University, Tempe, AZ 85287-1504

Interaction Lagrangians for η and η′ photoproduction are discussed.

I. INTRODUCTION

The purpose of this document is to help the student
of nuclear/particle physics obtain an intuitive feel for
the terms seen in Lagrange densities for η and η′ pho-
toproduction. For this reason, this document is de-
signed to only show the most relevant aspects of field
theory. Along the way I will show how to obtain a non-
relativistic potential from a relativistic Lagrange density.
Once the connection from relativistic Lagrange densities
to non-relativistic potentials is made, we will see how the
nucleon-nucleon potential can be related to a single pion
exchange model. We will then piece together interaction
terms commonly found in Lagrange densities for η and
η′ photoproduction.

II. REVIEW OF LAGRANGIANS

A. The classical discrete Lagrangian

It is assumed that the concept of generalized coordi-
nates are understood. Also, in all that follows, general-
ized forces are assumed to be are derivable from poten-
tials. This allows us to write the Lagrangian as

L = T − V,

where T is the kinetic energy and V is the potential en-
ergy. It is important to note that the Lagrangian is a
function of the generalized coordinate q, and the time
derivative of the generalized coordinate, q̇. To make
this statement explicit the Lagrangian is often written
as L(q, q̇).

The equations of motion are derived using the Euler-
Lagrange equation:

d

dt

(

∂L

∂q̇k

)

− ∂L

∂qk
= 0.

The Euler-Lagrange equation may be derived by taking
the extremum δS = 0, where S =

∫

Ldt. The generalized
momentum pk is given by

pk ≡ ∂L

∂q̇
. (1)

The Euler-Lagrange equation now implies that any co-
ordinate qk that does not occur explicitly within L has
a corresponding momentum pk that is a constant of the
motion.

For the very simple case where T = 1
2mq̇

2, and V =

mgq, we get L = 1
2mq̇

2−mgq, and the equation of motion
becomes

mq̈ = mg.

While the generalized momentum pq = ∂L
∂q̇ = mq̇. We

have just found that the acceleration is equal to g,
pq = mq̇, and that all momenta not associated with
the generalized coordinate q are constant. Told you this
would be a very simple example!

B. The relativistic field Lagrangian

For a field, the Lagrangian is defined over the region
of space occupied by the field. For this reason, it is more
convenient to work with the “Lagrange density” L, than
with L directly. This Lagrange density is related to the
Lagrangian in the following manner

L =

∫ +∞

−∞

d3xL.

In this case, the Euler-Lagrange equation is modified to
read

∂µ

(

∂L
∂(∂µφ)

)

− ∂L
∂φ

= 0,

where ∂µ ≡ ∂/∂xµ, φ ≡ φ(x), and as before, is con-
structed to minimize the action S =

∫

Ldt =
∫

Ld4x.
Also, in all that follows, any upper index that matches a
lower index is to be summed (i.e. AµBµ ≡

∑

µA
µBµ).

It is important to note that the Lagrangian has units of
energy and must be a scalar.

After looking at the Euler-Lagrange equation, it might
be tempting to write L(φ, ∂µφ), but that would be wrong.
For a field, the Lagrange density L is a function of the
field amplitude φ and the time-derivative of that field φ̇.
This is often written explicitly as L(φ, φ̇).

The “momentum density” π(x) of the field is given by

π(x) ≡ ∂L
∂φ̇(x)

,

a direct analogy to the classical case shown in Eqn. 1.
It is important to note that the generalized coordinate

is an amplitude φ evaluated at some point in space x,
and is written φ(x). If we were to analyze a string un-
der tension as a one dimensional field, we could write the
amplitude as a physical displacement. However, if we
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analyze the electromagnetic four-vector potential Aµ(~x)
as a field, we would have the amplitude of Aµ at some
position ~x as the generalized field coordinates. In the
case of the Aµ(~x) field, there is no physical coordinate
displacement associated with the generalized coordinate.
We could, however, if so desired, find the electric and
magnetic fields associated with Aµ(~x) through the rela-
tions:

~E = −~∇A0 − ∂ ~A

∂t
,

~B = ~∇× ~A.

For our purposes, we wish to look at the scalar field
φ(x) that has the free Lagrangian density L0

L0 =
1

2
[(∂µφ)2 −m2φ2],

where for any four-vector quantity (Zµ)2 ≡ ZµZµ. After
solving the Euler-Lagrange equation, we find the equa-
tion of motion

(∂µ∂µ +m2)φ = 0.

This is simply the Klein-Gordon equation. This means
that our free Lagrangian density L0 describes a relativis-
tic spin-zero field. (Note: Throughout this document,
the units are taken such that ~ = c = 1.)

Sometimes, the determination of the equation of mo-
tion is described as first quantization. However, since
we have not quantized anything yet, this is somewhat
a misnomer. To quantize the field, we need to impose a
quantization scheme. The confusion regarding first quan-
tization comes from the fact that the Klein-Gordon equa-
tion applied to a particle is, in fact, quantum mechanics.
Yet, if the Klein-Gordon equation is applied to a field,
we are still doing classical relativistic physics. Anyway,
I only mention this because some people like the terms
“first-” and “second-quantization”, and other do not.

C. Quantizing the field

The position-momentum commutators for the quan-
tum mechanics of point particles are as follows:

[x, px] = i

[x, y] = [px, py] = 0.

For quantum fields it seems reasonable that similar rela-
tions should hold true. However, since the field is located
over a region, we expect that the commutation relations
for fields will take this into account.

One canonical quantization scheme is to force the com-
mutation relations between the generalized coordinate
and the generalized momentum-density to be

[φ(~x, t0), π(~y, t0)] = iδ(3)(~x− ~y),

[φ(~x, t0), φ(~y, t0)] = [π(~x, t0), π(~y, t0)] = 0,

where it is important to note that each of these field
operators are taken to be at the same time t0. These
are commonly referred to as “equal time commutation
relations”. If the time of the fields are not identical, then
these commutation relations do not hold.

After doing a bunch of math we would end up with
(for the Klein-Gordon field):

φ(~x) =

∫

d3p

(2π)3
√

2E

(

a~p e
−ipµxµ + a†~p e

ipµxµ

)

,

where

[a~p, a
†
~p ′ ] = (2π)3δ(3)(~p− ~p ′).

We have fields φ(~x) with creation and annihilation op-
erators. This means that these fields do NOT represent
quantum-mechanical states. These fields, instead, are
themselves operators. This is one of the key differences
between regular quantum mechanics of point particles,
and quantum field theory. When you solve the Klein-
Gordon equation for a point particle, you end up with
a state vector. However, when you solve (and quantize)
the Klein-Gordon equation in field theory, you end up
with an operator.

