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PREFACE

This introduction to the theory of elementary particles is intended primarily for
advanced undergraduates who are majoring in physics. Most of my colleagues
consider this subject inappropriate for such an audience—mathematically too
sophisticated, phenomelogically too cluttered, insecure in its foundations, and
uncertain in its future. Ten years ago I would have agreed. But in the last decade
the dust has settled to an astonishing degree, and it is fair to say that elementary
particle physics has come of age. Although we obviously have much more to
learn, there now exists a coherent and unified theoretical structure that is simply
too exciting and important to save for graduate school or to serve up in diluted
qualitative form as a subunit of modern physics. I believe the time has come to
integrate elementary particle physics into the standard undergraduate curriculum.

Unfortunately, the research literature in this field is clearly inaccessible to
undergraduates, and although there are now several excellent graduate texts,
these call for a strong preparation in advanced quantum mechanics, if not quan-
tum field theory. At the other extreme, there are many fine popular books and
a number of outstanding Scientific American articles. But very little has been
written specifically for the undergraduate. This book is an effort to fill that need.
It grew out of a one-semester elementary particles course I have taught from
time to time at Reed College. The students typically had under their belts a
semester of electromagnetism (at the level of Lorrain and Corson), a semester
of quantum mechanics (at the level of Park), and a fairly strong background in
special relativity.

In addition to its principal audience, I hope this book will be of use to
beginning graduate students, either as a primary text, or as preparation for a
more sophisticated treatment. With this in mind, and in the interest of greater
completeness and flexibility, I have included more material here than one can
comfortably cover in a single semester. (In my own courses I ask the students
to read Chapters 1 and 2 on their own, and begin the lectures with Chapter 3. 1
skip Chapter 5 altogether, concentrate on Chapters 6 and 7, discuss the first two
sections of Chapter 8, and then jump to Chapter 10). To assist the reader (and
the teacher) I begin each chapter with a brief indication of its purpose and content,
its prerequisites, and its role in what follows.

This book was written while I was on sabbatical at the Stanford Linear
Accelerator Center, and I would like to thank Professor Sidney Drell and the
other members of the Theory Group for their hospitality.

DAVID GRIFFITHS

vii






ELEMENTARY PARTICLE PHYSICS ”

Elementary particle physics addresses the question, “What is matter made of 7’
on the most fundamental level—which is to say, on the smallest scale of size.
It’s a remarkable fact that matter at the subatomic level consists of tiny chunks,
with vast empty spaces in between. Even more remarkable, these tiny chunks
come in a small number of different types (electrons, protons, neutrons, pi me-
sons, neutrinos, and so on), which are then replicated in astronomical quantities
to make all the “stuff”” around us. And these replicas are absolutely perfect
copies—not just “pretty similar,” like two Fords coming off the same assembly
line, but utterly indistinguishable. You can’t stamp an identification number on
an electron, or paint a spot on it—if you’ve seen one, you’'ve seen them all. This
quality of absolute identicalness has no analog in the macroscopic world. (In
quantum mechanics it is reflected in the Pauli exclusion principle.) It enormously
simplifies the task of elementary particle physics: we don’t have to worry about
big electrons and little ones, or new electrons and old ones—an electron is an
electron is an electron. It didn’t have to be so easy.

My first job, then, is to introduce you to the various kinds of elementary
particles, the actors, if you will, in the drama. I could simply /ist them, and tell

Tt T thanl ¢ Tatt :
you their properties (mass, electric charge, spin, etc.), but I think it is better in

this case to adopt a historical perspective, and explain how each particle first
came on the scene. This will serve to endow them with character and personality,
making them easier to remember and more interesting to watch. Moreover,
some of the stories are delightful in their own right.

Once the particles have been introduced, in Chapter 1, the issue becomes,
“How do they interact with one another?”” This question, directly or indirectly,
will occupy us for the rest of the book. If you were dealing with two macroscopic

1



2 INTRODUCTION

objects, and you wanted to know how they interact, you would probably begin
by suspending them at various separation distances and measuring the force
between them. That’s how Coulomb determined the law of electrical repulsion
between two charged pith balls, and how Cavendish measured the gravitational
attraction of two lead weights. But you can’t pick up a proton with tweezers or
tie an electron onto the end of a piece of string; they’re just too small. For
practical reasons, therefore, we have to resort to less direct means to probe the
interactions of elementary particles. As it turns out, almost all our experimental
information comes from three sources: (1) scattering events, in which we fire
one particle at another and record (for instance) the angle of deflection; (2)
decays, in which a particle spontaneously disintegrates and we examine the debris;
and (3) bound states, in which two or more particles stick together, and we study
the properties of the composite object. Needless to say, determining the inter-
action law from such indirect evidence is not a trivial task. Ordinarily, the pro-
cedure is to guess a form for the interaction and compare the resulting theoretical
calculations with the experimental data.

The formulation of such a guess (“model” is a more respectable term for
it) is guided by certain general principles, in particular, special relativity and
quantum mechanics. In the diagram below I have indicated the four realms of
mechanics:

Small—>

Classical Quantum
mechanics mechanics
Fast ,l,

Relativistic | Quantum
mechanics | field theory

The world of everyday life, of course, is governed by classical mechanics. But
for objects that travel very fast (at speeds comparable to ¢), the classical rules
are modified by special relativity, and for objects that are very small (comparable
to the size of atoms, roughly speaking), classical mechanics is superseded by
guantum mechanics. Finally, for things that are both fast and small, we require
a theory that incorporates relativity and quantum principles: quantum field the-
ory. Now, elementary particles are extremely small, of course, and typically they
are also very fast. So elementary particle physics naturally falls under the do-
minion of quantum field theory.

Please observe the distinction here between a type of mechanics and a
particular force law. Newton’s law of universal gravitation, for example, describes
a specific interaction (gravity), whereas Newton’s three laws of motion define
a mechanical system (classical mechanics), which (within its jurisdiction) governs
all interactions. The force law tells you what F is, in the case at hand; the me-
chanics tells you how to use F to determine the motion. The goal of elementary
particle dynamics, then, is to guess a set of force laws which, within the context
of quantum field theory, correctly describe particle behavior.

However, some general features of this behavior have nothing to do with
the detailed form of the interactions. Instead they follow directly from relativity,



ELEMENTARY PARTICLE PHYSICS 3

from quantum mechanics, or from the combination of the two. For example,
in relativity, energy and momentum are always conserved, but (rest) mass is not.
Thus the decay A — p + = is perfectly acceptable, even though the A weighs
more than the sum of p plus 7. Such a process would not be possible in classical
mechanics, where mass is strictly conserved. Moreover, relativity allows for par-
ticles of zero (rest) mass—the very idea of a massless particle is nonsense in
classical mechanics—and as we shall see, photons, neutrinos, and gluons are all
(apparently) massless.

In quantum mechanics a physical system is described by its state, s (rep-
resented by the wave function y; in Schrodinger’s formulation, or by the ket |s)
in Dirac’s). A physical process, such as scattering or decay, consists of a transition
from one state to another. But in quantum mechanics the outcome is not uniquely
determined by the initial conditions; all we can hope to calculate, in general, is
the probability for a given transition to occur. This indeterminacy is reflected in
the observed behavior of particles. For example, the charged pi meson ordinarily
disintegrates into a muon plus a neutrino, but occasionally one will decay
into an electron plus a neutrino. There’s no difference in the original pi
mesons; they’re all identical. It is simply a fact of nature that a given particle can
go either way.

Finally, the union of relativity and quantum mechanics brings certain extra
dividends that neither one by itself can offer: the existence of antiparticles, a
proof of the Pauli exclusion principle (which in nonrelativistic quantum me-
chanics is simply an ad hoc hypothesis), and the so-called TCP theorem. I'll tell
you more about these later on; my purpose in mentioning them ‘here is to em-
phasize that these are features of the mechanical system itself, not of the particular
model. Short of a catastrophic revolution, they are untouchable. By the way,
quantum field theory in all its glory is difficult and deep, but don’t be alarmed:
Feynman invented a beautiful and intuitively satisfying formulation that is not
hard to learn; we’ll come to that in Chapter 6. (The derivation of Feynman’s
rules from the underlying quantum field theory is a different matter, which can
easily consume the better part of an advanced graduate course, but this need
not concern us here.)

In the last few years a theory has emerged that describes all of the known
elementary particle interactions except gravity. (As far as we can tell, gravity is
much too weak to play any significant role in ordinary particle processes.) This
theory—or, more accurately, this coiiection of reiated theories, incorporating
quantum electrodynamics, the Glashow—Weinberg-Salam theory of electroweak

processes, and quantum chromodynamics—has come to be called the Standard
Model No one pretends that the Standard Model is the final word on the subiect

Model. No one pretends that the Standard Model is the final word on the subject,
but at least we now have (for the first time) a full deck of cards to play with.
Since 1978, when the Standard Model achieved the status of “orthodoxy,” it
has met every experimental test. It has, moreover, an attractive aesthetic feature:
in the Standard Model all of the fundamental interactions derive from a single
general principle, the requirement of /ocal gauge invariance. It seems likely that
future developments will involve extensions of the Standard Model, not its re-
pudiation. This book might be called an “Introduction to the Standard Model.”
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As that alternative title suggests, this is a book about elementary particle
theory, with very little on experimental methods or instrumentation. These are
important matters, and an argument can be made for integrating them into a
text such as this, but they can also be distracting and interfere with the clarity
and elegance of the theory itself. (I encourage you to read about experimental
aspects of the subject, and from time to time I will refer you to particularly
accessible accounts.) For now, I’ll confine myself to scandalously brief answers
to the two most obvious experimental questions.

HOW DO YOU PRODUCE ELEMENTARY PARTICLES?

Electrons and protons are no problem; these are the stable constituents of ordinary
matter. To produce electrons one simply heats up a piece of metal, and they
come boiling off. If one wants a beam of electrons, one then sets up a positively
charged plate nearby, to attract them over, and cuts a small hole in it; the electrons
that make it through the hole constitute the beam. Such an electron gun is the
starting element in a television tube or an oscilloscope or an electron accelerator
(Fig. L.1).

To obtain protons you ionize hydrogen (in other words, strip off the elec-
tron). In fact, if you're using the protons as a farger, you don’t even need to
bother about the electrons; they’re so light that an energetic particle coming in
will knock them out of the way. Thus, a tank of hydrogen is essentially a tank
of protons. For more exotic particles there are three main sources: cosmic rays,
nuclear reactors, and particle accelerators.

Cosmic Rays The earth is constantly bombarded with high-energy particles
(principally protons) coming from outer space. What the source of these particles
might be remains something of a mystery; at any rate, when they hit atoms in
the upper atmosphere they produce showers of secondary particles (mostly
muons, by the time they reach ground level), which rain down on us all the
time. As a source of elementary particles, cosmic rays have two virtues: they are
free, and their energies can be enormous—far greater than we could possibly
produce in the laboratory. But they have two major disadvantages: The rate at
which they strike any detector of reasonable size is very low, and they are com-
pletely uncontrollable. So cosmic ray experiments call for patience and luck.

Nuclear Reactors When a radioactive nucleus disintegrates, it may emit a variety
of particles—neutrons, neutrinos, and what used to be called alpha rays (actually,

alnha narfisrloc hirsrh ara hannd cta
aipia pariicies, wiichi are ooung states of two neutrons plus two pfﬂtGHS), beta

rays (actually, electrons or positrons), and gamma rays (actually, photons).

Particle Accelerators You start with electrons or protons, accelerate them to
high energy, and smash them into a target. By skillful arrangements of absorbers
and magnets, you can separate out of the resulting debris the particle species
you wish to study. Nowadays it is possible in this way to generate intense sec-
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Figure I.1 The Stanford Linear Accelerator Center (SLAC). Electrons and positrons are
accelerated down a straight tube 2 miles long, reaching energies as high as 45 GeV. (Photo
courtesy of SLAC.)

ondary beams of positrons, muons, pions, kaons, and antiprotons, which in turn
can be fired at another target. The stable particles—electrons, protons, positrons,
and antiprotons—can even by fed into giant storage rings in which, guided by
powerful magnets, they circulate at high speed for hours at a time, to be extracted
and used at the required moment (Fig. 1.2).

In general, the heavier the particle you want to produce, the higher must
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Figure 1.2 CERN, outside Geneva, Switzerland. SPS is the 450 GeV Super Proton Syn-
chrotron, later modified to make a proton—antiproton collider; LEP is a 50 GeV electron—
positron storage ring now under construction. (Photo courtesy of CERN.)

be the energy of the collision. That’s why, historically, lightweight particles tend
to be discovered first, and as time goes on, and accelerators become more pow-
erful, heavier and heavier particles are found. At present, the heaviest known
particle is the Z°, with nearly 100 times the mass of the proton. It turns out that
the particle gains enormously in energy if you collide two high-speed particles
head-on, as opposed to firing one particle at a stationary target. (Of course, this
calls for much better aim!) Therefore, most contemporary experiments involve
colliding beams from intersecting storage rings; if the particles miss on the first
pass, they can try again the next time around. Indeed, with electrons and positrons
(or protons and antiprotons) the same ring can be used, with the plus charges
circulating in one direction and the minus charges in the other.

There is another reason why particle physicists are always pushing for
higher energies: In general, the higher the energy of the collision, the closer the

trwn narticlae coma ta nane annther Qn IF Vn'll want 1o c:tndv the lnff‘rﬂ(‘tlﬂn at

iwlo FOALUVIVO VUILLIV LU Uidw Gl elivie YViside was awaewe S, QAL ARRALIAR

very short range, you need very energetic partlcles. In quantum-mechanical terms,
a particle of momentum p has an associated wavelength X given by the de Broglie
formula A = h/p, where A is Planck’s constant. At large wavelengths (low mo-
menta) you can only hope to resolve relatively large structures; in order to ex-
amine something extremely small, you need comparably short wavelengths, and
hence high momenta. If you like, consider this a manifestation of the uncertainty
principle (Ax Ap = h/47r)—to make Ax small, Ap must be large. However you
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look at it, the conclusion is the same: to probe small distances you need high
energies.

HOW DO YOU DETECT ELEMENTARY PARTICLES?

There are many kinds of particle detectors—Geiger counters, cloud chambers,
bubble chambers, spark chambers, photographic emulsions, Cerenkov counters,
scintillators, photomultipliers, and so on (Fig. 1.3). Actually, a typical modern
detector has whole arrays of these devices, wired up to a computer that tracks
the particles and displays their trajectories on a television screen (Fig. 1.4). The
details do not concern us, but there is one thing to be aware of: Most detection
mechanisms rely on the fact that when high-energy charged particles pass through
matter they ionize atoms along their path. The ions then act as “seeds” in the
formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks
(spark chamber), as the case may be. But electrically neurral particles do not
cause ionization, and they leave no tracks. If you look at the bubble chamber
photograph in Fig. 1.11, for instance, you will see that the five neutral particles
are “invisible”; their paths have been reconstructed by analyzing the tracks of
the charged particles in the picture and invoking conservation of energy and
momentum at each vertex. Notice also that most of the tracks in the picture are
curved (actually, al/ of them are, to some extent; try holding a ruler up to one
you think is straight). Evidently the bubble chamber was placed between the
poles of a giant magnet. In a magnetic field B, a particle of charge g and mo-
mentum p will move in a circle of radius R given by the famous cyclotron formula:
R = pc/gB, where c is the speed of light. The curvature of the track in a known

o wares fob soocds
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O MANOMETEN

Figure 1.3 An early particle detector: Wilson’s cloud chamber (ca. 1900). (Photo courtesy-
Science Museum, London.)
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. @ |
Figure I.4 A modern particle detector: The Mark I, at SLAC. (Photo courtesy SLAC.)

magnetic field thus affords a very simple measure of the particle’s momentum.
Moreover, we can immediately tell the sign of the charge from the direction of
the curve.

UNITS

Elementary particles are small, so for our purposes the normal mechanical units—
grams, ergs, joules, and so on—are inconveniently large. Atomic physicists in-
troduced the electron voli—the energy acquired by an electron when accelerated
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through a potential difference of 1 volt: 1 eV = 1.6 X 107" joules. For us the
eV is inconveniently small, but we’re stuck with it. Nuclear physicists use keV
(10° eV); typical energies in particle physics are MeV (10% eV), GeV (10° eV),
oreven TeV (10'? eV). Momenta are measured in MeV/c (or GeV/c, or whatever),
and masses in MeV/c%. Thus the proton weighs 938 MeV/c? = 1.67 X 107 g.

Actually, particle theorists are lazy (or clever, depending on your point of
view)—they seldom include the ¢’s and A’s (A = h/27) in their formulas. You’re
just supposed to fit them in for yourself at the end, to make the dimensions
come out right. As they say in the business, “set ¢ = A = 1.” This amounts to
working in units such that time is measured in centimeters and mass and energy
in inverse centimeters; the unit of time is the time it takes light to travel |
centimeter, and the unit of energy is the energy of a photon whose wavelength
is 27 centimeters. Only at the end of the problem do we revert to conventional
units. This makes everything look very elegant, but I thought it would be wiser
in this book to keep all the ¢’s and A’s where they belong, so that you can check
for dimensional consistency as you go along. (If this offends you, remember that
it is easier for you to ignore an £ you don’t like than for someone else to conjure
one up in just the right place.)

Finally, there is the question of what units to use for electric charge. In
introductory physics courses most instructors favor the S7 system, in which charge
is measured in coulombs, and Coulomb’s law reads

L a0

F=——
dmey 1’

(S

Most advanced work is done in the Gaussian system, in which charge is measured
in electrostatic units (esu), and Coulomb’s law is written

_ 0%

F=12 @©

But elementary particle physicists prefer the Heaviside-Lorentz system, in which
Coulomb’s law takes the form

F=-—=5"(HD

The three units of charge are related as shown:
1

- 4.
v; SI

In this book I shall use Gaussian units exclusively, in order to avoid unnecessary
confusion in an already difficult subject. Whenever possible I will express results
in terms of the fine structure constant

duL = V4_TFGG =

e? 1

e T 1m

where e is the charge of the electron in Gaussian units. Most elementary particle
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texts write this as e?/4r, because they are measuring charge in Heaviside-Lorentz
units and setting ¢ = A = 1; but everyone agrees that the number is 13.