What does this field operator do? The field operator
φ(~x) will create or annihilate a particle at position ~x.
That is pretty much it.

In particular, if a state of momentum ~p is defined so
that

|~p〉 =
√

2E~p a
†
~p|0〉,

then

〈~p| = 〈0|a~p

√

2E~p,

a~p ′ |~p〉 = (2π)3δ(3)(~p− ~p ′)
√

2E~p |0〉,
〈~p|a†~p ′ = 〈0|(2π)3δ(3)(~p− ~p ′)

√

2E~p,

a~p|0〉 = 〈0|a†~p = 0

and

φ(~x)|0〉 =

∫

d3p

(2π)32E
e−ipµxµ |~p〉

and

〈0|φ(~x)|~p〉 = eipµxµ .

Don’t worry too much about the factors of
√

2E. The im-
portant thing is to notice that the field operators create
and annihilate states.

III. THE PROPAGATOR

So that we can make sense of what propagators are and
how they are related to the Lagrange density L, I will
show how the propagator is found using two different
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FIG. 1: Feynman diagram for a propagator from point x1 to
point x2.

methods. The first method will clearly show that the
propagator describes a state being created at some point
in space-time and then annihilated at some other space-
time point. The second method will clearly show how the
propagator is related to the free Lagrange density L0.

A. Propagator part 1

In this method we will define the propagatorD(x1−x2)
as

D(x1 − x2) = 〈0|φ( ~x2, t)φ( ~x1, 0)|0〉,

where, in this case, I have taken t > 0.
The propagator, as defined above, says that a state

is created as position x1 at time t = 0, and is annihi-
lated at position x2 at time t. Working out the equation,
we find that the only term that can contribute contains

〈0|a~p a
†
~q |0〉 = (2π)3δ(3)(~p− ~q) and leads to

D(x1 − x2) =

∫

d3p

(2π)32E
e−ip·(x1−x2), (2)

where the dot product of two four-vectors Aµ, Bµ is de-
fined such that A ·B = AµBµ.

We are now ready to see our very first Feynman dia-
gram in Fig. 1! We can see that the figure makes a lot of
sense. The figure says that a field propagates from point
x1 to point x2. We can even associate an equation with
this propagation.

B. Propagator part 2

Another way to define the propagator for our scalar
field theory is by taking the equation of motion and “in-
verting it”. The equation of motion for our scalar field
theory is the Klein-Gordon equation:

(∂µ∂µ +m2)φ = 0.

If I were to write this as Aφ = 0, I could define A−1 as
such:

AA−1 = δ(4)(x1 − x2).

That is what I mean by inverting the equation of motion.
For the field of interest we define the propagator D(x1 −
x2) through the relation

−i(∂2 +m2)D(x1 − x2) = δ(4)(x1 − x2).

To find D(x1 − x2) it is helpful to remember that the
δ-function can be written

δ(4)(x1 − x2) =

∫

d4k

(2π)4
eik·(x1−x2), (3)

and that

(∂2 +m2)eik·(x1−x2) = (−kµkµ +m2)eik·(x1−x2).

By inspection we can now write the propagator as

D(x1 − x2) = i

∫

d4k

(2π)4
eik·(x1−x2)

k2 −m2 + iε
, (4)

where ε represent an infinitesimal shift in the imaginary
part of the denominator and is a technical detail we will
not worry about. But wait! This does not look like our
previous result. How is this propagator in Eqn. 4 the
same as the one in Eqn. 2?

To see that Eqn. 4 might represent Eqn. 2, we should
notice that Eqn. 2 does not have the zero component
of k integrated over. Perhaps, if we integrate Eqn. 4
over the variable k0 we will obtain Eqn. 2. To do this
integration requires that we use the method of contours
of complex analysis. We don’t want to get bogged down
in too much math, so I’ll just state the result for the case
when t2 > t1

D(x1 − x2) =

∫

d3p

(2π)32E
e−ip·(x1−x2),

which is precisely Eqn. 2.
Another issue that might give you pause, is that the

integrand of the propagator given in Eqn. 4 is infi-
nite when k2 = m2! Isn’t the invariant quantity for a
four-momentum the mass? That is true, however, this
four-momentum is said to be off the “mass shell”. In
classical quantum mechanics of point particles, the en-
ergy is not always conserved. For quantum field theory,
the 4-momentum is conserved (working with plane waves
⇒ ∆pµ = 0 and ∆x → ∞ ), but the mass of the particles
will vary from that of “free particles”. This variation of
the mass is called being off the mass shell.

In the field theory that we are interested in, we are
more concerned with the form of the propagator given
in Eqn. 4. Note: it is possible for the propagator to be
defined such that the factor of i is removed from Eqn.
4. I have elected to keep the factor of i so that our two
methods of determining the propagator are consistent.
Also, it is useful to note that the Fourier transform of
Eqn. 4 to momentum-space can be written as

D̃(k) =
i

k2 −m2 + iε
.
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I want you to notice that we only needed the free La-
grange density L0 to determine the propagator. When
you see a Lagrange density L, you should mentally sep-
arate the free part L0 from the interaction part Lint, so
that L = L0 + Lint, and notice that the free part L0

determines the field propagators.

Aside: I want to make something clear regarding ter-
minology. Sometimes you will here me refer to the free
Lagrange density L0 as being the kinetic part of the La-
grangian. This is a misnomer. The kinetic part of L for
our simple theory is (∂φ)2/2 and not [(∂φ)2 −m2φ2]/2.
The mass term is more accurately associated with po-
tential energy. So, please excuse me if I say that L0 is
the kinetic part of the Lagrange density. Some habits are
hard to break.

Now that we have associated the propagator with the
free part of L, it is time to ask about the interaction part
of the Lagrange density.

IV. THE VERTEX

I will describe a first order process that has as its La-
grange density

L = 1
2 [(∂φa(~x))2 −m2

aφ
2
a(~x)]+

1
2 [(∂φb(~x))

2 −m2
bφ

2
b(~x)]+

1
2 [(∂φc(~x))

2 −m2
cφ

2
c(~x)]− gφa(~x)φb(~x)φc(~x).

You might be saying to yourself: This equation is too
long! If I know that the fields are scalar (Klein-Gordon)
then the L0 part is not even needed. We could get by
just as well by specifying the interaction term and stating
that the fields φaφbφc are scalar. You would be right in
making such a statement. This is why, in many cases,
the free part is not even written. It is easier just to write

Lint = −gφaφbφc.

You will also often encounter the case where the subscript
int is removed, and see things like

L = −gφaφbφc,

to describe a Lagrange density. So, if you see a theorist
write down a field that only contains interaction parts,
it is assumed that the free part has been conveniently
suppressed to save on writing a bunch of free field La-
grangians.

To get an intuitive idea of what an interaction term
in the Lagrange density tells us, consider three different
fields φa(~x), φb(~x), and φc(~x), representing three differ-
ent particles (denoted as A, B, and C) with the mass
of A greater than the mass of B + C. Each of these
fields have their own L0, but have a common interaction
term Lint = −gφa(~x)φb(~x)φc(~x). Lets just naively find

TIME

SPACE

B C

A

FIG. 2: Vertex at point x.

〈~pb, ~pc| Lint| ~pa〉:

〈~pb, ~pc| Lint| ~pa〉 = 〈~pb, ~pc|
∫

d4xLint| ~pa〉 =

−g〈~pb, ~pc|
∫

d4xφb(~x)φc(~x)φa(~x) | ~pa〉

When we multiply the fields together the only term that

will survive will have a factor of b†~q c
†
~r a~s . This will give

us, after a bit of math,

−g 〈~pb, ~pc|
∫

d4xφb(~x)φc(~x)φa(~x) | ~pa〉

= −g δ(4)(pa − (pb + pc)), (5)

where the δ-function tells us to conserve momentum and
energy at the vertex.

I will now try and make the same sort of statement
in a different way. The method I am about to describe
will involve more math but better describes how to cal-
culate something called the M-matrix amplitude that we
associate with Feynman diagrams.

We will now draw our next Feynman diagram. This
Feynman diagram can be found in Fig. 2 and says that
particle A decays into particles B and C at a vertex.

I will define an amplitude for a processes (e.g. A →
B+C) as Z. To determine Z we associate a factor of −ig
with the vertex, propagate all of the lines, and integrate
over the vertex position (remember we are dealing with
plane waves ⇒ vertex can be anywhere):

Z = (−ig)
∫

d4xD(a− x)D(x − b)D(x− c) =

−ig
∫∫∫∫

d4kad
4kbd

4kci
3e−ix·(ka−kb−kc)ei(ka·a−kb·b−kc·c)

(2π)12(k2
a −m2

a)(k2
b −m2

b)(k
2
c −m2

c)
d4x,

where I have collected terms in the exponent common in
x. When we integrate over the x variable and notice that
this is just a definition of the δ-function (see Eqn. 3), we
obtain

Z = −ig(2π)4δ(4)(ka − kb − kc)D(a)D(b)D(c).

To obtain −iM from Z, we just throw away the overall
momentum-energy conserving δ-function (along with the
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(2π)4) and all propagators associated with external lines.
For our simple example we get

−iM = −ig.

We have just seen that it is natural to associate the
coupling constant and momentum-energy conserving δ-
function at an interaction vertex, with the interaction
part of a Lagrange density Lint given as the product of
fields, Lint = −gφa(~x)φb(~x)φc(~x). Moreover, we have
seen how the diagram is associated with something called
the M-matrix, and that the coupling constants of the
fields gives a measure of the reaction strength within M.

Now when you see a Lagrange density, you should
think of the interaction terms as describing several fields
being created and annihilated at some point in space-
time.

A. Identical particles at the vertex

In the previous subsection we had three different fields
(φa, φb, φc) that interacted at a vertex. If, instead, we
had one field with the Lagrange density

L =
1

2
[(∂φ)2 −m2φ2] + gφ3,

then, when we form

〈~p1, ~p2| Lint|~p3〉 = 〈~p1, ~p2|
∫

d4xLint|~pc〉 =

−g〈~p1, ~p2|
∫

d4xφ(~x)φ(~x)φ(~x) |~p3〉,

we would not be able to distinguish which field creates
or annihilates any of the particular p1, p2, p3 states. We
would have three ways to choose the first field, two ways
to choose the second field, and one way to choose the
last field. For this reason, we obtain a factor of 3! when
compared to Eqn. 5:

−g 〈~p1, ~p2|
∫

d4xφ(~x)φ(~x)φ(~x) |~p3〉

= −g 3! δ(4)(p3 − (p1 + p2)).

Many times you will see Lint = −gφ3/(3!), where the
factor 1/(3!) is put in so that we don’t need to worry
about pesky factors of 3! in the Feynman rules.

A more complete description of how Z is obtained in
terms of the propagators for the Lint = −gφ3/(3!) theory
can be found in the appendix.

V. SECOND ORDER INTERACTION

I will describe a second order process (each vertex
represents an order, see appendix) describing the elastic
scattering of two scalar particles A + B with the inter-
action Lagrange density given as Lint = −gφaφbφc. The

TIME

SPACE

C

A_I B_I

B_F A_F

FIG. 3: Feynman diagram for A + B → A + B. The initial
and final positions are labeled: AI (initial position for particle
A); BI (initial position for particle B); AF (final position for
particle A), and BF (final position for particle B).

process we will investigate is typically written A+ B →
A+ B.

The second-order Feynman diagram for A+B → A+B
is shown in Fig. 3, where I have labeled the various fields
in terms of initial and final states.

As was done previously, I will associate a factor of −ig
with each vertex, propagate all of the lines, and integrate
over the vertex positions to obtain:

Z = (−ig)2
∫

d4x1

∫

d4x2DaIx1
Dx1bFDx1x2

DbIx2
Dx2aF ,

(6)

where I have defined D(x − y) ≡ Dxy to save space.
Integrating over x1 we get

Z = (−ig)2
∫

d4x2D(aI)D(bF )D(x2)DbIx2
Dx2aF ×

(2π)4δ(4)(paI − pbF − pc).

Now integrating over x2 to obtain

Z = (−ig)2
∫

d4k

(2π)4
iD(aI)D(bF )D(bI )D(aF )

k2
c −m2

c

×

(2π)4δ(4)(paI −pbF −pc)(2π)4δ(4)(pbI −paF −pc).

After performing the last integral:

Z = −ig2D(aI)D(bI)D(bF )D(aF )

(paI − pbF )2 −m2
c

×

(2π)4δ(4)(paI +pbI −paF −pbF ).

Now, throw away the external field propagators and the
factor (2π)4δ-function and set to −iM to get

M =
g2

(paI − pbF )2 −m2
c

.