REFERENCES AND NOTES

This book is a brief survey of an enormous and rapidly changing subject. My
aim is to introduce you to some important ideas and methods, to give you a
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Chapter 1

ction to the
Elementary articles

This chapter is a kind of “folk history” of elementary particle physics. Its
purpose is to provide a sense of how the various particles were first discovered,
and how they fit into the overall scheme of things. Along the way some of the
fundamental ideas that dominate elementary particle theory are explained.
This material should be read quickly, as background to the rest of the book.
(As history, the picture presented here is certainly misleading, for it sticks
closely to the main track, ignoring the false starts and blind alleys that ac-
company the development of any science. That's why I call it “/folk” history—
it’s the way particle physicists like to remember the subject—a succession of
brilliant insights and heroic triumphs unmarred by foolish mistakes, confusion,
and frustration. It wasn'’t really quite so easy.)

1.1 THE CLASSICAL ER

p -]
—

It is always a little artificial to pinpoint such things, but I'd say that elementary

particle physics was born in 1897, with J. J. Thomson’s dmr‘nverv of the electron.!

A AR AX.

(It is fashlonable to carry the story all the way back to Democntus and the Greek
atomists, but apart from a few suggestive words their metaphysical speculations
have nothing in common with modern science, and although they may be of
modest antiquarian interest, their relevance is infinitesimal.) Thomson knew
that cathode rays emitted by a hot filament could be deflected by a magnet. This
suggested that they carried electric charge; in fact, the direction of the curvature
required that the charge be negative. It seemed, therefore, that these were not
rays at all, but rather streams of particles. By passing the beam through crossed
electric and magnetic fields, and adjusting the field strength until the net deflection
was zero, Thomson was able to determine the velocity of the particles (about a

11



12 1/HISTORICAL INTRODUCTION TO THE ELEMENTARY PARTICLES

tenth the speed of light) as well as their charge-to-mass ratio. (See Fig. 1.1 and
Problem 1.1). This ratio turned out to be enormously greater than for any known
ion, indicating that either the charge was extremely large or the mass was very
small. Indirect evidence pointed to the second conclusion. Thomson called the
particles corpuscles, and their charge the electron. Later the word electron was
applied to the particles themselves.

Thomson correctly surmised that these electrons were essential constituents
of atoms; however, since atoms as a whole are electrically neutral and very much
heavier than electrons, there immediately arose the problem of how the com- ,
pensating plus charge—and the bulk of the mass—is distributed within an atom.
Thomson himself imagined that the electrons were suspended in a heavy, pos-
itively charged paste, like (as he put it) the plums in a pudding. But Thomson’s
model was decisively repudiated by Rutherford’s famous scattering experiment,
which showed that the positive charge, and most of the mass, was concentrated
in a tiny core, or nucleus, at the center of the atom. Rutherford demonstrated
this by firing a beam of a-particles (ionized helium atoms) into a thin sheet of

Figure 1.1 The apparatus with which J. J. Thomson discovered the electron. (Photo
courtesy Science Museum, London.)



1.1 THE CLASSICAL ERA (1897-1832) 13

gold foil (see Fig. 1.2). Had the gold atoms consisted of rather diffuse spheres,
as Thomson supposed, then all of the a-particles should have been deflected a
bit, but none would have been deflected much—any more than a bullet is de-
flected much when it passes, say, through a bag of sawdust. What in fact occurred
was that most of the a-particles passed through the gold completely undisturbed,
but a few of them bounced off at wild angles. Rutherford’s conclusion was that
the a-particles had encountered something very small, very hard, and very heavy.
Evidently the positive charge, and virtually all of the mass, was concentrated at
the center, occupying only a tiny fraction of the volume of the atom (the electrons
are too light to play any role in the sattering; they are knocked right out of the
way by the much heavier a-particles).

The nucleus of the lightest atom (hydrogen) was given the name proton by
Rutherford. In 1914 Niels Bohr proposed a model for hydrogen consisting of a
single electron circling the proton, rather like a planet going around the sun,
held in orbit by the mutual attraction of opposite charges. Using a primitive
version of the quantum theory, Bohr was able to calculate the spectrum of hy-
drogen, and the agreement with experiment was nothing short of spectacular. It
was natural then to suppose that the nuclei of heavier atoms were composed of
two or more protons bound together, supporting a like number of orbiting elec-
trons. Unfortunately, the next heavier atom (helium), although it does indeed
carry two electrons, weighs four times as much as hydrogen, and lithium (three
electrons) is seven times the weight of hydrogen, and so it goes. This dilemma

Zinc suifide screen Gold foil Collimated beam

\ \ of a-particies
Microscope N I
\ i Source of

L—" o-particles

Vacuum
pump

Figure 1.2 Schematic diagram of the apparatus used in the Rutherford scattering ex-
periment. Alpha particles scattered by the gold foil strike a fluorescent screen, giving off
a flash of light, which is observed visually through a microscope.
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was finally resolved in 1932 with Chadwick’s discovery of the neutron—an elec-
trically neutral twin to the proton. The helium nucleus, it turns out, contains
two neutrons in addition to the two protons; lithium evidently includes four;
and in general the heavier nuclei carry very roughly the same number of neutrons
as protons. (The number of.neutrons is in fact somewhat flexible: the same atom,
chemically speaking, may come in several different isofopes, all with the same
number of protons, but with varying numbers of neutrons.)

The discovery of the neutron put the final touch on what we might call
the classical period in elementary particle physics. Never before (and I'm sorry
to say never since) has physics offered so simple and satisfying an answer to the
question, “What is matter made of 7’ In 1932 it was all just protons, neutrons,
and electrons. But already the seeds were planted for the three great ideas that
were to dominate the middle period (1930-1960) in particle physics: Yukawa’s
meson, Dirac’s positron, and Pauli’s neutrino. Before we come to that, however,
I must back up for a moment to introduce the photon.

1.2 THE PHOTON (1900-1924)

In some respects the photon is a very “modern” particle, having more in common
with the W and Z (which were not discovered until 1983) than with the classical
trio. Moreover, it’s hard to say exactly when or by whom the photon was really
“discovered,” although the essential stages in the process are clear enough. The
first contribution was made by Planck in 1900. Planck was attempting to explain
the so-called blackbody spectrum for the electromagnetic radiation emitted by
a hot object. Statistical mechanics, which had proved brilliantly successful in
explaining other thermal processes, yielded nonsensical results when applied to
electromagnetic fields. In particular, it led to the famous ‘““ultraviolet catastrophe,”
predicting that the total power radiated should be infinite. Planck found that he
could escape the ultraviolet catastrophe—and fit the experimental curve—if he
assumed that electromagnetic radiation is quantized, coming in little “packages”
of energy

E=h (1.1)

where v is the frequency of the radiation and 4 is a constant, which Planck
adjusted to fit the data. The modern value of Planck’s constant is

h=6.626 X 107 erg s (1.2)

fi know wny the radiation was quantized; he assumed
that it was due to a peculiarity in the emission process: For some reason a hot
surface only gives off light* in little squirts.

Finstein, in 1905, put forward a far more radical view. He argued that

quantization was a feature of the electromagnetic field itself, having nothing to
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* In this book the word /ight stands for electromagnetic radiation, whether or not it happens
to fall in the visible region.
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do with the emission mechanism. With this new twist, Einstein adapted Planck’s
idea, and his formula, to explain the photoelectric effect: When electromagnetic
radiation strikes a metal surface, electrons come popping out. Einstein suggested
that an incoming light quantum hits an electron in the metal, giving up its energy
(hv); the excited electron then breaks through the metal surface, losing in the
process an energy W (the so-called work function of the material—an empirical
constant that depends on the particular metal involved). The electron thus
emerges with an energy

E<h—-w (1.3)

(It may lose some energy before reaching the surface. That’s the reason for using
<, instead of =.) Einstein’s formula (1.3) is pretty trivial to derive, but it carries
an extraordinary implication: The maximum electron energy is independent of
the intensity of the light and depends only on its color (frequency). To be sure,
a more intense beam will knock out more electrons, but their energies will be
the same.

Unlike Planck’s theory, Einstein’s theory met a hostile reception, and over
the next 20 years he was to wage a lonely battle for the light quantum.? In saying
that electromagnetic radiation is by its nature quantized, regardless of the emission
mechanism, Einstein came dangerously close to resurrecting the discredited par-
ticle theory of light. Newton, of course, had introduced such a corpuscular model,
but a major achievement of nineteenth-century physics was the decisive repu-
diation of Newton’s idea in favor of the rival wave theory. No one was prepared
to see that accomplishment called into question, even when the experiments
came down on Einstein’s side. In 1916 Millikan completed an exhaustive study
of the photoelectric effect and was obliged to report that “Einstein’s photoelectric
equation . . . appears in every case to predict exactly the observed results. . . .
Yet the semicorpuscular theory by which Einstein arrived at his equation seems
at present wholly untenable.””

What finally settled the issue was an experiment conducted by A. H.
Compton in 1923. Compton found that the light scattered from a particle at rest
is shifted in wavelength, according the equation

N =X+ A\(1 — cos 6) (1.4)

where ) is the incident wavelength, X is the scattered wavelength, 6 is the scattering

angle, and
A\ = h/mc (1.5)

is the so-called Compton wavelength of the target particle (mass m). Now, this
is precisely the formula you get (Problem 3.24) if you treat light as a particle of
zero rest mass with energy given by Planck’s equation, and apply the laws of
conservation of (relativistic) energy and momentum—just as you would for an
ordinary elastic collision (Fig. 1.3). That clinched it; here was direct and incon-
trovertible experimental evidence that light behaves as a particle, on the sub-
atomic scale. We call this particle the photon (a name suggested by the chemist

Gilbert Lewis, in 1926); the symbol for a photon is y (from gamma ray). How
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Figure 1.3 Compton scattering. A photon of wavelength A scatters off a particle, initially
at rest, of mass m. The scattered photon carries wavelength X' given by equation (1.4).

the particle nature of light on this level is to be reconciled with its well-established
wave behavior on the macroscopic scale (exhibited in the phenomena of inter-
ference and diffraction) is a story I’ll leave to the quantum texts.

Although the photon initially forced itself on an unreceptive community
of physicists, it eventually found a natural place in quantum field theory, and
was to offer a whole new perspective on electromagnetic interactions. In classical
electrodynamics, we attribute the electrical repulsion of two electrons, say, to
the electric field surrounding them; each electron contributes to the field, and
each one responds to the field. But in quantum field theory, the electric field is
quantized (in the form of photons), and we may picture the interaction as con-
sisting of a stream of photons passing back and forth between the two charges,
each electron continually emitting them and continually absorbing them. And
the same goes for any noncontact force: where classically we interpret “action
at a distance” as “mediated” by a field, we now say that it is mediated by an
exchange of particles (the quanta of the field). In the case of electrodynamics,
the mediator is the photon; for gravity, it is called the graviton (though a fully
successful quantum theory of gravity has yet to be developed and it may well
be centuries before anyone detects a graviton experimentally).

You will see later on how these ideas are implemented in practice, but for
now I want to dispel one common misapprehension. When I say that every force
is mediated by the exchange of particles, I am not speaking of a merely kinematic
phenomenon. Two ice skaters throwing snowballs back and forth will of course
move apart with the succession of recoils; they “repel one another by exchange
of snowballs,” if you like. But that’s nor what is involved here. For one thing,
this mechanism would have a hard time accounting for an attractive force. You
might think of the mediating particles, rather, as “messengers,” and the message
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I said earlier that in the “classical” picture ordinary matter is made of
atoms, in which electrons are held in orbit around a nucleus of protons and
neutrons by the electrical attraction of opposite charges. We can now give this
model a more sophisticated formulation by attributing the binding force to the
exchange of photons between the electrons and the protons in the nucleus. How-
ever, for the purposes of atomic physics this is overkill, for in this context quan-
tization of the electromagnetic field produces only minute effects (notably the
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Lamb shift and the anomalous magnetic moment of the electron). To excellent
approximation we can pretend that the forces are given by Coulomb’s law (to-
gether with various magnetic dipole couplings). The point is that in a bound
state enormous numbers of photons are continuaily streaming back and forth,
so that the “lumpiness” of the field is effectively smoothed out, and classical
electrodynamics is a suitable approximation to the truth. But in most elementary
particle processes, such as the photoelectric effect or Compton scattering, indi-
vidual photons are involved, and quantization can no longer be ignored.

1.3 MESONS (1934-1947)

Now there is one conspicuous problem to which the “classical” model does not
address itself at all: What holds the nucleus together? After all, the positively
charged protons should repel one another violently, packed together as they are
in such close proximity. Evidently there must be some other force, more powerful
than the fcrce of electrical repulsion, that binds the protons (and neutrons) to-
gether; physicists of that less imaginative age called it, simply, the strong force.
But if there exists such a potent force in nature, why don’t we notice it in everyday
life? The fact is that virtually every force we experience directly, from the con-
traction of a muscle to the explosion of dynamite is electromagnetic in origin;
the only exception, outside a nuclear reactor or an atomic bomb, is gravity. The
answer must be that, powerful though it is, the strong force is of very short range.
(The range of a force is like the arm’s reach of a boxer—beyond that distance
its influence falls off rapidly to zero. Gravitational and electromagnetic forces
have infinite range, but the range of the strong force is about the size of the
nucleus itself.)*

The first significant theory of the strong force was proposed by Yukawa in
1934. Yukawa assumed that the proton and neutron are attracted to one another
by some sort of field, just as the electron is attracted to the nucleus by an electric
field and the moon to the earth by a gravitational field. This field should properly
be quantized, and Yukawa asked the question: What must be the properties of
1ts quantum—the particle (analogous to the photon) whose exchange would ac-
count for the known features of the strong force? For example, the short range
of the force indicated that the mediator would be rather heavy; Yukawa calculated
that its mass should be nearly 300 times that of the electron, or about a sixth
the mass of a proton. (See Problem 1.2.) Because it fell between the electron and
the proton, Yukawa’s particle came to be known as the meson (meaning “middle-
weight”). [In the same spirit the electron is called a lepton (*“light-weight””), whereas
the proton and neutron are baryons (‘“heavy-weight”).] Now, Yukawa knew that
no such particle had ever been observed in the laboratory, and he therefore
assumed his theory was wrong. But at the time a number of systematic studies

* This is a bit of an oversimplification. Typically, the forces go like e™/#/r? where a is the
“range.” For Coulomb’s law and Newton's law of universal gravitation, a = co; for the strong force
a is about 107'* cm (one fermi).
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of cosmic rays were in progress, and by 1937 two separate groups (Anderson
and Neddermeyer on the West Coast, and Street and Stevenson on the East)
had identified particles matching Yukawa’s description. Indeed, the cosmic rays
with which you are being bombarded every few seconds as you read this consist
primarily of just such middle-weight particles.

For a while everything seemed to be in order. But as more detailed studies
of the cosmic ray particles were undertaken, disturbing discrepancies began to
appear. They had the wrong lifetime and they seemed to be significantly lighter
than Yukawa had predicted; worse still, different mass measurements were not
consistent with one another. In 1946 (after a period in which physicists were
engaged in a less savory business) decisive experiments were carried out in Rome
demonstrating that the cosmic ray particles interacted very weakly with atomic
nuclei.* If this was really Yukawa’s meson, the transmitter of the strong force,
the interaction should have been dramatic. The puzzle was finally resolved in
1947, when Powell and his co-workers at Bristol® discovered that there are actually
two middle-weight particles in cosmic rays, which they called = (or “pion”’) and
p (or “muon”). (Marshak reached the same conclusion simultaneously, on theo-
retical grounds.®) The true Yukawa meson is the =; it is produced copiously in
the upper atmosphere, but ordinarily disintegrates long before reaching the
ground. (See Problem 3.4.) Powell’s group exposed their photographic emulsions
on mountain tops (see Fig. 1.4). One of the decay products is the lighter (and
longer-lived) i, and it is primarily muons that one observes at sea level. In the
search for Yukawa’s meson, then, the muon was simply an imposter, having
nothing whatever to do with the strong interactions. In fact, it behaves in every
way like a heavier version of the electron and properly belongs in the lepton
family (though some people to this day call it the “mu-meson” by force of habit).

1.4 ANTIPARTICLES (1930-1956)

Nonrelativistic quantum mechanics was completed in the astonishingly brief
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period 1923-1926, but the relativistic version proved to be a much thornier
problem. The first major achievement was Dirac’s discovery, in 1927, of the
equation that bears his name. The Dirac equation was supposed to describe free
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electrons with energy given by the relativistic formula E? — p%c® = » But

it had a very troubling feature: For every positive-energy solution (E =
+Vp’c® + m’c*) it admitted a corresponding solution with negative energy (E =
—Vp’c? + m?c*). This meant, given the natural tendency of every system to
evolve in the direction of lower energy, that the electron should “runaway” to
increasingly negative states, radiating off an infinite amount of energy in the
process. To rescue his equation, Dirac proposed a resolution that made up in
brilliance for what it lacked in plausibility: He postulated that the negative energy
states are all filled by an infinite “‘sea” of electrons. Because this sea is always
there, and perfectly uniform, it exerts no net force on anything, and we are not
normally aware of it. Dirac then invoked the Pauli exclusion principle (which

says that no two electrons can occupy the same state), to “explain” why the
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Figure 1.4 One of Powell’s earliest pic-
tures showing the track of a pion in a pho-
tographic emulsion exposed to cosmic

rays at high altitude. The pion (entering
from the left) decays into a muon and a
neutrino (the latter is electrically neutral,
and leaves no track). Reprinted by per-
mission from C. F. Powell, P. H. Fowler,
and D. H. Perkins, The Study of Elemen-
tary Particles by the Photographic Method
{New York: Pergamon, 1959). First pub-

lished in Nature 159, 694 (1947).

electrons we do observe are confined to the positive energy states. But if this is
true, then what happens when we impart to one of the electrons in the “sea’ an
energy sufficient to knock it into a positive energy state? The absence of the
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“expected” electron in the sea would be interpreted as a net positive charge in
that location, and the absence of its expected negative energy would be seen as
a net positive energy. Thus a “hole in the sea” would function as an ordinary
particle with positive energy and positive charge. Dirac at first hoped that these
holes might be protons, but it was soon apparent that they had to carry the same
mass as the electron itself—2000 times too light to be a proton. No such particle
was known at the time, and Dirac’s theory appeared to be in trouble. What may
have seemed a fatal defect in 1930, however, turned into a spectacular triumph
in late 1931, with Anderson’s discovery of the positron (Fig. 1.5), a positively-
charged twin for the electron, with precisely the attributes Dirac required.’

Figure 1.5 The positron. In 1932, Anderson took this photograph of the track left in a
cloud chamber by a cosmic ray particle. The chamber was placed in a magnetic field
(pointing into the page) which caused the particle to travel in a curve. But was it a negative
charge traveling downward, or a positive charge traveling upward? In order to tell, Anderson
had placed a lead plate across the center of the chamber (the thick horizontal line in the
photograph). A particle passing through the plate slows down, and subsequently moves
1n a tighter circle. By inspection of the curves, it is clear that this particle traveled upward,
and hence must have been positively charged. From the curvature of the track, and from
its texture, Anderson was able to show that the mass of the particle was close to that of
the electron. (Photo courtesy California Institute of Technology)
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Still, many physicists were uncomfortable with the notion that we are awash
in an infinite sea of invisible electrons, and in the forties Stuckelberg and Feynman
provided a much simpler and more compelling interpretation of the negative-
energy states. In the Feynman-Stuckelberg formulation the negative-energy so-
lutions are reexpressed as positive-energy states of a different particle (the posi-
tron); the electron and positron appear on an equal footing, and there 1s no need
for Dirac’s “electron sea’ or for its mysterious “holes.” We’ll see in Chapter 7
how this—the modern interpretation—works. Meantime, it turned out that the
dualism in Dirac’s equation is a profound and universal feature of quantum
field theory: For every kind of particle there must exist a corresponding anti-
particle, with the same mass but opposite electric charge. The positron, then, is
the antielectron. (Actually, it is in principle completely arbitrary which one you
call the “particle” and which the “antiparticle”—I could just as well have said
that the electron is the antipositron. But since there are a lot of electrons around,
and not so many positrons, we tend to think of electrons as “matter” and positrons
as “antimatter”’). The (negatively charged) antiproton was first observed exper-
imentally at the Berkeley Bevatron in 1955, and the (neutral) antineutron was
discovered at the same facility the following year.®

The standard notation for antiparticles is an overbar. For example, p denotes
the proton and p the antiproton; n the neutron and 7 the antineutron. However,
in some cases it is more customary simply to specify the charge. Thus most
people write ¢* for the positron (not &) and u* for the antimuon (not g). [But
you must not mix conventions: €' is ambiguous, like a double negative—the
reader doesn’t know if you mean the positron or the antipositron, (which is to
say, the electron).] Some neutral particles are their own antiparticles. For example,
the photon: ¥ = ~. In fact, you may have been wondering how the antineutron
differs physically from the neutron, since both are uncharged. The answer is that
neutrons carry other “quantum numbers” besides charge (in particular, baryon
number), which change sign for the antiparticle. Moreover, although its nez charge
is zero, the neutron does have a charge structure (positive at the center and at
the edges, negative in between) and a magnetic dipole moment. These, too, have
the opposite sign for #.

There is a general principle in particle physics that goes under the name
of crossing symmetry. Suppose that a reaction of the form

A+B—C+D

is known to occur. Any of these particles can be “crossed” over to the other side
of the equation, provided it is turned into its antiparticle, and the resulting
interaction will also be allowed. For example,

A—B+C+D
A+C—B+D
C+D—A+B
In addition, the reverse reaction occurs C + D — A + B, but technically this

derives from the principle of detailed balance, rather than from crossing sym-
metry. Indeed, as we shall see, the calculations involved in these various reactions
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are practically identical. We might almost regard them as different manifestations
of the same fundamental process. Now, there is one important caveat in this:
Conservation of energy may veto a reaction that is otherwise permissible.
For example, if 4 weighs less than the sum of B, C, and D, then the decay
A — B+ C + D cannot occur; similarly, if 4 and C are light, whereas B and D
are heavy, then the reaction 4 + C — B + D will not take place unless the initial
kinetic energy exceeds a certain “threshold” value. So perhaps I should say that
the crossed (or reversed) reaction is dynamically permissible, but it may or may
not be kinematically allowed. The power and beauty of crossing symmetry can .
scarcely be exaggerated. It tells us, for instance, that Compton scattering

vy+e —my+e
is “really” the same process as pair annihilation
e te —y+y

although in the laboratory they are completely different phenomena.

The union of special relativity and quantum mechanics, then, leads to a
pleasing matter/antimatter symmetry. But this raises a disturbing question: How
come our world is populated with protons, neutrons, and electrons, instead of
antiprotons, antineutrons, and positrons? Matter and antimatter cannot coexist
for long—if a particle meets its antiparticle, they annihilate. So maybe it’s just
a historical accident that in our corner of the universe there happened to be
more matter than antimatter, and pair annihilation has eliminated all but a
leftover residue of matter. If this is so, then presumably there are other regions
of space in which antimatter predominates. Unfortunately, the astronomical
evidence is pretty compelling that all of the observable universe is made of or-
dinary matter. Recently, Wilczek and others have put forward a possible expla-
nation for this cosmic asymmetry. I shall not go into it here, but if you are
interested, I recommend Wilczek’s article in Scientific American (December
1980).

~maty

A 1s transformed into a slightly lighter nucleus B, with the emission of an electron:
A— B+ e (1.6)

Conservation of charge requires that B carry one more unit of positive charge
than 4. [We now realize that the underlying process here is the conversion of a
neutron (in A4) into a proton (in B), but remember that in 1930 the neutron had
not yet been discovered.] Thus the “daughter” nucleus (B) lies one position
farther along on the Periodic Table. There are many examples of beta decay:
Potassium goes to calcium (1JK — $0Ca), copper goes to zinc (3Cu — $4Zn),
tritium goes to helium ({H — 3He), and so on. [The upper number is the atomic
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Figure 1.6 The beta decay spectrum of tritium GH — 3He). (Source: G. M. Lewis,
Neutrinos (London: Wykeham, 1970), p. 30.)

weight (the number of neutrons plus protons) and the iower number is the atomic
number (the number of protons).]

Now, it is a characteristic of two-body decays such as expression (1.6) that
the outgoing energies are kinematically determined, in the center-of-mass frame.
Specifically, if the “parent” nucleus (4) is at rest, so that B and e come out back-
to-back with equal and opposite momenta, then conservation of energy dictates
that the electron energy is

2 2 + 2
E= (m" il m”)c2 (1.7)
2mA

The derivation of this result will be explained in Chapter 3; for now, the point
to notice is that E is fixed, once the three masses are specified. But when the
experiments are done it is found that the emitted electrons vary considerably in
energy. Equation (1.7) only determines the maximum electron energy, for a
particular beta-decay process (see Fig. 1.6).

This was a most disturbing result. Niels Bohr (not for the first time) was
ready to abandon the law of conservation of energy.* Fortunately, Pauli took a
more sober view, suggesting that another particle was emitted along with the
electron, a silent accomplice that carries off the “missing™ energy. It had to be
electrically neutral, to conserve charge (and also, of course, to explain why it left
no track); Pauli proposed to cail it the neutron. The whole idea was greeted with
some skepticism, and in 1932 Chadwick preempted the name. But in the fol-
lowing year Fermi presented a theory of beta decay that incorporated Pauli’s

* It is interesting to note that Bohr was an outspoken critic of Einstein’s light quantum (prior
to 1924), that he discouraged Dirac’s work on the relativistic electron theory (telling him, incorrectly,
that Klein and Gordon had atready succeeded), that he opposed Pauli’s introduction of the neutrino,
that he ridiculed Yukawa’s theory of the meson, and that he disparaged Feynman’s approach to
quantum electrodynamics.
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particle and proved so brilliantly successful that Pauli’s suggestion had to be
taken seriously. From the fact that the observed electron energies range up to
the value given in equation (1.7) it follows that the new particle is extremely
light; as far as we know, its mass is in fact zero. Fermi called it the neutrino. (For
reasons you’ll see in a moment, we now call it the gntineutrino.) In modern
terminology, then, the fundamental beta-decay process is

n—pt+e +v (1.8)

(neutron goes to proton plus electron plus antineutrino). X

Now, you may have noticed something peculiar about Powell’s picture of
the disintegrating pion (Fig. 1.4): The muon emerges at about 90° with respect
to the original pion direction. (That’s not the result of a collision, by the way;
collisions with atoms in the emulsion account for the dither in the tracks, but
they cannot produce an abrupt left turn.) What that kink indicates is that some
other particle was produced in the decay of the pion, a particle that left no
footprints in the emulsion, and hence must have been electrically neutral. It was
natural (or at any rate economical) to suppose that this was again Pauli’s neutrino:

T u+y (1.9)

A few months after their first paper, Powell’s group published an even more
striking picture, in which the subsequent decay of the muon is also visible
(Fig. 1.7). Now, muon decays had been studied for many years, and it was
well established that the charged secondary is an electron. From the figure
there is clearly a neutral product as well, and you might guess that it is again a
neutrino. However, this time it is fwo neutrinos:

u—e+2v (1.10)

How do we know there are two of them? Same way as before: We repeat the
experiment over and over, each time measuring the energy of the electron. If it
always comes out the same, we know there are just two particles in the final
state. But if it varies, then there must be {at least) three. By 1949* it was clear
that the electron energy in muon decay is nor fixed, and the emission of two
neutrinos was the accepted explanation. By contrast, the muon energy in pion
decay is perfectly constant, within experimental uncertainties, confirming that

this is a genuine two-body decay.

By lQﬁn then, there was pnmpclhug theoretical evidence for the existence

of neutrinos, but there was still no direct experimental verification. A skeptic
might have argued that the neutrino was nothing but a bookkeeping device—a
purely hypothetical particle whose only function was to rescue the conservation
laws. It left no tracks, it didn’t decay; in fact, no one had ever seen a neutrino
do anything. The reason for this is that neutrinos interact extraordinarily weakly

* Here, and in the original beta-decay problem, conservation of angular momentum
also requires a third outgoing particle, quite independently of energy conservation. But the spin assign-
ments were not so clear in the early days, and for most people energy conservation was the
compelling argument. In the interests of simplicity, I will keep angular momentumn out of the story
until Chapter 4.
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Figure 1.7 Here, a pion decays in
muon (plus a neutrino); the muon sub-
sequently decays into an electron (and two
neutrinos). Reprinted by permission from
C. F. Powell, P. H. Fowler, and D. H. Per-
kins, The Study of Elementary Particles
by the Photographic Method (New York:
Pergamon, 1959). First published in Na-

ture 163, 82 (1949).
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with matter; a neutrino of moderate energy could easily penetrate a thousand
light-years(!) of lead.* To have a chance of detecting one you need an extremely
intense source. The decisive experiments were conducted at the Savannah River
nuclear reactor in South Carolina, in the mid-fifties. Here Cowan and Reines
set up a large tank of water and watched for the “inverse” beta-decay reaction

v+pt—on+e (1.11)

At their detector the antineutrino flux was calculated to be 5 X 10!'3 particles
per square centimeter per second, but even at this fantastic intensity they could -
only hope for two or three events every hour. On the other hand, they developed
an ingenious method for identifying the outgoing positron. Their results provided
unambiguous confirmation of the neutrino’s existence.'®

As I mentioned earlier, the particle produced in ordinary beta decay is
actually an antineutrino, not a neutrino. Of course, since they’re electrically
neutral, you might ask—and many people did—whether there is any distinction
between a neutrino and an antineutrino. The neutral pion, as we shall see, is its
own antiparticle; so too is the photon. On the hand, the antineutron is definitely
not the same as a neutron. So we’re left in a bit of a quandary: Is the neutrino
the same as the antineutrino, and if not, what property distinguishes them? In
the late fifties, Davis and Harmer put this question to an experimental test.!!
From the positive results of Cowan and Reines, we know that the crossed reaction

v+n—pt+e (1.12)

must also occur, and at about the same rate. Davis looked for the analogous
reaction using gntineutrinos:

vr+n—p-+e (1.13)

He found that this reaction does not occur, and thus established that the neutrino
and antineutrino are distinct particles.

Davis’s result was not unexpected. In fact, back in 1953 Konopinski and
Mahmoud'? had introduced a beautifully simple rule for determining which
reactions [such as (1.12)] will work, and which [like (1.13)] will not. In effect,t
they assigned a lepton number L = +1 to the electron, the muon, and the neutrino,
and L = —1 to the positron, the positive muon, and the antineutrino (all other
particles are given a lepton number of zero). They then proposed the law of
conservation of lepton number (analogous to the law of conservation of charge):
In any physical process, the sum of the lepton numbers before must equal the

sum of the lepton numbers after. Thus the Cowan-Reines reaction (1.11) is
allowed (L=-1 before and nﬁpr\ but the Davis reaction (1 l'l\ 1s forbidden
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(on the left L = —1, on the right L +1). [It was 1n anticipation of this rule
that I called the beta-decay particle, in expression (1.8), an antineutrino.] In

* That’s a comforting realization when you learn that hundreds of billions of neutrinos pass
through every square inch of your body per second, night and day, coming from the sun (they hit
you from below, at night, having passed right through the earth).

1 Konopinski and Mahmoud (ref. 12) did not use this terminology, and they got the muon
assignments wrong. But never mind, the essential idea was there.
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view of the conservation of lepton number, the charged pion decays (1.9) should
actually be written

;:}1: (1.14)

and the muon decays (1.10) are really

pt—e"+rv+y (1.13)

What property distinguishes the neutrino from the antineutrino, then? The
cleanest answer is: lepton number—it’s +1 for the neutrino and —1 for the an-
tineutrino. These numbers are experimentally determinable, just as electric charge
15, by watching how the particle in question interacts with others. (As we shall
see, they also differ in their helicity: the neutrino is “left-handed” whereas
the antineutrino is “right-handed.” But this is a technical matter best saved
for later.)

There is a final twist to the neutrino story. Experimentally, the decay of a
muon into an electron plus a photon is never observed:

A +y (1.16)

and yet this process is consistent with conservation of charge and conservation
of the lepton number. Now, there’s a very reliable rule of thumb in particle
physics (generally attributed to Richard Feynman) which says that whatever is
not expressly forbidden is mandatory. The absence of u — e + vy suggests a law
of conservation of “mu-ness’”; but then how are we to explain the observed
decays u — e + » + »? The answer occurred to a number of people in the late
fifties and early sixties:'* Suppose there are two different kinds of neutrino—one
associated with the electron (».) and one with the muon (v,). If we assign a muon
number L, = +1tou” and »,, and L, = —1 to p* and 7,, and at the same time
an electron number L, = +1to e and v,, and L, = —1 to ¢* and ve, and refine
the conservation of lepton number into two separate laws—conservation of elec-
tron number and conservation of muon number—we can then account for q//
the allowed and forbidden processes. Neutron beta decay becomes

n—p-+e +u, (1.17)
the pion decays are

T oW+,

1.18
at—ut + v, ( )
and the muon decays take the form
T—e ‘v, +v
# et T (1.19)

pt—et +u, +y,

I'said earlier that when pion decay was first analyzed it was “natural” and “eco-
nomical” to assume that the outgoing neutral particle was the same as in beta
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decay, and that’s quite true: It was natural, and it was economical, but it was
wrong.

The first experimental test of the two-neutrino hypothesis (and the separate
conservation of electron and muon number) was conducted at Brookhaven in
1962.14 Using about 10'* antineutrinos from =~ decay, Lederman, Schwartz,
Steinberger, and their collaborators identified 29 instances of the expected reaction

v, +pt—ut+n (1.20)
and no cases of the forbidden process
v,+p-—e +n (1.21)

With only one kind of neutrino the second reaction would be just as common
as the first. (Incidentally, this experiment presented truly monumental shielding
problems. Steel from a dismantled warship was stacked up 44 feet thick, to make
sure that nothing except neutrinos got through to the target.)

By 1962, then, the lepton family had grown to eight: the electron, the
muon, their respective neutrinos, and the corresponding antiparticles (Table
1.1). The leptons are characterized by the fact that they do not participate in
strong interactions. For the next 14 years things were pretty quiet, as far as the
leptons go, so this is a good place to pause and let the strongly interacting par-
ticles—the mesons and baryons, known collectively as the hadrons—catch up.

1.6 STRANGE PARTICLES (1947-1960)

For a brief period in 1947 it was possible to believe that the major problems of
elementary particle physics were solved. After a lengthy detour in pursuit of the
muon, Yukawa’s meson (the 7) had finally been apprehended. Dirac’s positron
had been found, and Pauli’s neutrino, although still at large (and, as we have

TABLE 1.1 THE LEPTON FAMILY, 1962-1976

Lepton Electron Muon
number number number
Leptons
e 1 | 0
v, 1 | 0
- 1 0 1
Y, 1 0 1
Antileptons
e’ -1 —1 0
Ve -1 -1 0
ut -1 0 -1
v, -1 0 —1
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seen, still capable of making mischief), was basically under control. The role of
the muon was something of a puzzle (“Who ordered riat?” Rabi asked); it
seemed quite unnecessary in the overall scheme of things. On the whole, however,
it looked in 1947 as though the job of elementary particle physics was essentially
done.

But this comfortable state did not last long. In December of that year
Rochester and Butler' published the cloud chamber photograph shown in Figure
1.8. Cosmic ray particles enter from the upper left and strike a lead plate, pro-
ducing a neutral particle, whose presence is revealed when it decays into two
charged secondares, forming the upside-down “V” in the lower right. Detailed
analysis shows that these charged particles are in fact a #* and a ™. Here, then,
was a new neutral particle with at least twice the mass of the pion; we call it the

K?® (“kaon™):
K'—xt+ 7 (1.22)

In 1949, Powell published the photograph reproduced in Figure 1.9, showing
the decay of a charged kaon:

Kr—at+at+ 7 (1.23)

(The K° was first known as the ¥ and later as the 6% the K* was originally
called the 7*. Their identification as neutral and charged versions of the same
basic particle was not completely settled until 1956—but that’s another story,
to which we shall return in Chapter 4.) The kaons behave in some respects like
heavy pions, and so the meson family was extended to include them. In due
course, many more mesons were discovered—the 5, the ¢, the w, the p’s, and
SO On.