From our examples of how to calculate Feynman di-
agrams, it appears that there are common physical sit-
uations that might give the same general results. This
is, in fact, the case. We don’t need to calculate all of
the integrals. Instead, we can create a list of rules that
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are called “Feynman rules” for dealing with Feynman
diagrams and make our lives a little bit easier. Please
see the handout that goes with this document. It shows
the Feynman rules for the theory presented here, along
with the M-matrix calculations I have shown, along with
other Feynman diagram calculations I have not shown.

Disclaimer: The method I used in this document to
find the M-matrix are only guaranteed to work for the
specific calculations shown. To obtain M for Feynman
diagrams different from what I have shown, you will have
to use established Feynman rules.

Now that we have the M-matrix for two-body scat-
tering we need to see how this is related to the physical
measurements of lifetime and cross-section. The connec-
tion will be shown in the next section. After which, we
will be concerned with how a potential energy term like
V ∝ e−mr/r comes from the interaction Lagrange den-
sity.

VI. THE M-MATRIX CONNECTION TO THE
PHYSICAL OBSERVABLES OF LIFETIME AND

CROSS-SECTION

In what follows, I will show the relation between M
and physical observables for some simple reactions. I
will state these relations without proof.

First we need to define a few quantities:

• τ ≡ the mean lifetime of a particle,

• Γ ≡ the decay rate of a particle,

• σ ≡ the cross section for a reaction,

• dσ/dΩ ≡ the differential cross section.

A. Decay rate

The relationship between the decay rate and lifetime
is given simply as

Γ =
1

τ
,

and is related to the number of particles N through the
relation N(t) = N(0)e−Γt.

We now want to relate the decay rate to the M-matrix
for a two-body decay 1 → 2 + 3 in the center-of-mass
frame:

Γ =
S| ~pf |
8πm2

1

|M|2,

where ~pf is the momentum of either final particle and S
represents a symmetry factor that we don’t have to worry
about right now. For the reaction A → B + C we have
M = g (and the symmetry factor S = 1 in this case), so

Γ =
|~pb|

8πm2
a

g2,

where ~pb (−~pc) is determined by energy-momentum con-
servation.

B. Differential cross section

The center-of-mass differential cross section for the re-
action 1 + 2 → 3 + 4 is given by

dσ

dΩ
=

[

S

(8π)2

] [ |M|2
(E1 +E2)2

] | ~pf |
|~pi|

,

where ~pi ( ~pf ) is the momentum of either incoming (out-
going) particle. In our example of A + B → A + B we
have

M =

[

g2

tµtµ −m2
c

]

,

where tµ = pµ
aI

− pµ
bF

, and represents the momentum
transfer to particle C in Fig. 3. If I set ma = mb we get

M =

[ −g2

~t · ~t+m2
c

]

.

Thus

dσ

dΩ
=

[ −g2

~t · ~t+m2
c

]2 [

1

(8π)2(E1 +E2)2

]

,

(Note: In the the center-of-mass frame |~pi| = | ~pf | for the
reaction A+B → A+B.)

VII. POTENTIAL AND L

To determine the form of the potential using our M-
matrix, we will compare our cross section in the non-
relativistic limit to the cross section we would obtain us-
ing the non-relativistic Born approximation.

For a reaction of the type A + B → A + B, we can
write the non-relativistic Born approximation

dσ

dΩ
=

m2
r

(2π)2
|Ṽ (q)|2, (7)

where mr is the reduced mass (mr = mamb/(ma +mb))

and Ṽ (q) is the potential in momentum space. Therefore,
in the non-relativistic limit, we can make the identifica-
tion

Ṽ (q) → 1

4mamb
M. (8)

Thus, we just need to perform a Fourier transform to
obtain V (~r) from M. For our A + B → A + B reaction
we obtain (remembering that we have set ma = mb)

V (r) = − g2

4m2
a

∫

d3q

(2π)3
ei~q·~r

~q 2 +m2

= −
(

g2

16πm2
a

)

e−mcr

r
. (9)
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The first thing to notice is that the potential is attrac-
tive (minus sign in front of the right hand side of Eqn.
9). In the limit where mc → 0 we would get the poten-
tial V (r) ∝ 1/r. That is, the potential for the case where
mc → 0, looks like what we are accustomed to for gravity
and electromagnetism. For the case where mc 6= 0, the
inverse radial dependence is “damped” by the exponen-
tial factor e−mcr.

You should notice that, for our simple theory, the mo-
mentum dependence of M was determined by the prop-
agator of the C particle, while the coupling g was deter-
mined by the vertex. Thus, both the free part (that de-
termines the propagator) and the interaction part (that
determines the vertex couplings) are important in relat-
ing the potential to the Lagrange density L.

You should not be too surprised that the potential
for the interaction of a scalar field with a fermion field
(Lint = g ψ φ ψ, where the over-bar on ψ is a technical
detail we won’t worry about right now) yields V (r) ∝
e−mcr/r. After all, the propagator for the φ-field is the
same as we have seen in our ABC theory. This becomes
more interesting if we were to make a strong-force model
where baryons (three-quark composite particles like pro-
tons and neutrons) interact with scalar mesons. In fact,
such theories have been proposed, where one particularly
famous model came from Hideki Yukawa. The potential
V (r) ∝ e−mcr/r is commonly called the “Yukawa po-
tential” and represents a major achievement in the early
theoretical understanding of the nucleon-nucleon force.

Unfortunately, the nucleon-nucleon force is not quite
so nice. For one thing, the most common mesons are not
scalar particles but, instead, pseudo-scalar. This means
that the parity of these particles change sign under a
“space-inversion” (~r → −~r).

A. One-pion exchange potential for proton-proton
scattering

In relativistic quantum mechanics, anti-particles are
possible, and this creates a new degree of freedom that is
not seen in the non-relativistic theory. In non-relativistic
quantum mechanics, a fermion can be represented by a
two component spinor, whereas in a relativistic treat-
ment, a four-component spinor is found that describes
both the spin and particle/anti-particle nature of the
field excitation. As a reminder of relativistic quantum
mechanics, we write the Dirac equation as:

(iγµ∂µ −m)ψ = 0, (10)

where the 4 × 4 gamma matrices γµ can be written
(“Bjorken and Drell” convention):

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

0 1
1 0

)

,

and σ are the Pauli spin matrices.
Since ψ†ψ is not a relativistic invariant, it is convenient

to work with ψψ, where ψ ≡ ψ†γ0. It can be shown that

ψψ is a relativistic invariant, and that the “bilinears”
transform as follows:

1. ψψ = scalar,

2. ψγ5ψ = pseudo-scalar,

3. ψγµψ = vector,

4. ψγµγ5ψ = pseudo-vector,

5. ψσµνψ = antisymmetric tensor,

where σµν ≡ i/2[γµ, γν ].
The free Lagrange density for fermions is written

L0 = ψ(i∂µγµ −m)ψ. (11)

To conserve parity in the interaction Lagrange-density for
a pseudo-scalar particle interacting with a fermion spinor
field (in this case we will only consider proton fields), one
needs to use a γ5 factor so that,

Lint = −gψγ5ψφ. (12)

The full Lagrange density can now be written

L = ψ[i∂µγµ −mp]ψ +
1

2
[(∂φ)2 −m2

πφ
2] − gψγ5ψφ,

and is invariant under a parity transformation.
Without going into the technical details (a full deriva-

tion can be found in section 9.9 of “Relativistic Quantum
Mechanics and Field Theory” by Franz Gross) the result-
ing non-relativistic potential becomes:

V (r) =
g2m2

π

48πm2
p

[

e−mπr

r

]

× { ~σ1 · ~σ2+

(3 ~σ1 · r̂ ~σ2 · r̂ − ~σ1 · ~σ2)

(

1 +
3

mπr
+

3

(mπr)2

)}

. (13)

What a difference a γ5 makes! At first glance, this seems
to be a disaster, but if we look closer, it turns out not to
be all that bad. For one, we see the common factor of
e−mcr/r. Also, we can see terms:

• ( ~σ1 · ~σ2): central spin dependence,

• (3 ~σ1 · r̂ ~σ2 · r̂ − ~σ1 · ~σ2): tensor,

that are needed for a description of nucleon-nucleon in-
teractions ,. Unfortunately, the central spin dependence
is about a factor of ten smaller than what is found in NN
scattering and there is a spin-orbit part that is completely
missing /. The model can, however, be improved upon
by allowing scalar and vector mesons.

This is a cautionary tale: What may appear to be a
simple change to the vertex can result in large changes
in the behavior of the reaction.

This is a good opportunity to talk about recoil po-
larimeters. If our model included vector meson exchange,
we would be able to generate another term to our poten-
tial that couples spin and orbital angular momentum [1].
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FIG. 4: Spin orbit coupling.

To get an intuitive idea as to why we should expect a
spin-1 vector meson to give a spin-orbit interaction term,
we will work by analogy. We know that the photon is a
spin-1 massless field, and that the coupling of the photon
field to fermions must produce spin-orbit interactions. (I
say this with confidence because we know that spin-orbit
interactions have been measured in atomic spectroscopy.)
So, if we were to couple a massless spin-1 vector meson
to a fermion field, we should obtain a spin-orbit coupling.
The only difference between the spin-orbit coupling for a
massless spin-1 meson, and a photon, should come from
the different strengths of the coupling constants. In our
case, we are interested in a massive meson field. This
means that the propagator for the massive field is ex-
pected to cause a dampening effect in the potential. Oth-
erwise, we should expect the two fields to act similarly
(more on this later on).

We will consider a spin orbit term of the form:

VSO = −C~L · ~S,

where C is a positive constant.

If we had a target of carbon atoms (which is often the
case for a recoil polarimeter), and incident protons as
shown in Fig. 4, where the spin of each incident proton
is aligned out of the page, we would obtain a repulsive
potential for proton 1 and an attractive potential for pro-
ton 2. For each case where the proton spin is directed
out of the page, we get a force bending the path to the
left! If the spin were to be pointed into the page, instead,
the paths would be bent to the right. This is how a re-
coil polarimeter works: a slab of carbon is placed in a
detector, and the direction and degree of deflection tells
us about the proton spin polarization.

VIII. THE QED LAGRANGIAN DENSITY

For a photon field we have the free Lagrange density

L0 =
−1

4
F µνFµν ,

where

F µν ≡ ∂µAν − ∂νAµ

=







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0






,

implies that

−1

4
F µνFµν =

1

2
( ~E2 − ~B2). (14)

This is just the difference between the energy density
of the electric and magnetic fields. So when you see

−F µνFµν/4 you should think ( ~E2 − ~B2)/2.
Now that the Lagrange density for a free photon field

has an intuitive deffinition, we want to see how the pho-
ton field is coupled to a fermion field. Earlier we saw
that the free Lagrangian for a fermion field is written as

L0 = ψ(i∂µγµ −m)ψ.

The interaction part for the two fields ψ, Aµ will be

Lint = −eψγµψAµ.

(To make sense of this Lint term you should notice that
we want to couple a four-vector electromagnetic field Aµ

to the fermion field forming a scalar [recall that the La-
grange density must be a scalar]. The only way to do
this is to contract the four-vector Aµ with some other
four-vector. The only vector bilinear at our disposal is
ψγµψ.) Putting this all together we have

LQED = ψ(i∂µγµ −m)ψ − 1

4
F µνFµν − eψγµψAµ. (15)

Often you will see this written as

LQED = ψ[iγµD
µ −m]ψ − 1

4
F µνFµν ,

where Dµ ≡ ∂µ + ieAµ. These two forms given for LQED

are identical, but look different at first glance.
The interaction vertex has a Feynman diagram as

shown in Fig. 5, and the vertex factor can be read di-
rectly from the interaction part of LQED and is −eγµ.
This is the only vertex possible, as can be seen from the
Lagrange density in Eqn. 15. Every Feynman diagram
you can think of for QED is made up of this one vertex.
For example we can get a diagram for photon scattering
γγ → γγ as shown in Fig. 6 just by using our one simple
vertex over and over.

The propagators for this theory are
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FIG. 5: Vertex for QED.

TIME

SPACE

FIG. 6: A Feynman diagram for γγ → γγ.

• photons: −igµν/q2,

• fermions: i/(γµqµ −m),

and are derivable from the free Lagrange densities. As
would be expected, the non-relativistic potential is V ∝
1/r for unpolarized fermions, and depends on the photon
mass being zero.

To distinguish between particles and anti-particles
within a Feynman diagram, the time-direction of the ar-
row is used: Particles will have arrows pointing in the
positive time direction, while anti-particles will point in
the negative time direction. For example, Fig. 7 shows
e+ µ̄→ e+ µ̄, where µ̄ represents the µ anti-particle, and
Fig. 8 shows one diagram for the pair annihilation pro-
cess e− + e+ → γ+ γ. (The anti-particle for e is denoted
e+ instead of as ē for purely historical reasons.)

TIME

SPACE

Photon

A
nt

i−
pa

rt
ic

le

Pa
rt

ic
le

µ

µ
e

e

FIG. 7: A Feynman diagram for e + µ̄ → e + µ̄, where the
direction of the arrows determines the particle, anti-paritcle
nature.