Meanwhile, in 1950 another neutral “¥V” particle was found, this time by
Anderson’s group at Cal Tech. The photographs were similar to Rochester’s (Fig.
1.8), but this time the products were a p* and a =—. Evidently this particle is
substantially heavier than the proton; we call it the A:

A—pr+a (1.24)

The lambda belongs with the proton and the neutron in the baryon family. To
appreciate this, we must go back for a moment to 1938. The question had arisen,
“Why is the proton stable?” Why, for example, doesn’t it decay into a positron
and a photon:

pt—et+ (1.25)

Needless to say, it would be unpleasant for us if this reaction were common (all
atoms would disintegrate), and yet it does not violate any law known in 1938.
(Actually, this particular process does violate conservation of lepton number,
but that law was not recognized, remember, until 1953.) Stiickelberg'® proposed
to account for the stability of the proton by asserting a law of conservation of
baryon number: Assign to all baryons (which in 1938 meant the proton and the

neutron) a “baryon number” 4 = +1, and to the antibaryons (5 and 7)
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Incident cosmic ray
% shower

oo W//// 7

\~~.
\
\\//‘\
\ \

‘ \ \ “Unusual
\ T fork”

Debris
Figure 1.8 The first strange particle. Cosmic rays strike a lead plate, producing a K°,

which subsequently decays into a pair of charged pions. (Photo courtesy of Prof. G. D.

Darhagto- D
Rochester. Reprinted by permission from Nature 160, 855. Copyright © 1947, Macmillan

Journals Limited.)

A = —1; then the total baryon number is conserved in any physical process.
Thus, neutron beta decay (n — p* + e~ + 7,) is allowed (4 = 1 before and after),
and so also is the reaction in which the antiproton was first observed:
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Figure 1.9 K", entering from above, decays at 4: K* — x* + #* + 7. (The =~ subse-
quently causes a nuclear disintegration at B). [Reprinted by permission from C. F. Powell,
P. H. Fowler, and D. H. Perkins, The Study of Elementary Particles by the Photographic
Method (New York: Pergamon, 1959). First published in Rep. Prog. Phys. 13, 384 (1950).]

ptp—p+tp+p+p (1.26)

(4 = 2 on both sides). But the proton, as the lightest baryon, has nowhere to
g0; conservation of the baryon number guarantees its absolute stability.* If we
are to retain the conservation of baryon number in the light of reaction (1.24),
the lambda must be assigned to the baryon family. Over the next few years

i T dlan O nad sl A 3
many more heavy baryons were discovered—the 2’s, the Z’s, and the A’s, and

so on. [By the way: unlike leptons and baryons, there is no conservation of

mesons. In pion decay (#~ — p~ + ¥»,) a meson disappears, and in lambda
decay (A — p* + 77) a meson is created.]

* Recent “grand unified” theories allow for a minute violation of baryon number conservation,
and in these theories the proton is not absolutely stable. See the article by S. Weinberg in Scientific

American, June 1981. The experimental situation is discussed by J. M. LoSecco e al., Scientific
American, June 1985,
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It is some measure of the surprise with which these new heavy baryons
and mesons were greeted that they came to be known collectively as “strange”
particles. In 1952 the first of the modern particle accelerators (the Brookhaven
Cosmotron) began operating, and soon it was possible to produce strange particles
in the laboratory (before this the only source had been cosmic rays) . . . and with
this, the rate of proliferation increased. Willis Lamb began his Nobel Prize ac-
ceptance speech in 1955 with the words

When the Nobel Prizes were first awarded in 1901, physicists knew something of
just two objects which are now called “elementary particles™: the electron and the
proton. A deluge of other “elementary” particles appeared after 1930; neutron,
neutrino, x meson, = meson, heavier mesons, and various hyperons. I have heard
it said that “the finder of a new elementary particle used to be rewarded by a Nobel
Prize, but such a discovery now ought to be punished by a $10,000 fine”. [Source:
Les Prix Nobel 1955, The Nobel Foundation, Stockholm.]

Not only were the new particles unexpected; there is a more technical sense
in which they seemed “strange”: They are produced copiously (on a time scale
of about 1072 sec), but they decay relatively slowly (typically about 107'° sec).
This suggested to Pais'’ and others that the mechanism involved in their pro-
duction is entirely different from that which governs their disintegration. In
modern language, the strange particles are produced by the strong force (the same
one that holds the nucleus together), but they decay by the weak force (the one
that accounts for beta decay and all other neutrino processes). The details of
Pais’s scheme required that the strange particles be produced in pairs. The ex-
perimental evidence for this was far from clear at that time, but in 1953 Gell-
Mann'® and Nishijima'® found a beautifully simple, and, as it developed stun-
ningly successful, way to implement and improve Pais’s idea. They assigned to
each particle a new property (Gell-Mann called it “strangeness”) that (like charge,
lepton number, and baryon number) is conserved in any strong interaction, but
(unlike those others) is not conserved in a weak interaction. In a pion-proton
collision, for example, we might produce two strange particles:

m +pt K"+ 27
— K%+ 20

— K%+ A (1.27)
Here the K’s carry strangeness S = +1, the 2’s and the A have S

“ordinary” particles—, p, and n—have S = 0. But we never produce just one
strange particle:
m +ptAat+ 27

P | BT

7R [ IS N
» K%+ n (1.28)
On the other hand, when these particles decay, strangeness is not conserved:
A—-pt+a”
>t —pt+ a0
—n+7" (1.29)

for these are weak processes, which do not respect conservation of strangeness.
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There is some arbitrariness in the assignment of strangeness numbers,
obviously. We could just as well have given S = +1 to the 2’s and the A, and
S = —1to K* and K% in fact, in retrospect it would have been a little nicer that
way. [In exactly the same sense, Benjamin Franklin’s original convention for
plus and minus charge was perfectly arbitrary at the time, and unfortunate in
retrospect since it made the current-carrying particle (the electron) negative.]
The significant point is that there exists a consistent assignment of strangeness
numbers to all the hadrons (baryons and mesons) that accounts for the observed
strong processes and “‘explains” why the others do not occur. (The leptons and
the photon don’t experience strong forces at all, so strangeness does not apply
to them.)

The garden which seemed so tidy 1n 1947 had grown into a jungle by 1960,
and hadron physics could only be described as chaos. The plethora of strongly
interacting particles was divided into two great families—the baryons and the
mesons—and the members of each family were distinguished by charge, strange-
ness, and mass; but beyond that there was no rhyme or reason to it all. This
predicament reminded many physicists of the situation in chemistry a century
earlier, in the days before the Periodic Table, when scores of elements had been
identified, but there was no underlying order or system. In 1960 the elementary
particles awaited their own “Periodic Table.””?°

1.7 THE EIGHTFOLD WAY (1961-1964)

The Mendeleev of elementary particle physics was Murray Gell-Mann, who
introduced the so-called Eightfold Way in 1961.2! (Essentially the same scheme
was proposed independently by Ne’eman.) The Eightfold Way arranged the
baryons and mesons into weird geometrical patterns, according to their charge
and strangeness. The eight lightest baryons fit into a hexagonal array, with two
particles at the center:

n P
§=0 ——— - ——— — 7——\
20
S=—]— — — a2 T- : P The Baryon Qctet
A X
\
\
—_ —_ \
= ..".‘.0 \
S==2-— - A
» » \
X\ \ N
\ \ h
N N *
Q=-1 Q=0 Q=+

This group is known as the baryon octet. Notice that particles of like charge lie
along the downward-sloping diagonal lines: Q = +1 (in units of the proton
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charge) for the proton and the Z*; Q = 0 for the neutron, the lambda, the 2°,

and the E% Q = —1 for the ™ and the =~. Horizontal lines associate particles
of like strangeness: S = 0 for the proton and neutron, S = —1 for the middle
line and S = —2 for the two Z’s.

The eight lightest mesons fill a similar hexagonal pattern, forming the
(pseudo-scalar) meson octet:

The Meson Octet

Once again, diagonal lines determine charge, and horizontals determine strange-
ness; but this time the top line has S = 1, the middle line S = 0, and the bottom
line S = —1. (This discrepancy is a historical accident; Gell-Mann could just as
well have assigned S = 1 to the proton and neutron, S = 0 to the Z’s and the
A, and § = —1 to the Z’s. In 1953 he had no reason to prefer that choice, and
it seemed most natural to give the familiar particles—proton, neutron, and pion—
a strangeness of zero. After 1961 a new term—~hAypercharge—was introduced,
which was equal to S for the mesons and to .S + | for the baryons. But later
developments showed that strangeness was the better quantity after all, and the
word “hypercharge” has now been taken over for a quite different purpose.)

Hexagons were not the only figures allowed by the Eightfold Way; there
was also, for example, a triangular array, incorporating 10 heavier baryons—
the baryon decupletr:

A+ A++

s= 0————+\ —o -

The Baryon Decuplet




(‘A10jeIOqR] [BUOIIRN
UdAB00Ig ASILINO0D 010G ) "1YBLI Y} UO SHIBI} JUBAS[DI Iy} JO WweISerp Jur[ e {Yya| Ay} uo
umoys st ydeigoloyd saquieyo a1qqnq [enpe ayjp, -

0 Y1 JO AIDA0DSIp 3y Q'] 24031

35



36 1/HISTORICAL INTRODUCTION TO THE ELEMENTARY PARTICLES

K- KO K*= K*® ko kO Q- a°
K*O K*+ K*O K-x-+
_ A . _ g° .
AZ fO ffo A2 g (x)o ¢g g
K*— E*O K*= E*O

Figure 1.11 Established meson nonets. Obviously, we are running out of letters. It is
customary to distinguish different particles represented by the same letter by indicating
the mass parenthetically (in MeV/c?), thus K*(892), K*(1430), K*(1650), and so on. In
this figure the supermultiplets are labeled in spectroscopic notation (see Chap. 5). At
present, there are no complete baryon supermultiplets beyond the octet and decuplet,
although there are many partially filled diagrams.

Now, as Gell-Mann was fitting these particles into the decuplet, an absolutely
lovely thing happened. Nine of the particles were known experimentally, but at
that time the tenth particle—the one at the very bottom, with a charge of —1
and strangeness —3—was missing: No particle with these properties had ever
been detected in the laboratory.?? Gell-Mann boldly predicted that such a particle
would be found, and told the experimentalists exactly how to produce 1t. More-
over, he calculated its mass—as you can for yourself, in Problem 1.6—and its
lifetime, Problem 1.8—and sure enough, in 1964 the famous omega-minus par-
ticle was discovered,?? precisely as Gell-Mann had predicted (see Fig. 1.10).
Since the discovery of the omega-minus (), no one has seriously doubted
that the Eightfold Way is correct.* Over the next 10 years, every new hadron
found a place in one of the Eightfold Way supermultiplets. Some of these are
shown in Figure 1.11. (This is not to say there were no false alarms; particles
have a way of appearing and then disappearing. Of the 26 mesons listed on a
standard table in 1963, 19 were iater found to be spurious!) In addition to the
baryon octet, decuplet, and so on, there exist of course an gniibaryon octet,
decuplet, etc., with opposite charge and opposite strangeness. However, 1n the

case of the mesons, the antiparticles lie in the same supermultiplet as the cor-

responding particles, in the diametrically opposite positions. Thus the antiparticle

* A similar thing happened in the case of the Periodic Table. There were three famous *“holes”
(missing elements) on Mendeleev’s chart, and he predicted that new elements would be discovered
to fill in the gaps. Like Gell-Mann, he confidently described their properties, and within 20 years all
three—gallium, scandium, and germanium—were found.
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of the pi-plus is the pi-minus, the anti-K-minus is the K-plus, and so on (the pi-
zero and the eta are their own antiparticles).

Classification is the first stage in the development of any science. The
Eightfold Way did more than merely classify the hadrons, but its real importance
lies in the organizational structure it provided. I think it’s fair to say that the
Eightfold Way initiated the modern era in particle physics.

1.8 THE QUARK MODEL (1964)

But the very success of the Eightfold Way begs the question: Why do the hadrons
fit into these curious patterns? The Periodic Table had to wait many years for
quantum mechanics and the Pauli exclusion principle to provide its explanation.
An understanding of the Eightfold Way, however, came already in 1964, when
Gell-Mann and Zweig independently proposed that all hadrons are in fact com-
posed of even more elementary constituents, which Gell-Mann called quarks.**
The quarks come in three types (or “flavors™), forming a triangular “Eightfold-
Way” pattern:

\ The Quarks
g=—t~-——————— 85

Q_—_.._

The u (for “up”) quark carries a charge of 5 and a strangeness of zero; the d
(“down”) quark carries a charge of —§ and § = 0; the s (originally “sideways”,
but now more commonly “strange”) quark has Q = —3 and S = —1. To each
quark (g) there corresponds an gntiquark (g), with the opposite charge and
strangeness:

u \a‘— The Antiquarks
s=0—————— —
\
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The quark model asserts that

1. Every baryon is composed of three quarks (and every antibaryon is
composed of three antiquarks). ,
2. Every meson is composed of a quark and an antiquark.

With these two rules it is a matter of elementary arithmetic to construct
the baryon decuplet and the meson octet. All we need to do is list the combi-
nations of three quarks (or quark—antiquark pairs), and add up their charge and

strangeness:

THE BARYON DECUPLET

qqq Q S Baryon
uuu 2 0 At
uud 1 0 At
udd 0 0 Al
ddd -1 0 AT
s 1 -1 Tt
uds 0 —1 0
dds -1 -1 Z*
uss 0 -2 =0
dss -1 -2 Al
$5§ -1 -3 Q

Notice that there are 10 combinations of three quarks. Three s, for instance,
at Q = 2 each, yield a total charge of +2, and a strangeness of zero. This is the
A** particle. Continuing down the table, we find all the members of the decuplet
ending with the -, which is evidently made of three s quarks.

A similar enumeration of the quark-antiquark combinations yields the
meson table:

THE MESON NONET

qQq Q ) Meson
uie 0 0 w°
ud i 0 rt
dir -1 0 T
dd 0 ] n

us 1 1 K*
ds 0 1 K®
si -1 -1 K~
sd 0 -1 K°
55 0 0 n

But wait! There are nine combinations here, and only eight particles in the
meson octet. The quark model requires that there be a third meson (in addition
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to the =¥ and the %) with Q = 0 and S = 0. As it turns out, just such a particle
had already been found experimentally—the 7. In the Eightfold Way the »’ had
been classified as a singlet, all by itself. According to the quark model it properly
belongs with the other eight mesons to form a meson nonet. (Actually, since uiz,
dd, and s5 all have Q = 0 and S = 0, it is not possible to say, on the basis of
anything we have done so far, which is the #° which the 5, and which the 7'
But never mind, the point is that there are three mesons with Q = S = 0.) By
the way, the gntimesons automatically fall in the same supermultiplet as the
mesons: ud is the antiparticle of diz, and vice versa.

You may have noticed that I avoided talking about the baryon octet—and
it is far from obvious how we are going to get eight baryons by putting together
three quarks. In truth, the procedure is perfectly straightforward, but it does call
for some facility in handling spins, and I would rather save it until Chapter 5.
For now, I'll just tantalize you with the mysterious observation that if you take
the decuplet and knock off the three corners (where the quarks are identical—
uuu, ddd, and sss), and double the center (where all three are different—uds),
you obtain precisely the eight states in the baryon octet. So the same set of quarks
can account for the octet; it’s just that some combinations do not appear at all,
and one appears twice.

Indeed, all the Eightfold Way supermultiplets emerge in a natural way
from the quark model. Of course, the same combination of quarks can go to
make a number of different particles: The delta-plus and the proton are both
composed of two u’s and a d; the pi-plus and the rho-plus are both ud: and so
on. Just as the hydrogen atom (electron plus proton) has many different energy
levels, so a given collection of quarks can bind together in many different ways.
But whereas the various energy levels in the electron/proton system are relatively
close together (the spacings are typically several electron volts, in an atom whose
rest energy is nearly 10° electron volts), so that we naturally think of them all
as “hydrogen,” the energy spacings for different states of a bound quark system
are very large, and we normally regard them as distinct particles. Thus we can,
in principle, construct an infinite number of hadrons out of only three quarks.
Notice, however, that some things are absolutely excluded in the quark model:
For example, a baryon with S = 0 and Q = —2; no combination of the three
quarks can produce these numbers. Nor can there be a meson with a charge of
+2 (like the A*" baryon) or a strangeness of —3 (like the Q™). For a long time
there were major experimental searches for these so-called “exotic” particles;
their discovery would be devastating for the quark model, but none has ever
been found (see Problem 1.11).

The quark model does, however, suffer from one profound embarrassment:
In spite of the most diligent search over a period of 20 years, no one has ever
seen an individual quark. Now, if a proton is really made out of three quarks,
you’d think that if you hit one hard enough, the quarks ought to come popping
out. Nor would they be hard to recognize, carrying as they do the conspicuous
label of fractional charge; an ordinary Millikan oil drop experiment would clinch
the identification. Moreover, at least one of the quarks should be absolutely
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stable; what could it decay into, since there is no lighter particle with fractional
charge? So quarks ought to be easy to produce, easy to identify, and easy to
store, and yet, no one has ever found one.

The failure of experiments to produce isolated quarks occasioned wide-
spread skepticism about the quark model in the late sixties and early seventies.
Those who clung to the model tried to conceal their disappointment by intro-
ducing the notion of quark confinement: perhaps, for reasons not yet understood,
quarks are absolutely confined within baryons and mesons, so that no matter
how hard you try, you cannot get them out. Of course, this doesn’t explain
anything, it just gives a name to our frustration. But at least it poses sharply
what has become a crucial theoretical problem for the eighties: to discover the
mechanism responsible for quark confinement. There are some indications that
the solution may be at hand.”

Even if all quarks are stuck inside hadrons, this does not mean they are
inaccessible to experimental study. One can probe the inside of a proton in much
the same way as Rutherford probed the inside of an atom—by firing something
into it. Such experiments were carried out in the late sixties using high-energy
electrons at the Stanford Linear Accelerator Center (SLAC). They were repeated
in the early seventies using neutrino beams at CERN, and later still using protons.
The results of these so-called “deep inelastic scattering” experiments were strik-
ingly reminiscent of Rutherford’s (Fig. 1.12): Most of the incident particles pass
right through, whereas a small number bounce back sharply. This means that
the charge of the proton is concentrated in small lumps, just as Rutherford’s
results indicated that the positive charge in an atom is concentrated at the nu-
cleus.26 However, in the case of the proton the evidence suggests three lumps,
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Figure 1.12 (a) In Rutherford scattering the number of particles deflected through large
angles indicates that the atom has internal structure (a nucleus). (b) In deep inelastic
scattering the number of particles deflected through large angles indicates that the proton
has internal structure (quarks). The dashed lines show what you would expect if the
positive charge were uniformly distributed over the volume of (a) the atom, (b) the proton.
[Source: F. Halzen and A. D. Martin, Quarks and Leptons (New York: Wiley, 1984), p.
17. Copyright © John Wiley & Sons, Inc. Reprinted by permission.]
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instead of one. This is strong support for the quark model, obviously, but still
not conclusive. i

Finally, there was a theoretical objection to the quark model: It appears
to violate the Pauli exclusion principle. In Pauli’s original formulation the ex-
clusion principle stated that no two electrons can occupy the same state. However,
it was later realized that the same rule applies to all particles of half-integer spin
(the proof of this is one of the most important achievements of quantum field
theory). In particular, the exclusion principle should apply to quarks, which, as
we shall see, must carry spin 3. Now the A*™, for instance, is supposed to consist
of three identical u# quarks in the same state; it (and also the A™ and the Q7)
appear to be inconsistent with the Pauli principle. In 1964, O. W. Greenberg
proposed a way out of this dilemma:*” He suggested that quarks not only come
in three flavors (u, d, and s) but each of these also comes in three colors (“‘red,”
“green,” and “blue,” say). To make a baryon, we simply take one quark of each
color, then the three »’s in A™" are no longer identical (one’s red, one’s green,
and one’s blue). Since the exclusion principle only applies to identical particles,
the problem evaporates.

The color hypothesis sounds like sleight of hand, and many people initially
considered it the last gasp of the quark model. As it turned out, the introduction
of color was one of the most fruitful ideas of our time. I need hardly say that
the term “color” here has absolutely no connection with the ordinary meaning
of the word. Redness, blueness, and greenness are simply /abels used to denote
three new properties that, in addition to charge and strangeness, the quarks
possess. A red quark carries one unit of redness, zero blueness, and zero greenness;
its antiparticle carries minus one unit of redness, and so on. We could just as
well call these quantities X-ness, Y-ness, and Z-ness, for instance. However, the
color terminology has one especially nice feature: It suggests a delightfully simple
characterization of the particular quark combinations that are found in nature.

——

All naturally occurring particles are colorless.

By “colorless” I mean that either the total amount of each color is zero or all

th. ~1 + 1 1111 4
three colors are present in equal amounts. (The latter case mimucs the optical

fact that light beams of three primary colors combine to make white.) This clever
rule “explains™ (if that’s the word for it) why you can’t make a particle out of
two quarks, or four quarks, and for that matter why individual quarks do not
occur in nature. The only colorless combinations you can make are gg (the
mesons), ggq (the baryons), and ggq (the antibaryons). (You could have six
quarks, of course, but we would interpret that as a bound state of two baryons.)

1.9 THE NOVEMBER REVOLUTION AND ITS
AFTERMATH (1974-1983)

The decade from 1964 to 1974 was a barren time for elementary particle physics.
The quark model, which had seemed so promising at the beginning, was in an
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uncomfortable state of limbo by the end. It had had some striking successes: It
neatly explained the Eightfold Way, and correctly predicted the lumpy structure
of the proton. But it had two conspicuous defects: the experimental absence of
free quarks and inconsistency with the Pauli principle. Those who liked the
model papered over these failures with what seemed at the time to be rather
transparent rationalizations: the idea of quark confinement and the color hy-
pothesis. But I think it is safe to say that by 1974 most elementary particle
physicists felt queasy, at best, about the quark model. The lumps inside the
proton were called partons, and it was unfashionable to identify them explicitly
with quarks.

Curiously enough, what rescued the quark model was not the discovery of
free quarks, or an explanation of quark confinement, or confirmation of the
color hypothesis, but something entirely different and (almost)*® completely un-
expected: the discovery of the psi meson. The y was first observed at Brookhaven
by a group under C. C. Ting, in the summer of 1974. But Ting wanted to check
his results before announcing them publicly, and the discovery remained an
astonishingly well-kept secret until the weekend of November 10-11, when the
new particle was discovered independently by Burton Richter’s group at SLAC.
The two teams then published simultaneously,?® Ting naming the particle J, and
Richter calling it . The J/y was an electrically neutral, extremely heavy meson—
more than three times the weight of a proton (the original notion that mesons
are “middle-weight” and baryons “heavy-weight” had long since gone by the
boards). But what made this particle so unusual was its extraordinarily long
lifetime. For the y lasted fully 1072 seconds before disintegrating. Now, 1072°
seconds may not impress you as a particularly long time, but you must understand
that the typical lifetimes for hadrons in this mass range are on the order of 10”23
seconds. So the ¢ has a lifeime about a thousand times longer than any com-
parable particle. It’s as though someone came upon an isolated village in Peru
or the Caucasus where people live to be 70,000 years old. That wouldn’t just be
some actuarial anomaly; it would be a sign of fundamentally new biology at
work. And so it was with the : its long lifetime, to those who understood, spoke
of fundamentally new physics. For good reason, the events precipitated by the
discovery of the ¥ came to be known as the November Revolution.*

In the months that followed, the true nature of the y meson was the subject
of lively debate, but the explanation that won was provided by the quark model.

It is now universally accepted that the { represents a bound state of a new

(fourth) quark, the ¢ (for charm) and its anthuark. ¥ = (cc). Actually, the idea
of a fourth flavor, and even the whimsical name, had been introduced many
years earlier, by Bjorken and Glashow.?! Indeed, there was an intriguing parallel
between the leptons and the quarks:

Leptons: e, v,, u, v,
Quarks: d, u, s

If all mesons and baryons are made out of quarks, these two families are left as
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Figure 1.13 Supermultiplets constructed with four quarks. (From “Quarks with Color

and Flavor,” by S. Glashow. Copyright © Oct. 1975 by Scientific American, Inc. All
rights reserved.)
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the truly fundamental particles. But why four leptons and only three quarks?
Wouldn’t it be nicer if there were four of each? Later, Glashow, Iliopoulos, and
Maiani*? offered more compelling technical reasons for wanting a fourth quark,
but the simple idea of a parallel between quarks and leptons is another of those
farfetched speculations that turned out to have more substance than their authors
could have imagined.

So when the y was discovered, the quark model was ready and waiting
with an explanation. Moreover, it was an explanation pregnant with implications.
For if a fourth quark exists, there should be all kinds of new baryons and mesons, -
carrying various amounts of charm. Some of these are shown in Figure 1.13;
you can work out the possibilities for yourself (Problems 1.14 and 1.15). Notice
that the y itself carries no ner charm, for if the ¢ is assigned a charm of +1, then
¢ will have a charm of —1; the charm of the ¢ is, if you will, “hidden.” To
confirm the charm hypothesis it was important to produce a particle with “naked”’
(or “bare”) charm.*® The first evidence for charmed baryons (A} = udc and
possibly 2% = wuuc) appeared already in 1975 (Fig. 1.14);** the first charmed
mesons (D° = ci and D* = ¢d) were found in 1976,% and the charmed strange
meson (F* = ¢§) in 1977.% (The F meson was recently renamed D,. There is
also some evidence for usc and ssc.) With these discoveries the interpretation of
the { as ¢¢ was established beyond reasonable doubt. More important, the quark
model itself was put back on its feet.

However, the story does not end there, for in 1975 a new lepion was dis-
covered,’” spoiling Glashow’s symmetry. This new particle (the tau) presumably
has its own neutrino, so we are up to six leptons, and only four quarks. But
don’t dispair, because two years later a new heavy meson (the upsilon) was
discovered,*® and quickly recognized as the carrier of a fifth quark, 5 (for beauty,
or hottom, depending on your taste): T = bb. Immediately the search began for
mesons and hadrons exhibiting “naked beauty” (or “bare bottom”). (I'm sorry.
I didn’t invent this terminology. In a wayj, its silliness is a reminder of how wary
people were of taking the quark model seriously, in the early days.) The first
beautiful baryon, A, = udb, may have been observed in 1981% (the claim is
hotly contested*’); the first beautiful mesons (B° = bd and B~ = bi1) were found
in 1983.*' At this point it doesn’t take much imagination to predict that a sixth
quark will eventually be found; it already has a name: ¢ (for truth, of course, or
top). If and when the 7 quark is discovered (there were some indications in the
summer of 1984 that it may have been seen at CERN), Glashow’s symmetry
will be restored, with six leptons and six quarks. And there (knock on wood) the
proliferation stops.

1.10 INTERMEDIATE VECTOR BOSONS (1983)

In his original theory of beta decay (1933) Fermi treated the process as a contact
interaction, occurring at a single point, and therefore requiring no mediating
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particle. As it happens, the weak force (which is responsible for beta decay) is
of extremely short range, so that Fermi’s model was not far from the truth, and
yields excellent approximate results at low energies. However, it was widely
recognized that this approach was bound to fail at high energies, and would
eventually have to be supplanted with a theory in which the interaction was
mediated by the exchange of some particle. The mediator came to be known by
the prosaic name intermediate vector boson. The challenge for theorists was to
predict the properties of the intermediate vector boson, and for experimentalists,
to produce one in the laboratory. You may recall that Yukawa, faced with the
analogous problem for the strong force, was able to estimate the mass of the
pion in terms of the range of the force, which he took to be roughly the same
as the size of a nucleus. But we have no corresponding way to measure the range
of the weak force; there are no “weak bound states” whose size would inform
us—the weak force is simply too feeble to bind particles together. For many
years predictions of the intermediate vector boson mass were little more than
educated guesses (the “education” coming largely from the failure of experiments
at progressively higher energies to detect the particle). By 1962 it was known
that the mass had to be at least half the proton mass; 10 years later the experi-
mental lower limit had grown to 2.5 proton masses.

But it was not until the emergence of the electroweak theory of Glashow,
Weinberg, and Salam that a really firm prediction of the mass was possible. In
this theory there are in fact three intermediate vector bosons, two of them charged
(W*) and one neutral (Z). Their masses were calculated to be*?

My = 82 =2 GeV/c?, Mz =92 +2GeV/c? (1.30)

In the late seventies, CERN began construction of a proton-antiproton collider
designed specifically to produce these extremely heavy particles (bear in mind
that the mass of the proton is 0.94 GeV/c?, so we’re talking about something
nearly 100 times as heavy). In January 1983 the discovery of the W (at 81 £ 5
GeV/c?) was reported by Carlo Rubbia’s group,*? and five months later the same
team announced discovery of the Z (at 95 + 3 GeV/c?).* These experiments
represent an extraordinary technical triumph,** and they were of fundamental
importance in confirming a crucial aspect of the Standard Model, to which the
physics community was by that time heavily committed (and for which a Nobel
Prize had already been awarded). Unlike the strange particies or the ¢, however,
the intermediate vector bosons were long awaited and universally expected, so
the general reaction was a sigh of relief, not shock or surprise.

1.11 THE STANDARD MODEL (1978-7?)

In the current view, then, all matter is made out of three kinds of elementary
particles: leptons, quarks, and mediators. There are six leptons, classified ac-
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cording to their charge (Q), electron number (L,.), muon number (L,), and tau
number (L,). They fall naturally into three families (or generations):

LEPTON CLASSIFICATION

/ Q L L, L

_ . e -1 1 0 0
First generation 0 1 0 0

|
—
=
—
=)

Second generation

‘ ' T -1 0 0 1
Third generation [ v, 0 0 0 1

There are also six antileptons, with all the signs reversed. The positron, for ex-
ample, carries a charge of +1 and an electron number —1. So there are really
12 leptons, all told.

Similarly, there are six “flavors” of quarks, which are classified according
to charge, strangeness (), charm (C), beauty (B), and truth (7). [For consistency,
I suppose we shouald include “upness” (U) and “downness’ (D), although these
terms are seldom used. They are redundant, inasmuch as the only gr.ark with
S=C=B=T=0and Q = %, for instance, is the up quark, so it is not necessary
to specify U = | and D = 0 as well.] The quarks, too, fall into three generations:
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Again, all signs would be reversed on the table of antiquarks. Meanwhile, each
quark and antiquark comes in three colors, so there are 36 of them in all.
Finally, every interaction has its mediators: the photon for the electro-
magnetic force, two W’s and a Z for the weak force, the graviton (presumably)
for gravity, . .. but what about the strong force? In Yukawa’s original theory
(1934) the mediator of strong forces was the pion, but with the discovery of
heavy mesons this simple picture could not stand; protons and neutrons could

now exchange rho’s and eta’s and K’s and phi’s and all the rest of them. The
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Figure 1.15 The three generations of quarks and leptons, in order of increasing mass.

quark model brought an even more radical revision, for if protons, neutrons,
and mesons are complicated composite structures, there is no reason to believe
their interaction should be simple. To study the strong force at the fundamental
level, one should look, rather, at the interaction between individual quarks. So
the question becomes: What particle is exchanged between two quarks, in a
strong process? This mediator is called the g/uon, and in the Standard Model
there are eight of them. As we shall see, the gluons themselves carry color, and
therefore (like the quarks) should not exist as isolated particles. We can hope to
detect gluons only within hadrons, or in colorless combinations with other gluons
(glueballs). Nevertheless, there is substantial indirect experimental evidence for
the existence of gluons: The deep inelastic scattering experiments showed that
roughly half the momentum of a proton is carried by electrically neutral con-
stituents, presumably gluons; the jer structure characteristic of proton scattering
at high energies can be explained in terms of the disintegration of quarks and
gluons in flight;*® and glueballs may conceivably have been observed.*’ But no
one would say that the experimental evidence is really compelling, at this stage.

This is all adding up to an embarrassingly large number of supposedly
“elementary” particles: 12 leptons, 36 quarks, 12 mediators (I won’t count the
graviton, since gravity is not included in the Standard Model). And, as we shall
see later, the Glashow-Weinberg-Salam theory calls for at least one Higgs particle,
so0 we have a minimum of 61 particles to contend with. Informed by our expe-
rience first with atoms and later with hadrons, many people have suggested that

some, at least, of these 61 must be composites of more elementary subparticles
(see Problem 1.17). 48 Quch speculations lie bevond the Standard Model and
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out51de the scope of this book. Personally, I do not think the large number of
“elementary” particles in the Standard Model is by itself alarming, for they are
tightly interrelated. The eight gluons, for example, are identical except for their
colors, and the second and third generations mimic the first (Fig. 1.16). In the
next chapter we shall see how this structure leads to the first systematic and
comprehensive theory of elementary particle dynamics.
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PROBLEMS

1.1

1.2.

. If a charged particle is undeflected in passing through uniform crossed €lectric and
magnetic fields E and B (mutually perpendicular, and both perpendicular to the
direction of motion), what is its velocity? If we now turn off the electric field, and
the particle moves in an arc of radius R, what is its charge-to-mass ratio?

The mass of Yukawa’s meson can be estimated as follows. When two protons in a
nucleus exchange a meson (mass 1) they must wemporarily violate the conservation
of energy by an amount mc? (the rest energy of the meson). The Heisenberg un-
certainty principl¢ says that you may “borrow’ an energy AE, provided you “pay
it back™ in a time At given by AE At = h (where A = h/2x). In this case we need
to borrow AE = mc? long enough for the meson to make it from one proton to
the other. It has to cross the nucleus (size rp), and it travels, presumably, at some
substantial fraction of the speed of light, so, roughly speaking, At = ry/c. Putting
this ail together, we have

Using r, = 107'% cm (the size of a typical nucleus), calculate the mass of Yukawa’s
meson. Express your answer as a multiple of the electron’s mass, and compare the
observed mass of the pion. [If you find that argument compelling, I can only say
that you're pretty gullible. Try it for an arom, and you’ll conclude that the mass of
the photon is about 7 X 1073 g, which is nonsense. Nevertheless, it is a useful
device for “back-of-the-envelope™ calculations, and it does very well for the pi
meson. Unfortunately, many books present it as though it were a rigorous derivation,
which it certainly is not. The uncertainty principle does not license violation of
conservation of energy (nor does any such violation occur in this process; we shall
see later on how this comes about). Moreover, it’s an inequality, AE At = h, which
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at most could give you a lower bound on m. It is typically true that the range of a
force is inversely proportional to the mass of the mediator, but the size of a bound
state 1s not always a good measure of the range (that’s why the argument fails for

Tt thha Py
the photon: The range of the e!wtlcmagnptw force is uAfhuw, but the size of an

atom is not). In general, when you hear a physicist invoke the uncertainty principle,
keep a hand on your wallet.]

1.3. In the period before the discovery of the neutron many people thought the nucleus
consisted of protons and electrons, with the atomic number equal to the excess
number of protons. Beta decay seemed to support this idea—after all, electrons
come popping out; doesn’t that imply that there were electrons inside? Use the
position-momentum uncertainty relation, Ax Ap = h, to estimate the minimum
momentum of an electron confined to a nucleus (radius 107! cm). From the
relativistic energy-momentum relation, E? — p’c? = mP?c*, determine the corre-
sponding energy, and compare it with that of an electron emitted in, say, the beta
decay of tritium (Fig. 1.6). (This result convinced some people that the beta-decay
electron could not have been rattling around inside the nucleus, but must be pro-
duced in the disintegration itself.)

1.4. The Gell-Mann/Okubo mass formula relates the masses of members of the baryon
octet (ignoring small differences between p and #; £*, 2° and £7; and Z° and =°):

2(mN + m—) 3mA + ms

Using this formula, together with the known masses of the nucleon N (use the
average of p and n), Z (again, use the average), and = (ditto), “predict” the mass
of the A. How close do you come to the observed value?