TIME

SPACE

FIG. 8: A Feynman diagram for e− + e+
→ γ + γ.

For identical particles in the final state, we can not
distinguish between the Feynman diagram given in Fig.
8 and that shown in Fig. 9. This means that both figures
would need to be used in determining the M-matrix for
the second order e− + e+ → γ + γ process.

TIME

SPACE

FIG. 9: A second Feynman diagram for e− + e+
→ γ + γ.

One last issue before we move on to the next subsec-
tion. We need to keep track of the spin of the fermion
lines and the polarization of the photon lines. In Feyn-
man diagrams, you associate a spinor for each external
fermion line and a polarization vector for each external
photon line.

Most particle physics books will give you the Feynman
rules for QED, and show you how to calculate the M-
matrix for specific processes.

A. Anomalous magnetic moment and effective
Lagrange densities

Since we can always make more complicated Feynman
diagrams, it would be good make modifications to the
rules so that, while the Lagrange density has not changed,
the modified rules “soak up” some common classes of
Feynman diagrams. One such modification is associated
with something called the anomalous magnetic moment.
This anomalous magnetic moment results from a class of
Feynman diagrams where there are photon lines “strad-
dling” a vertex. An example can be found in Fig. 10 and
the sum of all of these type of corrections is commonly
drawn as in Fig. 11.
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FIG. 10: A Feynman diagram for a vertex correction.
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FIG. 11: A Feynman diagram for all possible vertex correc-
tions.

We can make a simple change to our vertex function
that accounts for the anomalous magnetic moment by
changing our vertex function to be

γµF1(q
2) +

iσµνqν
2mN

F2(q
2),

where F1 and F2 are functions of momentum-transfer
that are determined for the particular fermion fields in-
volved, and mN is the proton mass. While the funda-
mental Lagrange density has not changed, we could write
down an effective interaction Lagrange density such that

Lint Effective = −F1(q
2)ψγµψAµ + F2(q

2)ψ

(

σµν

2mN

)

ψFµν ,

where it is understood that the class of Feynman dia-
grams as shown in Fig. 10 are already taken care of.

It might seem a bit strange to replace iσµνqνAµ with
σµνFµν/2. To make sense of this substitution, you need
to know that the Aµ field can be written as

Aµ =
∑

s

∫

d4q εµs

(2π)3
√
E

(

as~q + a†
s ~−q

)

e−ix·q ,

where εµ is the polarization vector, and implies that

∂νAµ = i
∑

s

∫

d4q qνεµs

(2π)3
√
E

(

as~q + a†
s ~−q

)

e−ix·q .

= −iqνAµ.

You also need to recognize that since σµν is antisymmet-
ric under µ→ ν:

σµνqνAµ = −σµνqµAν ⇒

=
1

2
(σµνqνAµ − σµνqµAν)

=
−i
2
σµνFµν .

Thus, iσµνqνAµ = σµνFµν/2.
What we will want to know next is how massive spin-

1 mesons (e.g. ρ, ω, and φ) can be incorporated into a
model for nucleon interactions.

IX. MASSIVE SPIN-1 VECTOR FIELD

As a reminder, we can write the free Lagrange density
for a photon field as

L0 =
−1

4
F µνFµν ,

where

F µν ≡ ∂µAν − ∂νAµ.

The most general Lagrange density we could write for
a gauge field and fermion field is

L = ψ[iγµD
µ −m]ψ − 1

4
F µνFµν − cεαβµνF

αβF µν .(16)

(see section 15.1 of “An Introduction to Quantum Field
Theory”, by M.E. Peskin and D.V. Schroeder.) The term
εαβµνF

αβF µν violates parity and is thrown out. We will
come back to this equation (Eqn. 16) later on.

For a spin-1 massive vector field we set

L0 =
−1

4
V µνVµν − 1

2
m2

V V
µVµ,

where

V µν ≡ ∂µV ν − ∂νV µ,

V µ represents the massive vector field, and mV is the
mass of the particle excitation of the vector field V µ.
The interaction term for our massive vector field coupled
to a fermion field is given as

Lint = −λψγµψVµ,

Lint Effective =

−G1(q
2)ψγµψVµ +G2(q

2)ψ

(

iσµνqν
2mN

)

ψVµν ,

where G1, G2 are analogs of the form factor F1, F2. Im-
mediately, we see that if we take mV = 0, then the only
difference between the Lagrange density for our meson
vector-field and the photon field, is the coupling con-
stants. (For the effective Lagrangian we also see differ-
ent form factors.) Also, the transformation properties of
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F µν will be identical to the transformation properties of
V µν , and thus there are quantities within V µν that are a

direct analog to the ~E and ~B fields of electromagnetism.
Because of the mass term in the free Lagrange density,

the propagator for massive vector field will be different
than that for the massless photon field (−igµν/q2), and
is

−i(gµν − qµqν/m2
V )

q2 −m2
V

. (17)

The first thing you should notice is that the propagator
given in Eqn. 17 does not behave nicely in the limit that
mV → 0. What we would like to see, is the massive
propagator, in the limit mV → 0, to become the photon
propagator −igµν/q2. The reason that the two propa-
gators look so different has to do with the fact that a
massless vector field has only two polarization degrees of
freedom.

A technical detail: For an arbitrary spin-1 particle
we can have three polarization states: One longitudinal
state and two transverse states. For a massless parti-
cle, the velocity must be the speed of light. This causes
the length contraction in the direction of motion to com-
pletely “wipe-out” any vector quantity in that direction.
This is why a photon is spin-1 with only two polariza-
tions. The photon field has “lost” a degree of freedom.
Because of this lost degree of freedom, we have a field
that is under-determined. This manifests itself in the
photon field having a non-determined “gauge”. We have
the freedom to choose an electromagnetic gauge transfor-
mation such that

Aµ → Aµ + ∂µf(~x, t), (18)

where f is any function of position and time. This choice
of gauge transformation manifests itself in the photon
propagator such that the propagator can be written as

−i
q2

[

gµν − (1 − ζ)
qµqν

q2

]

, (19)

where ζ can be any number and represents a choice of
gauge. In this document ζ = 1 is chosen so that the
photon propagator becomes −igµν/q2. I still have not
shown how the massive vector-field propagator becomes
the massless vector propagator, but have instead shown
that determining the massless vector propagator is a
tricky affair (that we won’t go into any further).