1.5. The same formula applies to the mesons (with £ — #, A — 5, etc.); only, for reasons
that remain something of a mystery, in this case you must use the squares of the
masses. Use this to “predict” the mass of the n. How close do you come?

1.6. The mass formula for decuplets is much simpler—equal spacing between the rows:
MA - ME- = Mz- - M;.-_.;t = M_-._:_-- - MQ

Use this formula (as Gell-Mann did) to predict the mass of the Q. (Use the average
of the first two spacings to estimate the third.) How close is your prediction to the
observed value?

-23 : :
1.7. (a) Members of the baryon decuplet typically decay after 1072? sec into a lighter

baryon (from the baryon octet) and a meson (from the pseudo-scalar meson
octet). Thus, for example, A** — p* + #*. List all decay modes of this form
for the A™, Z**, and E*". Remember that these decays must conserve charge
and strangeness (they are strong interactions).

(b) In any decay, there must be sufficient mass in the original particle to cover the
masses of the decay products. (There may be more than enough; the extra will
be “soaked up” in the form of kinetic energy in the final state.) Check each of

the decays you proposed in part (a) to see which ones meet this criterion. The
others are kinematically forbidden.

1.8. (a) Analyze the possible decay modes of the 7, just as you did in Problem 1.7 for
the A, Z*, and Z*. See the problem? Gell-Mann predicted that the = would
be “metastable” (i.e., much longer lived than the other members of the decuplet),
for precisely this reason. (The Q™ does in fact decay, but by the much slower
weak interaction, which does not conserve strangeness.)
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1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.
1.16.

(b) From the bubble chamber photograph (Fig. 1.11, measure the length of the 0~
track, and use this to estimate the lifetime of the Q™. (Of course, you don’t
know how fast it was going, but it’s a safe bet that the speed was less than the
velocity of light; let’s say it was going about 0.1c. Also, you don’t know if the
reproduction has enlarged or shrunk the scale, but never mind: this is quibbling
over factors of 2, or 5, or maybe even 10. The important point is that the
lifetime is many orders of magnitude longer than the 10”2 sec characteristic

of all other members of the decuplet).
Check the Coleman-Glashow relation [Phys. Rev. B134, 671 (1964)]:

-3 =p—n+E-E
(the particle names stand for their masses).

Look up the table of “known” mesons compiled by M. Roos in Rev. Mod. Phys.
35, 314 (1963), and compare the current Particle Data Booklet® to determine
which of the 1963 mesons have stood the test of time. (Some of the names have
been changed, so you will have to work from other properties, such as mass, charge,
strangeness, etc.)

Of the spurious particles you identified in Problem 1.10, which are “exotic” (i.e.,
inconsistent with the quark model)? How many of the surviving mesons are exotic?

How many different meson combinations can you make with 1, 2, 3, 4, 5, or 6
different quark flavors? What’s the general formula for n flavors?

How many different baryon combinations can you make with 1, 2, 3,4, 5, or 6
different quark flavors? What’s the general formula for # flavors?

Using four quarks (&, d, s, and ¢), construct a table of all the possible baryon species.
How many combinations carry a charm of +1?7 How many carry charm +2,
and +3?

Same as Problem 1.14, but this time for mesons.

De Rujula, Georgi, and Glashow [Phys. Rev. D12, 147 (1975)] estimated the quark
masses to be: m, = my = 336 MeV/c2, m;, = 540 MeV/c?, and m. = 1500 MeV/
¢? (the bottom quark is about 4500 MeV/c?). If dxy are right, the average binding
energy for members of the baryon octet is —62 MeV. If they all had exactly this
binding energy, what would their masses be? Compare the actual values, and give
the percent error. (Don’t try this on the other supermultiplets, however. There
really is no reason to suppose the binding energy is the same for ali members of
the group. The problem of hadron masses is a thorny issue, to which we shall return
in Chapter 5.)

7. M. Shupe [Phys. Lert. 86B, 87 (1979)] has proposed that all quarks and leptons

are composed of two even more elementary constituents: ¢ (with charge —1/3)
and n (with charge zero)—-and their respective antiparticles, ¢ and 7. You’re allowed
to combine them in groups of three particles or three antiparticles (ccn, for example,
or nnn). Construct all of the eight quarks and leptons in the first generation in this
manner. (The other generations are supposed to be excited states.) Notice that each
of the quark states admits three possible permutations (ccn, cnc, nce, for example)—
these correspond to the three colors. Mediators can be constructed from three par-
ticles plus three antiparticles. W*, Z° and v involve three /ike particles and three
like antiparticles (W~ = cccann, for instance). Construct W+, Z° and v in this
way. Gluons involve mixed combinations (ccncnn, for instance). How many pos-
sibilities are there in all? Can you think of a way to reduce this down to eight?






This chapter introduces the fundamental jorces by which elementary particles
interact, and the Feynman diagrams we use to represent these interactions.
The treatment is entirely qualitative and can be read quickly to get a sense
of the “lay of the land.”” The quantitative details will come in Chapters 6
through 10.

2.1 THE FOUR FORCES

As far as we know, there are just four fundamental forces in nature: strong,
electromagnetic, weak, and gravitational. They are listed in the fullowing table
in order of decreasing strength:*

Force Strengtn Theory iviediator
Strong 10 Chromodynamics Gluon
Electromagnetic 1072 Electrodynamics Photon
Weak 1071 Flavordynamics Wand Z
Gravitational 10742 Geometrodynamics Graviton

To each of these forces there belongs a physical theory. The classical theory of
gravity is, of course, Newton’s law of universal gravitation. Its relativistic gen-
eralization is Einstein’s general theory of relativity (“geometrodynamics” would
be a better term). A completely satisfactory quantum theory of gravity has yet
to be worked out; for the moment, most people assume that gravity is simply

* The “strength” of a force is an intrinsically ambiguous notion—after all, it depends on the
nature of the source and on how far away you are. So the numbers in this table should not be taken
too literally, and (especially in the case of the weak force) you will see quite different figures quoted
elsewhere.

55
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too weak to play a significant role in elementary particle physics. The physical
theory that describes electromagnetic forces is called electrodynamics. It was
given its classical formulation by Maxwell over one hundred years ago. Maxwell’s
theory was already consistent with special relativity (for which it was, in fact,
the main inspiration). The quantum theory of electrodynamics was perfected
by Tomonaga, Feynman, and Schwinger in the 1940s. The weak forces, which
account for nuclear beta decay (and also, as we have seen, the decay of the pion,
the muon, and many of the strange particles) were unknown to classical physics;
their theoretical description was given a relativistic quantum formulation right
from the start. The first theory of the weak forces was presented by Fermi in
1933; it was refined by Lee and Yang, Feynman and Gell-Mann, and many
others, in the fifties, and put into its present form by Glashow, Weinberg, and
Salam, in the sixties. For reasons that will appear in due course, the theory of
weak interactions is sometimes called flavordynamics,' in this book I refer to it
simply as the Glashow-Weinberg—Salam (GWS) theory. (The GWS model treats
weak and electromagnetic interactions as different manifestations of a single
electroweak force, and in this sense the four forces reduce to three.) As for the
strong forces, beyond the pioneering work of Yukawa in 1934 there really was
no theory until the emergence of chromodynamics in the mid-seventies.

Each of these forces is mediated by the exchange of a particle. The gravi-
tational mediator is called the graviton, electromagnetic forces are mediated by
the photon, strong forces by the gluon, and weak forces by the intermediate vector
bosons, W and Z. These mediators transmit the force between one quark or
lepton and another. In principle, the force of impact between a bat and a baseball
1s nothing but the combined interaction of the quarks and leptons in one with
the quarks and leptons in the other. More to the point, the strong force between
two protons, say, which Yukawa took to be a fundamental and irreducible pro-
cess, must be regarded as a complicated interaction of six quarks. This is clearly
not the place to look for simplicity. Rather, we must begin by analyzing the
force between one truly elementary particle and another. In this chapter I will
show you qualitatively how each of the relevant forces acts on individual quarks
and leptons. Subsequent chapters develop the machinery needed to make the
theory quantitative.

2.2 QUANTUM ELECTRODYNAMICS (QED)

Quantum electrodynamics is the oldest, the simpliest, and the most successful

£fitha Aunomy 1 +h m ’
of the dynamical theories; the others are self-consciously modeled on it. So I'll

begin with a description of QED. All electromagnetic phenomena are ultimately
reducible to the following elementary process:

e

Time
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This diagram reads: Charged particle e enters, emits (or absorbs) a photon, 7,
and exits.* For the sake of argument, I'll assume the charged particle is an
electron; it could just as well be a quark, or any lepton except a neutrino (the
latter 1s neutral, of course, and does not experience an electromagnetic force).
To describe more complicated processes, we simply patch together two or
more replicas of this primitive vertex. Consider, for example, the following;

Here, two electrons enter, a photon passes between them (I need not say which
one emits the photon and which one absorbs it; the diagram represents both
orderings), and the two then exit. This diagram, then, describes the interaction
between two electrons; in the classical theory we would call it the Coulomb
repulsion of like charges (if the two are at rest). In QED this process is called
Maller scattering; we say that the interaction is “mediated by the exchange of a
photon,” for reasons that should now be apparent.

Now, you're allowed to twist these “Feynman diagrams” around into any
topological configuration you like—for example, we could stand the previous
picture on its side:

The rule of the game is that a particle line running “backward in time” (as
indicated by the arrow) is to be interpreted as the corresponding antiparticle
going forward (the photon is its own antiparticle, that’s why I didn’t need an
arrow on the photon line). So in this process an electron and a positron annihilate
to form a photon, which in turn produces a new electron-positron pair. An
electron and a positron went iz, an electron and a positron came ot (not the
same ones, but then, since all electrons are identical, it hardly matters). This
represents the interaction of two opposite charges: their Coulomb attraction. In
QED this process is called Bhabha scattering. There is a quite different diagram
which also contributes:

* In this book time always flows upward; the traditional convention. Particle physicists tend
increasingly to let 7 run horizontally (to the right), but there is no established consensus on the matter.
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Both diagrams must be included in the analysis of Bhabha scattering.

Using just two vertices we can also construct the following diagrams,
describing, respectively, pair annihilation, e~ + " — 4 + +; pair production,
v + v — e + e*; and Compton scattering, & + v — € + v:

[Notice that Bhabha and Mapiler scattering are related by crossing symmetry (see
Section 1.4); as are the three processes shown here. In terms of Feynman diagrams,
crossing symmetry corresponds to twisting or rotating the figure.] If we allow
more vertices, the possibilities rapidly proliferate; for example, with four vertices
we obtain, among others, the following diagrams:

TN AN

In each of these figures two electrons went in and two electrons came out. They
too describe the repulsion of like charges (Moller scattering). The “innards™ of
the diagram are irrelevant as far as the observed process is concerned. Internal
lines (those which begin and end within the diagram) represent particles that are
not observed—indeed, that cannot be observed without entirely changing the
process. We call them “virtual” particles. Only the external lines (those which
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enter or leave the diagram) represent “real” (observable) particles. The external
lines, then, tell you what physical process is occurring; the internal lines describe
the mechanism involved.

Please understand: these Feynman diagrams are purely symbolic; they do
not represent particle trajectories (as you might see them in, say, a bubble chamber
photograph). The vertical dimension is time, and horizontal spacings do not
correspond to physical separations. For instance, in Bhabha scattering the electron
and positron are attracted, not repelled (as the diverging lines might seem to
suggest). All the diagram says is: “Once there was an electron and a positron;
they exchanged a photon; then there was an electron and a positron again.”
Each Feynman diagram actually stands for a particular number, which can be
calculated using the so-called Feynman rules (you’'ll learn how to do this in
Chapter 6). Suppose you want to analyze a certain physical process (say, Meoller
scattering). First you draw all the diagrams that have the appropriate external
lines (the one with two vertices, all the ones with four vertices, and so on), then
you evaluate the contribution of each diagram, using the Feynman rules, and
add it all up. The sum total of all Feynman diagrams with the given external
lines represents the actual physical process. Of course, there’s a problem here:
there are infinitely many Feynman diagrams for any particular reaction! For-
tunately, each vertex within a diagram introduces a factor of & = (e?/#h¢) = 737,
the fine structure constant. Because this is such a small number, diagrams with
more and more vertices contribute less and less to the final result, and, depending
on the accuracy you need, may be ignored. In fact, in QED ‘it is rare *s-see a
calculation that includes diagrams with more than four vertices. The answers
are only approximate, to be sure, but when the approximation is valid to six
significant digits, only the most fastidious are likely to complain.

The Feynman rules enforce conservation of energy and momentum at
each vertex, and hence for the diagram as a whole. It follows that the primitive
QED vertex by itself does not represent a possible physical process. We can draw
the diagram, but calculation would assign to it the number zero. The reason is
purely kinematical: e~ — ¢~ + v would violate conservation of energy. (In the
center-of-mass frame the electron is initially at rest, so its energy is mc?. It cannot
decay into a photon plus a recoiling electron because the latter alone would
require an energy greater than mc”.) Nor, for instance, is ¢~ + e¢* — ~ kine-
matically possible, although it is easy enough to draw the diagram:

:

In the center-of-mass system the electron and positron enter symmetrically
with equal and opposite velocities, so the total momentum before the collision
1s obviously zero. But the fina/ momentum cannot be zero, since photons always
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travel at the speed of light; an electron-positron pair can annihilate to make two
photons, but not one. Within a larger diagram, however, these figures are perfectly
acceptable, because, although energy and momentum must be conserved at each
vertex, a virtual particle does not carry the same mass as the corresponding free
particle. In fact, a virtual particle can have any mass—whatever the conservation
laws require.* In the business, we say that virtual particles do not lie on their
mass shell. External lines, by contrast, represent real particles, and these do carry
the ““correct” mass.

[Actually, the physical distinction between real and virtual particles is not
quite as sharp as I have implied. If a photon is emitted on Alpha Centauri, and
absorbed in your eye, it is technically a virtual photon, I suppose. However, n
general, the farther a virtual particle is from its mass shell the shorter it lives, so
a photon from a distant star would have to be extremely close to its “correct”
mass; it would have to be very close to “real.” As a calculational matter, you
would get essentially the same answer if you treated the process as two separate
events (emission of a real photon by star, followed by absorption of a real photon
by eye). You might say that a real particle is a virtual particle which lasts long
enough that we don’t care to inquire how it was produced, or how it is eventually
absorbed.]

2.3 QUANTUM CHROMODYNAMICS (QCD)

In chromodynamics color plays the role of charge, and the fundamental process
(analogous to e — e~ + v) is quark — quark-plus-gluon (since leptons do not
carry color, they do not participate in the strong interactions):

g

As before, we combine two or more such “primitive vertices” to represent more
complicated processes. For example, the force between two quarks (which is
responsible in the first instance for binding quarks together to make baryons,
and indirectly for holding the neutrons and protons together to form a nucieus)
is described in lowest order by the diagram:

* In special relativity, the energy E, momentum, p, and mass m of a free particle are related
by the equation E2 — p?c® = m?c*. But for a virtual particle E? — p*c? can take on any value. Many
authors interpret this to mean that virtual processes violate conservation of energy (see Problem 1.2).
Personally, I consider this misleading, at best. Energy is always conserved.
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We say that the force between two quarks is “mediated” by the exchange of
gluons,

At this level chromodynamics is very similar to electrodynamics. However,
there are also important differences, most conspicuously, the fact that whereas
there is only one kind of electric charge (it can be positive or negative, to be
sure, but a single number suffices to characterize the charge of a particle), there
are three kinds of color (red, green, and blue). In the process g — ¢ + g, the
color of the quark (but not its flavor) may change. For example, a blue up-quark
may convert into a red up-quark. Since color (like charge) is always conserved,
this means that the gluon must carry awayv the difference—in this instance, one
unit of blueness and minus one unit of redness:

Gluons, then, are “bicolored,” carrying one positive unit of color and one negative
unit. There are evidently 3 X 3 = 9 possibilities here, and you might expect there
to be 9 kinds of gluons. For technical reasons, which we’ll come to in Chapter
9, there are actually only 8. - -

Since the gluons themselves carry color (unlike the photon, which is elec-
trically neutral), they couple directly to other gluons, and hence in addition to
the fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices,
in fact, two kinds: three gluon vertices and four gluon vertices:

- L L |

This direct gluon-gluon coupling makes chromodynamics a lot more complicated
than electrodynamics, but also far richer, allowing, for instance, the possibility
of glueballs (bound states of interacting gluons, with no quarks on the scene
at all).

Another difference between chromodynamics and electrodynamics is the
size of the coupling constant. Remember that each vertex in QED introduces a
factor of & = 137, and the smallness of this number means that we need only
consider Feynman diagrams with a small number of vertices. Experimentally,
the corresponding coupling constant for the strong forces, «,, as determined,
say, from the force between two protons, is greater than 1, and the bigness of
this number plagued particle physics for decades. For instead of contributing
less and less, the more complex diagrams contribute more and more, and Feyn-
man’s procedure, which worked so well in QED, is apparently worthless. One
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Figure 2.1 Screening of a charge g by a dielectric medium.

of the great triumphs of quantum chromodynamics (QCD) was the discovery
that in this theory the number that plays the role of coupling “constant” is in
fact not constant at all, but depends on the separation distance between the
interacting particles (we call it a “running” coupling constant). Although at the
relatively /arge distances characteristic of nuclear physics it is big at very short
distances (less than the size of a proton) it becomes quite small. This phenomenon
is known as asymptotic freedom, it means that within a proton or a pion, say,
the quarks rattle around without interacting much. Just such behavior was found
experimentally in the deep inelastic scattering experiments. From a theoretical
point of view, the discovery of asymptotic freedom rescued the Feynman calculus
as a legitimate tool for QCD, in the high-energy regime.