X. EFFECTIVE LAGRANGIAN THEORY FOR η
PHOTOPRODUCTION

I will now briefly describe the interaction parts of an
effective field theory by Benmerrouche, Mukhopadhyay,
and Zhang (BMZ). These interaction Lagrange densi-
ties are also common to the theory of Nakayama and
Haberzettl (NH).

I will use the notation of BMZ:

• N → Proton field.

• η → η field.

• V → Vector meson field (ρ or ω).

• mN → Proton mass.

• Aµ → Photon field.

• R → Nucleon resonance field.

A. Interaction Lagrange density for γNN

We have already worked out the effective Lagrange
density for a photon-field interacting with a fermion field.
As previously discussed:

LγNN = −eNγµNA
µ +

κt

2mN
NσµνNF

µν .

In this case F1 = e, and F2 = κt.

B. Interaction Lagrange density for V NN

We have also shown that for a vector-field coupled to
a fermi-field, we expect (by direct analogy to the photon
case):

LV NN = −gvNγµNA
µ +

gt

2mN
NσµνNF

µν .

In this case G1 = gv, and G2 = gt.

C. Interaction Lagrange density for ηNN

The Lagrange density for ηNN has an additional
pseudo-vector coupling term we have not discussed thus
far. This new pseudo-vector coupling can be seen in the
second term of the Lagrange density

LηNN = gη

[

−iζNγ5Nη + (1 − ζ)
1

2
Nγµγ5N∂

µη

]

,

where ζ represents the fraction of the pseudo-scalar to
pseudo-vector couplings. Previously, when discussing the
anomalous magnetic moment, we found that the effective
Lagrange density can be described using field-derivative
couplings. It turns out that the general form for our La-
grange density for ηNN can include an η-field derivative.
In the case of πNN , the pseudo-vector piece dominates
to the extent that the pseudo-scalar piece is often left out
entirely (ζ → 0) for pion-nucleon-nucleon interactions.
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D. Interaction Lagrange density for ηNR

These terms are as expected, once the parity of the
resonance state R is taken account of:

LPS
ηNR = −igηNRNΓRη

LPV
ηNR = −ifηNR

mη
NΓµR∂

µη,

LγNR =
eκ

2(mR +mN )
R ΓµνNF

µν ,

where

• Odd parity ⇒ Γ = 1, Γµ = γµ, Γµν = γ5σµν

• Even parity ⇒ Γ = γ5, Γµ = γµγ5, Γµν = σµν ,

• Super script PV ⇒ pseudo-vector coupling,

• Super script PS ⇒ pseudo-scalar coupling.

We can readily see that the only difference between the
odd- and even-resonance cases is a factor of γ5 to keep
the overall parity to be even.

E. Interaction Lagrange density for ηγV

We want to include a term that couples the η-field to
the γ-field and vector meson V -field. As usual, the fact
that the η-field is pseudo-scalar means that we have to
be careful about parity. In our discussion regarding the
most general form for the Lagrange density for a Dirac
field coupled to a vector gauge field seen in Eqn. 16,
I stated that the term εαβµνF

αβF µν was odd under a
parity transformation.

To easily see the parity properties of F µν , it is useful to
look at the individual components. The electromagnetic
Aµ field transforms like a regular vector, and since

~E = −~∇A0 − ∂ ~A

∂t
,

~B = ~∇× ~A,

then ~E is a vector and ~B is a pseudo-vector. Another way
to think about the magnetic transformation properties
is to imagine an infinite positive line charge moving in
the +z direction. The magnetic field for this moving

line charge will have a magnetic field pointed in the +φ̂-
direction (taking cylindrical coordinates). If we were to

invert space (~r → −~r), then the direction of the ~B-field

remains in the +φ̂-direction. Since F µν can be made
from E and B components, then F µν is of mixed parity.

The combination −F µνFµν/4 = ( ~E2 − ~B2)/2, however,
is even under a parity transformation.

Since the strong and electromagnetic interactions con-
serve parity, then a term like εαβµνF

αβF µν must be ex-
cluded in the QED Lagrangian. Now, however, what was
a fatal flaw for including this type of term for QED, is an

asset when considering an interaction term for coupling
η to V and γ. It is now reasonable to take the form of
LV ηγ to be:

LV ηγ =
eλV

4mη
εµναβF

µνV αβη.

As discussed previously, V µν has the same transform
properties as F µν . This means that there will be quanti-
ties within V µν that act as direct analogs to the electro-

magnetic vectors ~E, and ~B. Let me write these analogs

as ~E, and ~B so that

V µν ≡ ∂µV ν − ∂νV µ

=









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









,

and

1

4
εµναβF

µνV αβ = ~E · ~B + ~E · ~B. (20)

We see that the electromagnetic ~E-field couples to the

vector-analog ~B-field, and the electromagnetic ~B-field

couples to the vector-analog ~E-field. Moreover, since ~E

and ~E are vector, and ~B and ~B are pseudo-vector, then

εµναβF
µνV αβ = ~E · ~B + ~E · ~B will be a pseudo-scalar as

we desire for coupling to the pseudo-scalar η meson.

F. Contact term NNγη

To maintain the photon-field gauge invariance, a con-
tact term is required. The sole purpose of this NNγη
interaction is to subtract out bad (gauge violating) be-
havior. You can think of it as an Ad Hoc addition to the
model to keep it from falling apart.

G. Resonances with spin 3/2 (R3/2)

The NH model includes resonances with spin 3/2. This
extra degree of freedom for the resonance mediator adds
additional complications. The Lagrange density for this
spin 3/2 case we have

LNR3/2η =
gNR3/2η

mη
R

µ
Θµν(z)Γ(±)N∂η,

where Γ(+) = γ5, Γ(+) = 1, and Θµν(z) = gµν − (z −
1/2)γmuγν .

We also have a modification to the γR3/2N coupling:

LγR3/2N = i e
g1γR3/2N

mR3/2

Rµγ5γνNF
µν +

e
g2γR3/2N

mR3/2

∂νRµγ5NF
µν .
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Since I am not comfortable talking about fields with spin
≥ 3/2, I’ll have to end the discussion of R3/2 here /.

It has taken some time, but now we have shown all of
the Lagrange densities associated with the BMZ and NH
models for η and η′ photoproduction , Now we want to
see how one of these models compares to actual data.

XI. RESULTS OF THE NH MODEL APPLIED
TO ASU η′ PHOTOPRODUCTION DATA

FIG. 12: Feynman diagrams for the NH model. The variable q
is associated with the η′, k the incident photon, p the target
proton, p′ the recoil proton, R the resonance, and ρ/ω the
vector mesons.