Even in electrodynamics, the effective coupling depends somewhat on how
far you are from the source. This can be understood qualitatively as follows.
Picture first a positive point charge ¢ embedded in a dielectric medium (i.e., a

substance whose molecules become polarized in the presence of an electric field).
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positive end repelled away, as shown in Figure 2.1. As a result, the particle
acquires a “halo” of negative charge, which partially cancels its field. In the
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Intermolecular . Flgull’e 2.2 Effective charge as a function
separation of distance.
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presence of the dielectric, then, the effective charge of any particle is somewhat
reduced:

Gerr = g/ (2.1)
(The factor ¢ by which the field is reduced is called the dielectric constant of the
material; it is a measure of the ease with which the substance can be polarized.?)
Of course, if you are in closer than the nearest molecule, then there is no such
screening, and you ““see” the full charge g. Thus if you were to make a graph of
the effective charge, as a function of distance, it would look something like
Figure 2.2. The effective charge increases at very small distances.
Now, it so happens That in quantum electrodynamics the vacuum itself

behaves like a dielectric; it sprouts positron-electron pairs, as shown in Feynman
diagrams such as these:

The virtual electron in each “bubble” is attracted toward g, and the virtual
positron is repelled away; the resulting vacuum polarization partially screens the
charge and reduces its field. Once again, however, if you get f00 close to g, the
screening disappears. What plays the role of the “intermolecular spacing” in this
case is the Compton wavelength of the electron, A, = h/mc = 2.43 X 1079 cm.
For distances smaller than this the effective charge increases, just as it did in
Figure 2.2. Notice that the unscreened (“close-up™) charge, which you might
regard as the “true” charge of the particle, is nof what we measure in any ordinary
experiment, since we are seldom working at such minute separation distances.
[An exception is the Lamb shift—a tiny perturbation in the spectrum of hydro-
gen—in which the influence of vacuum polarization (or rather, its absence at
short distances) is clearly discernible.] What we have always called “the charge
of the electron” is actually the fully screened effective charge.

So much for electrodynamics. The same thing happens in QCD, but with
an important added ingredient. Not only do we have the quark-quark-gluon
vertex (which, by itself, would again lead to an increasing coupling strength at
short distances), but now there are also the direct gluon-gluon vertices. So in
addition to the diagrams analogous to vacuum polarization in QED, we must
now also include gluon loops, such as these:
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It is not clear a priori what influence these diagrams will have on the story;® as
it turns out, their effect is the opposite: There occurs a kind of competition
between the quark polarization diagrams (which drive a, up at short distances)
and gluon polarization (which drives it down). Since the former depends on the
number of quarks in the theory (hence on the number of flavors, /), whereas
the latter depends on the number of gluons (hence on the number of colors, n),
the winner in the competition depends on the relative number of flavors and
colors. The critical parameter turns out to be

a=2—11n (2.2)

If this number is positive, then, as in QED, the effective coupling increases at
short distances; if it is negative, the coupling decreases. In the Standard Model,
f=6and n=3,s0a=—21, and the QCD coupling decreases at short distances.
Qualitatively, this is the origin of asymptotic freedom.

The final distinction between QED and QCD is that whereas many particles
carry electric charge, no naturally occurring particles carry color. Experimentally,
it seems that quarks are confined in colorless packages of two (mesons) and three
(baryons). As a consequence, the processes we actually observe in the laboratory
are necessarily indirect and complicated manifestations of chromodynamics. It
is as though our only access to electrodynamics came from the van der Waals
forces between neutral molecules. For example, the (strong) force between two
protons involves (among many others) the following diagram:

"
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Figure 2.3 A possible scenario for quark confinement: As we pull a # quark out of the
proton a pair of quarks is created, and instead of a free quark, we are left with a pion and
a neutron.

You will recognize here the remnants of Yukawa’s pion-exchange model, but
the entire process is enormously more complex that Yukawa ever imagined. If
QCD is correct, it must contain the explanation for quark confinement; that is,
it must be possible to prove, as a consequence of this theory, that quarks can
only exist in the form of colorless combinations. Presumably this proof will take
the form of a demonstration that the potential energy increases without limit as
the quarks are pulled farther and farther apart, so that it would take an infinite
energy (or at any rate, enough to create new quark—antiquark pairs) to separate
them completely (see Fig. 2.3). So far, no one has provided a conclusive proof
that QCD implies confinement (see, however, ref. 25 in Chapter 1). The difficulty
is that confinement involves the /ong-range behavior of the quark-quark inter-
action, but this is precisely the regime in which the Feynman calculus fails.

2.4 WEAK INTERACTIONS*

There is no particular name for the “stuff” that produces weak forces, in the
sense that electric charge produces electromagnetic forces and color produces
strong forces. Some peopie cail it “weak charge.” Whatever word you use, ail
quarks and all leptons carry it. (Leptons have no color, so they do not participate
in the strong interactions; neutrinos have no charge, so they experience no elec-

Il Aftha tha al- 1 A\ Tha +
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kinds of weak interactions: charged (mediated by the W’s) and neutral (mediated
by the Z). The theory is cleaner for leptons than it is for quarks, so let us begin
with the leptons.

2.4.1 Leptons
The fundamental charged vertex looks like this:

by

— e
Ww-
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A negative lepton (it could be e, =, or 77) converts into the corresponding
neutrino, with emission of a W~ (or absorption ofa W'): [~ — y; + W™ * As
always, we combine the primitive vertices together to generate more complicated
reactions. For example, the process u~ + v, — &~ + », would be represented by
the diagram:

Such a neutrino-muon scattering event would be hard to set up in the laboratory,
but with a slight twist essentially the same diagram describes the decay of the
muon, 4~ — € + v, + ., which happens all the time:

(Technically, this is only the lowest-order contribution to muon decay, but in
weak interaction theory one almost never needs to consider higher-order cor-
rections.)

The fundamental neutral vertex is:

In this case / can be any lepton (including neutrinos). The Z mediates such
processes as neutrino-electron scattering (v, + ¢~ — v, + €7):

Although charged weak processes were recognized from the start (beta decay
itself is a charged process), the theoretical possibility of neutral weak processes
was not appreciated until 1958. The Glashow-Weinberg-Salam (GWS) model

* This implies, of course that /" — ¥; + W* is also an allowed vertex.
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includes neutral weak processes as essential ingredients, and their existence was
confirmed experimentally at CERN in 1973.> The reason it took so long for
neutral weak processes to be discovered is twofold; (1) nobody was looking for
them and (2) they tend to be masked by much stronger electromagnetic effects.
For example, the Z can be exchanged between two electrons, but so can the
photon:

Presumably there is a minute correction to Coulomb’s law that’s attributable to
the first diagram, but the photon-mediated process overwhelmingly dominates.
Experiments at DESY (in Hamburg) studied the reaction ™ + ¢" — u~ + u* at
very high energy and found unmistakable evidence of a contribution from the
Z.° But to observe a pure neutral weak interaction one has to go to neutrino
scattering, in which there is no competing electromagnetic mechanism, and neu-
trino experiments are notoriously difficult.

2.4.2 Quarks

Notice that the leptonic weak vertices connect members of the same generation:
¢~ converts to v, (with emission of W), or u~ — u™ (emitting a Z), but ™ never
goes to u~ nor u~ to ».. In this way the theory enforces the conservation of
electron number, muon number, and tau number. It is tempting to suppose that
the same rule applies to the quarks, so that the fundamental charged ver-
tex is:

-------- A '.. P N o e e

A \.;ucun with \,ualgc —§ \Wlllbll isto Say. u, 3§, Oor 0} COnverts into the Lorrebponulng
quark with charge +2 (u, ¢, or ¢, respectively), with the emission of a W~. The
outgoing quark cam'es the same color as the ingoing one, but a different flavor.
It’s not that the W carries off the “missine” flavor—after all. the W must be

=rict A% L2 LA wral Lalh L ittt ) aAxds ¥ Ravwa thiiy viaw 7 A2k ueLiL

capable of coupling to leptons, which have no flavor; rather, flavor is simply not
conserved in weak interactions. (Because quark flavor typically changes at a weak
vertex, as quark color changes at a strong vertex, weak interaction theory is
sometimes called “flavordynamics.”)

The far end of the W line can couple to leptons (a ““semileptonic’ process),
or to other quarks (a purely hadronic process). The most important semileptonic
process 1S undoubtedly d + v, — u + e:
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— . ——
Ww-

Because of quark confinement, this process would never occur in nature
as it stands. However, turned on its side, and with the # and 4 bound to-
gether (by the strong force), this diagram represents a possible decay of the

pion, * — € + v,:
Ve

I
|
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u d
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(For reasons to be discussed later, the more common decay is actually 7~ —
u~ + 7,, but the diagram is the same, with e replaced by u.) Moreover, essen-
tially the same diagram accounts for the beta decay of the neutron (n — p*
+ e + )

Thus, apart from strong interaction contamination (in the form of the “spectator”
u and d quarks), the decay of the neutron is identical in structure to the decay
of the muon, and closely related to the decay of the pion. In the days before the
quark model, these appeared to be three very different processes.
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Eliminating the electron-neutrino vertex in favor of a second quark vertex
we obtain a purely hadronic weak interaction, A® — p* + 7™:*

The weak mechanism is an immeasurably small contribution. We’ll see more
realistic examples of nonleptonic weak interactions in a moment.

The fundamental neutral vertex for leptons (/ — / + Z) leaves the lepton
species unchanged; again, it is natural to suppose that the same applies to quarks:

* The A% has the same quark content as the neutron, but this decay is not possible for neutrons
because they are not heavy enough to make a proton and a pion.
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This leads to neutrino-scattering processes such asy, + p — v, + p:

Z exchange also makes a tiny contribution to the electron-proton force within
an atom. As before, this contribution is masked by the dominant electromagnetic
force, but it is detectable in certain carefully chosen atomic transitions.

So far, it’s all pretty simple: The quarks mimic the leptons, as far as the
weak interactions are concerned. The only difference is that because of the con-
fining property of the sirong force, there are generally spectator quarks present,
which go along for the ride. Sad to say, this picture is a little foo simple. For as
long as the fundamental quark vertex is allowed to operate only within each
generation, we can never hope to account for strangeness-changing weak inter-
actions, such as the decay of the lambda (A — p* + 7n7) or the omega-minus
(@~ — A + K7), which involve the conversion of a strange quark into an up-
quark:

——P A _
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The solution to this dilemma was suggested by Cabibbo in 1963, applied to
neutral processes by Glashow, Illiopoulos, and Maiani (GIM) in 1970, and ex-
tended to three generations by Kobayashi and Maskawa (KM) in 1973.* The
essential idea is that the quark generations are ‘“‘skewed,” for the purposes of
weak interactions. Instead of

* The Cabibbo/GIM/KM mechanism will be discussed more fully in Chapter 10.
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the weak force couples the pairs ,
c 4
, 2.4
5 G) 2

(2)

where d', 5', and b’ are linear combinations of the physical quarks d, s, and b:

d Vud Vus Vub d
s')= Vcd Vcs Vcb s (2 5 )
b’ Ve Vis Vi J\b

If this 3 X 3 Kobayashi-Maskawa matrix were the unit matrix, then d', 5', and
b’ would be the same as d, s, and b, and no “cross-generational” transitions
could occur. “Upness-plus-downness” would be absolutely conserved (just as
the electron number is); “‘strangeness-plus-charm” would be conserved (like muon
number), and so would “topness-plus-bottomness” (like tau number). But it’s
not the unit matrix (although it’s pretty close); experimentally, the magnitudes
of the matrix elements are’

0.9705 t0 0.9770 021 t0024 0. to0.014
021 1t00.24  0.971t00.973 0.036 to 0.070 (2.6)
0. t00024 0.036t00.069 0.997 to 0.999

V.a measures the coupling of u to d, ¥, the coupling of u to s, and so on. The
fact that the latter is nonzero is what permits strangeness-changing processes,
such as the decay of the A and the Q, to occur.

2.4.3 Weak and Electromagnetic Couplings of W and Z

There are also direct couplings of W and Z to one another, in GWS theory (just
as there are direct gluon-gluon couplings in QCD):
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Although these interactions are critical for the internal consistency of the theory,
as we shall see in Chapter 11, they are of limited practical importance at this
point in time (see Problem 2.6).

2.5 DECAYS AND CONSERVATION LAWS

One of the most striking general properties of elementary particles is their ten-
dency to disintegrate; we might almost call it a universal principle that every
particle decays into lighter particles, unless prevented from doing so by some
conservation law. The neutrinos and the photon are stable (having zero mass,
there is nothing lighter for them to decay into); the electron is stable (it’s the
lightest charged particle, so conservation of charge prevents its decay); and the
proton is presumably stable (it’s the lightest baryon, and the conservation of
baryon number saves it). By the same token, the positron and the antiproton
are stable. But apart from these, all particles spontaneously disintegrate, even
the neutron, although it becomes stable in the protective environment of many
atomic nuclei. In practice, our world is populated mainly by protons, neutrons,
electrons, photons, and neutrinos; more exotic things are created now and then
(by collisions) but they do not last long. Each unstable species has a characteristic
mean lifetime * 7: for the muon it’s 2.2 X 107° sec; for the 7" it’s 2.6 X 107°
sec; for the #° it’s 8.3 X 107'7 sec. Most particles exhibit several different
decay modes; 64% of all K*'s, for example, decay into ¢* + v,, but 21% go to
 + 7% 6% to xt + 7t + 7, 5% to (¢ + v, + 7°), and so on. One of the
goals of elementary particle theory is to calculate these lifetimes and branching
ratios.

A given decay is governed by one of the three fundamental forces: A*™" —
pt + @, for example, is a strong decay; 7° — v + v is electromagnetic; and
3~ —n+ e + v,is weak. How can we tell? Well, if a photon comes out, the
process is certainly electromagnetic, and if a neutrino emerges, the process is
certainly weak. But if neither a photon nor a neutrino is present, it’s a little
harder to say. For example, 2~ — n + 7~ is weak, but A~ — n + 7 is strong.
I’ll show you in a moment how to figure that out, but first I want to mention
the most dramatic experimental difference between strong, electromagnetic, and
weak decays: A typical strong decay involves a lifetime around 107> sec, a typical
electromagnetic decay takes about 107'® sec, and weak decay times range from
around 1073 sec (for the ) up to 15 min (for the neutron). For a given type of
interaction, the decay generally proceeds more rapidly the larger the mass dif-
ference between the original particle and the d&ay products, just as a ball rolls
faster down a steeper hill. There are exceptions: #* — u* + »,, for example, is
faster by a factor of 10* than 7+ — ¢* + »,, but such cases demand special
explanations. It is this kinematic effect that accounts for the enormous range in
weak interaction lifetimes. In particular, the proton and electron together are so

* The lifetime 7 is related to the half-life ¢, by the formula ¢,, = (In 2)r = 0.6937. The half-
life is the time it takes for half the particles in a large sample to disintegrate (see Ch. 6, Sect. 6.1).
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close to the neutron’s mass that the decay n — p* + e~ + v, barely makes it at
all, and the lifetime of the neutron is greater by far than that of any other unstable
particle. Experimentally, then, there is a vast separation in lifetime between
strong and electromagnetic decays (a factor of about 10 million), and again
between electromagnetic and weak decays (a factor of at least a thousand). Indeed,
particle physicists are so used to thinking in terms of 10~2* sec as the “normal”
unit of time that the handbooks generally classify anything with a lifetime greater
than 10~ sec or so as a “stable” particle!* ®

Now, what about the conservation laws which, as I say, permit certain
reactions and forbid others? To begin with there are the purely kinematic con-
servation laws—conservation of energy and momentum (which we shall study
in Chapter 3) and conservation of angular momentum (which comes in Chapter
4). The fact that a particle cannot spontaneously decay into particles heavier
than itself is actually a consequence of conservation of energy (although it may
seem so “obvious” as to require no explanation at all). The kinematic conser-
vation laws apply to all interactions—strong, electromagnetic, weak, and for
that matter anything else that may come along in the future—since they derive
from special relativity itself. However, our concern right now is with the dynam-
ical conservation laws that govern the three relevant interactions. Ten years ago
I would simply have stated them as empirical rules coming from experiment,
which you just have to memorize. It is in that spirit that we encountered them
in Chapter 1. But now that we have a workable model for each of the basic
forces, it becomes a question of examining the fundamental vertices:

q e I q
g Y W,z W,z
q e ! q
Strong Electromagnetic Weak

Since all physical processes are obtained by sticking these together in elaborate
combinations, anything that is conserved at each vertex must be conserved for
the reactions as a whole. So, what do we have?

1. Conservation of charge: All three interactions, of course, conserve electric
charge. In the case of the weak interactions the lepton (or quark) that comes out
may not have the same charge as the one that went in, but if so, the difference
is carried away by the W.

* Incidentally, 1072 sec is about the time it takes a light signal to cross a hadron (diameter
~10"" m). You obviously cannot determine the lifetime of such a particle by measuring the length
of its track [as we did for the Q~ in Problem 1.8(b)]. Instead, you make a histogram of mass mea-
surements, and invoke the uncertainty principle: AE At = h. Here AE = (Am)c?, and Af = 7, 50
we get

h
T =
(Am)c?

Thus the spread in mass is a measure of the particle’s lifetime.
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2. Conservation of color: The electromagnetic and weak interactions do
not affect color. At a strong vertex the quark color does change, but the difference
is carried off by the gluon. (The direct gluon-gluon couplings also conserve color.)
However, since naturaily occurring particles are always colorless, the observable
manifestation of color conservation is pretty trivial: zero in, zero out.

3. Conservation of baryon number: In all the primitive vertices, if a quark
goes in, a quark comes out, so the total number of quarks present is a constant.
In this arithmetic we count antiquarks as negative, so that, for example, at the
vertex ¢ + ¢ — g the quark number is zero before and zero after. Of course, we
never see individual quarks, only baryons (with quark number 3), antibaryons
(quark number —3), and mesons (quark number zero). So, in practice, it is more
convenient to speak of the conservation of baryon number (4 = 1 for baryons,

= —l for antibaryons, and A = 0 for everything else). The baryon number is
just 1 the quark number. Notice that there is no analogous conservation of
meson number; since mesons carry zero quark number, a given collision or
decay can produce as many mesons as it likes, consistent with conservation of
energy. .
4. Electron number, muon number, and tau number: The strong forces do
not touch leptons at all; in an electromagnetic interaction the same particle
comes out (accompanied by a photon) as went in; and the weak interactions
only mix together leptons from the same generation. So, the electron number,
muon number, and tau number are all conserved. If it weren’t for Cabibbo
mixing, there would be a similar conservation of generation type for quarks
(upness-plus-downness, strangeness-plus-charm, and beauty-plus-truth), but the
fact that the generations are skewed in the weak interactions spoils things, and
there is no hadronic analog to conservation of the individual lepton numbers.