FIG. 13: NH model differential cross sections for five different
sets of assumed resonance contributions (I through V).

FIG. 14: NH model beam asymmetries for the five different
sets of assumed resonance contributions (I through V).

The NH effective Lagrangian model has the Feynman
diagrams as shown in Fig. 12

When all of the production mechanisms shown in Fig.
12 are added together for five different sets of assumed
resonance contributions, NH obtain the fits to the ASU
differential cross sections shown in Fig. 13.

We can see that each of these five sets (I through V)
compare well with the ASU results. This means that we
will need another type of observable to help deconvolute
the spectrum. One such observable is the beam asymme-
try. A plot of the beam asymmetry from the NH model
for the five sets of resonances can be found in Fig. 14.

It is easy to see from Fig. 14 that the beam asymme-
tries should help greatly in determining the best possible
set of included resonances for η′ photoproduction. A for-
mer member of the ASU group, Patrick Collins, is cur-
rently working on the beam asymmetry measurements
for this reaction.

XII. CONCLUSION

We have discussed interaction Lagrange densities for
photoproduction of η and η′ (from the proton) commonly
found in the literature regarding these reactions. We
have also seen how the results of the NH model compare
to ASU η′ photoproduction data.
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APPENDIX: FINDING THE Z AMPLITUDE

There are two common methods for finding the M-
matrix: (1) Canonical method using creation and an-
nihilation operators; (2) Path integrals. Each of these
approaches has strengths and weaknesses. One strength
of the path integral approach is that the relation of M-
matrix to the Lagrange density is more clearly seen than
in the canonical formalism.

Most field theory text include a description of both
formalisms. It is probably more common for the canon-
ical treatment to be emphasized initially (e.g. “An In-
troduction to Quantum Field Theory” by Michael E. Pe-
skin, and Daniel V. Schroeder; “Quantum Field Theory”,
by Michio Kaku; “Relativistic Quantum Mechanics and
Field Theory”, by Franz Gross; “The Quantum Theory
of Fields, Vol 1”, by Stephen Weinberg . . . ). Most likely,
this is because the canonical approach looks more like
the quantum mechanics you have encountered as under-
graduates, with operators acting on quantum-mechanical
bra’s and ket’s. However, some texts will start by em-
phasizing the path integral, with one such example being
“Quantum Field Theory in a Nutshell”, by A. Zee. In
what follows, I have chosen to discuss the path integral
approach of determining Z.

It is not the intent of this appendix to show how the
path integral is put together from first principles. For a
complete treatment of the path integral formalism you
might want to read Zee. I will, instead, state a few re-
sults, so as to more clearly show why I constructed the
Z amplitudes in the manner that I have shown in the
document.

I start by simply stating the the time development of
a state out-of and into the vacuum can be written as

Z ≡ 〈0|e−iHT |0〉 =

∫

DφeiS , (21)

where H is the Hamiltonian,
∫

Dφ ⇒ integration over all
possible paths, and the action S =

∫

dtL =
∫

d4xL.
Since we are constructing states that must come from

the vacuum at some space-time points and then return-
ing to the vacuum at other space-time points (we have
constructed the Z-amplitude so that the initial and final
states are the vacuum), we need a mechanism that acts
as sources and sinks for our “external” particles within
any given Feynman diagram. To accomplish this, we
add terms to the Lagrange density: Jφ, where φ rep-
resents the field of our external line and J represents
sources/sinks. Fortunately, we can take the sources and
sinks to be space-time delta functions J = δ(4)(x − x1),
where x1 represents the space-time point that a field φ
is “pulled out” of the vacuum (source), or “put into” the
vacuum (sink).

The amplitude Z can now be seen as a function of the
sources and sinks, and by noticing that L = L0 +Lint +
Jφ, we can write

Z =

∫

Dφei
R

(d4xL0+Lint+Jφ).

We are almost done! We are simply going to expand Z in
terms of J , and then expand Z in terms of the interaction
to get:

Z =

∞
∑

j=1

∞
∑

k=1

Z(j, k) =

∫

Dφei
R

d4xL0 ×

∞
∑

j=1

1

j!

[

i

∫

d4xJφ

]j ∞
∑

k=1

1

k!

[

i

∫

d4xLint

]k

.

Let us see what we get when we take J = δ(4)(x−a)+
δ(4)(x − b) + δ(4)(x − c), and Lint = −gφ3/(3!) to the
order j = 3, and k = 1:

Z(3, 1) = −i g
3!

∫

d4x

∫

Dφei
R

d4xL0φ(x)φ(x)φ(x) ×

1

3!

[

i

∫

d4xJφ

]3

.

The first thing that we notice is that the terms in J are
going to give us a mess!

We can fix the terms in J by noticing that combination
like [δ(4)(x−a)]3, and [δ(4)(x−a)]2δ(4)(x−b) will describe
a process where one or more of our external lines share
the same space-time point of origin or “death”. We are
not interested in processes that have external lines that
share a common beginning or end, so we only consider
the term 3! δ(4)(x−a)δ(4)(x− b)δ(4)(x− c). Now we have

Z(3, 1) = − (i)4

3!

∫

d4x

∫

Dφei
R

d4xL0 ×

φ(x)φ(x)φ(x)φ(a)φ(b)φ(c). (22)

To evaluate the integral in Eqn. 22 we need an identity
that I will state without proof:

(i)3

Z(0, 0)

∫

Dφei
R

d4xL0 × φ(x)φ(x)φ(x)φ(a)φ(b)φ(c)

= D(a− x)D(b− x)D(c− x) +D(a− x)D(c − x)D(b− x)

+ D(b− x)D(c − x)D(a− x) +D(b− x)D(c− x)D(a − x)

+ D(c− x)D(b− x)D(a− x) +D(c− x)D(a − x)D(b− x)

+ D(x− x)D(a − b)D(c− x) + · · · , (23)

where I have connected field pairs in every possible way
to construct the propagators.

The first 3! (six) terms of Eqn. 23 can be repre-
sented by the single Feynman diagram shown in Fig. 15.
Whereas, a term like D(x−x)D(a− b)D(c−x) will yield
a “disconnected” diagram as shown in Fig. 16.

We are not interested in the disconnected diagrams, so
we can now write

Z =
Z(3, 1)

Z(0, 0)
=

−ig
∫

d4xD(a− x)D(b− x)D(c − x).
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FIG. 15: A Feynman diagram for the first 3! (six) terms in
Eqn. 23.
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FIG. 16: A Feynman diagram for D(x− x)D(a− b)D(c− x).