5. Approximate conservation of flavor: So far, all the conservation laws we
have considered are absolute, in the sense that they hold for all three interactions,
as presently understood. An observed violation of any of them would be big
news, calling for a major overhaul in our view of the subatomic world. But what
about quark flavor? Flavor is conserved at a strong or electromagnetic vertex,
but not at a weak vertex, where an up quark may turn into a down quark or a
strange quark, with nothing at ail picking up the lost upness or supplying the
“gained” downness or strangeness. Because the weak forces are so weak, we say
that the various flavors are approximately conserved. In fact, as you may re-

that lad £2all_AA -
member, it was p"‘msely this upi}rGXLu.J.atu conservation that led Gell-Mann to

introduce the notion of strangeness in the first place. He “explained” the fact
that strange particles are always produced in pairs:

7 (dit) + p*(uud) — K*(us) + Z7(dds) 2.7)
for instance, but
7 (dit) + p*(uud) - w*(ud) + = (dds) (2.8)

by arguing that the latter violates conservation of strangeness. (Actually, this is
a possible weak interaction, but it will never be seen in the laboratory, because
it must compete against enormously more probable strong processes that do
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conserve strangeness.) In decays, however, the nonconservation of strangeness
is very conspicuous, because for many particles this is the only way they can
decay; there is no competition from strong or electromagnetic processes. The
A, for instance, is the lightest strange baryon; if it is to decay, it must go to »
(or p) plus something. But the lightest strange meson is the K, and # (or p)
plus K weighs substantially more than the A. If the A decays at all (and it
does, as we know: A — p* + n~ 64% of the time; and A — n + 7° 36% of the
time), then strangeness cannot be conserved, and the reaction must proceed
by the weak interaction. By contrast, the A° (with a strangeness of zero) can
go to p© + 7 or n + 7 by the strong interaction, and its lifetime is accordingly
much shorter.

6. The OZI Rule: Finally, I must tell you about one very peculiar case
that has been on my conscience since Chapter 1. I have in mind the decay of
the psi, which, you will recall, is a bound state of the charmed quark and its
antiquark: ¥ = ¢ The y has an anomalously long lifetime (~107%° sec); the
question is, why? It has nothing to do with conservation of charm; the net charm
of the psi is zero. The ¢ lifetime is short enough so that the decay is clearly due
to the strong interactions. But why is it a thousand times slower than a strong
decay “ought” to be? The explanation (if you call it that) goes back to an old
observation by Okubo, Zweig, and lizuka, known as the “OZI rule.” These
authors were puzzled by the fact that the ¢ meson (whose quark content, ss,
makes it the strange analog to the ) decays much more often into two K’s than
into three 7’s (the two pion decay is forbidden for other reasons, which we will
come to in Chapter 4), in spite of the fact that the three pion decay is energetically
favored (the mass of two K’s is 990 MeV/c?; three 7’s weigh only 415 MeV/c?).
In Figure 2.4, we see that the three-pion diagram can be cut in two by snipping
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Figure 2.4 The OZI rule: If the diagram can be cut in two by slicing only gluon lines
(and not cutting open any external particles), the process is Suppressed.
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only gluon lines. The OZI rule states that such processes are “suppressed.” Not
absolutely forbidden, mind you, for the decay ¢ — 37 does in fact occur, but
far less likely than one would otherwise have supposed. The OZI rule is related
to asymptotic freedom, in the following sense: In an OZI-suppressed diagram
the gluons must be “hard” (high energy), since they carry the energy necessary
to make the hadrons into which they fragment. But asymptotic freedom says
that gluons couple weakly at high energies (short ranges). By contrast, in OZI-
allowed processes the gluons are typically “soft” (low energy), and in this regime
the coupling is strong. Qualitatively, at least, this accounts for the OZI rule. (The
quantitative details will have to await a more complete understanding of QCD.)

But what does all this have to do with the y? Well, presumably the same
rule applies, suppressing y — 37, and leaving the decay into two charmed D
mesons (analogs to the K, but with the charmed quarks in place of the strange
quarks) as the favored route. Only there’s a new twist in the  system, for the
D’s turn out to be too heavy: A pair of D’s weighs more than the . So the decay
Yy — D* + D™ (or D° + D°) is kinematically forbidden, while ¢ — 3« is OZI
suppressed, and it is to this happy combination that the y owes its unusual
longevity.

2.6 UNIFICATION SCHEMES

At one time electricity and magnetism were two distinct subjects, the one dealing
with pith balls, batteries, and lightning; the other with lodestones, bar magnets,
and the North Pole. But in 1820 Oersted noticed that an electric current could
deflect a magnetic compass needle, and 10 years later Faraday discovered that
a moving magnet could generate an electric current in a loop of wire. By the
time Maxwell put the whole theory together in its final form, electricity and
magnetism were properly regarded as two aspects of a single subject: electro-
magnetism.

Einstein dreamed of going a step further, combining gravity with electro-
dynamics in a single unified field theory. Although this program was not suc-
cessful, a similar vision inspired Glashow, Weinberg, and Salam to join the weak
and electromagnetic forces. Their theory starts out with four massless mediators,
but, as it develops, three of them acquire mass (by the so-called Higgs mechanism),
becoming the ¥ ’s and the Z, while one remains massless: the photon. Although
experimentally a reaction mediated by W or Z is quite different from one me-
diated by the v, if the GWS theory is right they are all manifestations of a single
electroweak interaction. The relative weakness of the weak force is attributable
to the enormous mass of the intermediate vector bosons; its intrinsic strength is
in fact somewhat greater than that of the electromagnetic force, as we shall see
in Chapter 10.

Beginning in the early seventies, many people have been working on the
obvious next step: combining the strong force (in the form of chromodynamics)
with the electroweak force (a la GWS). Several different schemes for implementing
this grand unification are now on the table, and although it is too soon to draw



2.6 UNIFICATION SCHEMES 77

any definitive conclusions, some of the early results are promising. You will
recall that the strong coupling constant a; decreases at short distances (which is
to say, for very high-energy collisions). So too does the weak coupling e, but
at a slower rate. Meanwhile, the electromagnetic coupling constant, a,, which
is the smallest of the three, increases. Could it be that they all converge to a
common limiting value, at extremely high energy? (See Fig. 2.5.) Such is
the promise of the grand unified theories (GUTs). Indeed, from the functional
form of the running coupling constants it is possible to estimate the energy at
which this unification occurs: around 10'> GeV. This s, of course, astronomically
higher than any currently accessible energy (remember, the mass of the Z is
90 GeV/c?). Nevertheless, it is an exciting idea, for it means that the observed
difference in strength among the three interactions is an “accident” resulting
from the fact that we are obliged to work at low energies, where the unity of
the forces is obscured. If we could just get in close enough to see the “true”
strong, electric, and weak charges, without any of the screening effects of vac-
uum polarization, we would find that they are all equal. How nice!

Another suggestion of the GUTs is that the proton may be unstable, al-
though its half-life is fantastically long (at least 10*° times the age of the universe).
It has often been remarked that conservation of charge and color are in a sense
more “fundamental” than the conservation of baryon number and lepton num-
ber, because charge is the “source” for electrodynamics, and color for chro-
modynamics. If these quantities were not conserved, QED and QCD would have
to be completely reformulated. But baryon number and lepton number do not
function as sources for any interaction, and their conservation has no deep dy-
namical significance. In the grand unified theories new interactions are contem-
plated, permitting decays such as

pr—et+7° or pt—y, +7" (2.9)

in which baryon number and lepton number change. Several major experiments
are now under way to search for these proton decays. So far, the results are
negative.’

If grand unification works, all of elementary particle physics will be reduced
to the action of a singie force. The final step, then, will be to bring in gravity,
vindicating at last Einstein’s dream. Indeed, many theorists are already working

.. Figure 2.5 Evolution of the three fun-
E  damental coupling constants.
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on this, the ultimate unification. But it is probably safe to say that a detailed
theory 1s still years off—after all, we hardly know how to carry out the most
rudimentary calculations in chromodynamics, and here we are speculating about
a theory two generations more sophisticated!
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PROBLEMS

2.1.

2.2.

2.3.

Calculate the ratio of the gravitational attraction to the electrical repulsion between
two stationary electrons. (Do I need to tell you how far apart they are?)

Sketch the lowest-order Feynman diagram representing Delbruck scattering:
v + v — v + v. (This process, the scattering of light by light, has no analog in classi-
cal electrodynamics.)

Draw all the fourth-order (four vertex) diagrams for Compton scattering. (There
are 17 of them; disconnected diagrams don’t count.)

2.4. Determine the mass of the virtual photon in each of the lowest-order diagrams for

Bhabha scattering (assume the electron and positron are at rest). What is its velocity?
(Note that these answers would be impossible for rea/ photons.)

2.5. (a) Which decay do you think would be more likely,

T —A+7mT or E —-on+n

Explain your answer, and confirm it by looking up the experimental data.
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2.7.

2.8.

2

6.

9.

=

(b) Which decay of the D°(ciz) meson is more likely,
D'— K™ + 7, Do +x%, or DP—K'+x

Which is Jeast likely? Draw the Feynman diagrams, explain your answer and
check the experimental data. (One of the successful predictions of the Cabibbo/
GIM/KM model was that charmed mesons should decay preferentially into
strange mesons, even though energetically the 27 mode is favored.)

(¢) How about the “beautiful” (B) mesons? Should they go to the D’s, K’s, or ’s?
How about “truthful” mesons?

Draw all the lowest-order diagrams contributing to the process e* + ¢ — W™
+ W~. [One of them involves the direct coupling of Z to W ’s and another the
coupling of v to W’s, so if a positron-electron collider is ever built with sufficient
energy to make two W’s, these interactions will be directly observable.]

Examine the following processes, and state for each one whether it is possible or
impossible, according to the Standard Model (which does not include GUTs, with
their potential violation of the conservation of lepton number and baryon number).
In the former case, state which interaction is responsible—strong, electromagnetic,
or weak; in the latter case cite a conservation law that prevents it from occurring.
(Following the usual custom, I will not indicate the charge when it is unambiguous,
thus v, A, and # are neutral; p is positive, e is negative; etc.)

@ p+p—at +a° b) n— v+

(© - A+ 7° d) Z —n+n

(e et +e —ut+pu ) g —e +7,

(@ A*t—p+a° () v.+p—n+et

(i) e+p—v.+n° G) p+rp—Zt+n+ K+ 7+ 2°
k) p—e +y M p+p—op+p+p+p
mn+ap—at+a +a° m) ™" +n—>7 +p

(0) K- -7 +7° (p) Z*+n—Z +p

(@ Z°— A+~ ) EE—-A+7

s) E°—p+ 7 t m~+p—A+K°

(w) 7 — v+« (V) T —>n+e+v,

Some decays involve two (or even all three) different forces. Draw possible Feynman
diagrams for the following processes:

(_a) K+—’p++v#+'y

(b) Z-—p+y

What interactions are involved? (Both these decays have been observed, by the
way.)

The upsilon meson, bb, is the bottom-quark analog to the ¥, ¢¢ Its mass is 9460
MeV/c?, and its lifetime is 1.5 X 1072 sec. From this information, what can you
say about the mass of the B meson, ub? (The observed mass is 5270 MeV/c2)

The ' meson, at 3685 MeV/c?, has the same quark content as the ¥ (i.e., ¢¢). Its
principal decay mode is ' — ¥ + " + 7. Is this a strong interaction? Is it OZI-
suppressed? What lifetime would you expect for the ¢'? (The observed value is

3 X 107! sec.)






Chapter 3

—

In this chapter I summarize the basic principles, notation, and terminology
of relativistic kinematics. This is material you must know cold in order to
understand Chapters 6 through 11 (it is not needed for Chapters 4 and 5,
however, and if you prefer you can read them first). Although the treatment
is reasonably self-contained, I do assume that you have encountered special
relativity before—if not, you should pause here and read the appropriate
chapter in any introductory physics text before proceeding. If you are already
quite familiar with relativity, this chapter will be an easy review—but read
through it anyway because some of the notation may be new to you.

3.1 LORENTZ TRANSFORMATIONS

According to the special theory of relativity,’ the laws of physics apply just as
well in a reference system moving at constant velocity as they do in one at rest.
An embarrassing implication of this is that there’s no way of telling which system
(if any) is at rest, and hence there is no way of knowing what “the” velocity of
any other system might be. So perhaps I had better start over. Ahem.
According to the special theory of relativity,’ the laws of physics are equally

valid in all jnortinl refarence cucteme. An inertial system 1S one in which Newton’s
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first law (the law of inertia) is obeyed: objects keep moving in straight lines at
constant speeds unless acted upon by some force.* It’s easy to see that any two
inertial systems must be moving at constant velocity with respect to one another,
and conversely, that any system moving at constant velocity with respect to an
inertial system is itself inertial.

* If you are wondering whether a freely falling system in a uniform gravitational field is
“inertial,” you know more than is good for you. Let’s just keep gravity out of it.

81
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Imagine, then, that we have two inertial frames, S and §’, with S’ moving
at uniform velocity v (magnitude v) with respect to S (S, then, is moving at
velocity —v with respect to S’). We may as well lay out our coordinates in such
a way that the motion is along the common x/x’ axis (Fig. 3.1), and set the
master clocks at the origin in each system so that both read zero at the instant
the two coincide (that is, t = ¢’ = 0 when x = x’ = 0). Suppose, now, that some
event occurs at position (x, y, z) and time ¢ in S. Question: What are the spacetime
coordinates (x’, ', z') and ¢’ of this same event in S'? The answer is provided by
the Lorentz transformations:

~

. X' '=y(x—v)
1. =y
. z'=z (3.1)
v

v, t'= t— =X
1/( c2)

1

where 0% Vl—:1:2/c2

The inverse transformations, which take us back from S’ to .S, are obtained by
simply changing the sign of v (see Problem 3.1):

N

fl

(3.2)

1. x=~(x"+ o)
i, y=y

m'. z=1z (3.3)
v, t= y(z'+%x')

The Lorentz transformations have a number of immediate consequences,
of which I mention briefly the most important:

1. The relativity of simultaneity: If two events occur at the same time in
S, but at different locations, then they do not occur at the same time in S’
Specifically, if t; = ¢5, then

~s1})
L4

ty=tp+— (Xg — Xy) (3.4)
c

> Y

z z'/ Figure 3.1 The inertial systems S and §".
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(see Problem 3.2). Events that are simultaneous in one inertial system, then, are
not simultaneous in others.

2. Lorentz contraction: Suppose a stick lies on the x' axis, at rest in §". Say
one end is at the origin (x’ = 0) and the other is at L' (so its length in S’ 1s L').
What is its length as measured in S? Since the stick is moving with respect to S,
we must be careful to record the positions of its two ends at the same instant,
say ¢ = 0. At that moment the left end is at x = 0 and the right end, according
to equation (i), is at x = L'/y. Thus the Iéngth of the stick is L = L'/, in §.
Notice that v is always greater than or equal to 1. It follows that a moving object
is shortened by a factor of v, as compared with its length in the system in which
it is at rest. Notice that Lorentz contraction only applies to lengths along the
direction of motion; perpendicular dimensions are not affected.

3. Time dilation: Suppose the clock at the origin in S ticks off an interval
T"; for simplicity, say it runs from ¢/ = 0 to ¢’ = T". How long is this period as
measured in S? Well, it begins at ¢ = 0, and it ends when ¢’ = T" at x’ = 0, so
[according to eq. (iv')] ¢ = v T". Evidently the clocks in S'tick off a Jonger interval,
T = vT", by that same factor of v; or, put it the other way around: moving clocks
run slow. Unlike Lorentz contraction, which is only indirectly relevant to ele-
mentary particle physics, time dilation is a commonplace in the laboratory. For
in a sense every unstable particle has a built-in clock: whatever it is that tells the
particle when its time is up. And these internal clocks do indeed run slow when
the particle i§ moving. That is to say, a moving particle lasts longer (by a factor
of v) than it would at rest.* (The tabulated lifetimes are, of course, for particles
at rest) In fact, the cosmic ray muons produced in the upper atmos-
phere would never make it to ground level were it not for time dilation (see
Problem 3.4).

4. Velocity addition. Suppose a particle is moving in the x direction at
speed u’, with respect to S’. What is its speed, u, with respect to S? Well, it travels
a distance Ax = y(Ax' + v At') in a time At = y[At' + (v/c?)AX], sO

Ax  Ax'+vA’ (AX/AU)+ v
At A+ (/e Ax 1+ (v/cPNAXAY)

But Ax/At = u, and Ax'/At' = U/, so

u+v 35
U= ———- .
1 + (u'v/c?) (3-3)
The numerator represents the classical answer to the same question, 4 = u' + v;
the denominator introduces a relativistic correction that is small unless %’ and
v are close to ¢. Notice that if ¥’ = ¢, then u = ¢ also: the speed of light is the
same in all inertial systems.

* Actually, the disintegration of an individual particle is a random process; when we speak of
a “lifetime” we really mean the average lifetime of that particle type. When I say that a moving
particle lasts longer, I really mean that the average lifetime of a group of moving particles is longer.
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3.2 FOUR-VECTORS

It is convenient at this point to introduce some simplifying notation. We define
the position-time four-vector x*, p = 0, 1, 2, 3, as follows:

x% =g, x!=x x2=y, x3=7z (3.6)

In terms of x* the Lorentz transformations take on a more symmetrical ap-
pearance:

x” = y(x® - px")

x" = y(x'— Bx°
fo — 12 B ) (37)
x3r — x3
v
where g= p; (3.8)
More compactly:
3
=2 Ax w=0,1,23) (3.9)
v=0

The coefficients A% may be regarded as the elements of a matrix A:

y —8 0 0

- 0 0
A= gﬁ g L o (3.10)
0 0 0 1

(i.e., Ad = Al = v; A} = AY = —vB; A2 = A} = 1; and all the rest are zero). To
avoid writing lots of 2’s, we shall follow Einstein’s “summation convention,”
which says that repeated Greek indices (one as subscript, one as superscript) are
to be summed from 0 to 3. Thus equation (3.9) becomes, finally,*

X" = Abx? (3.11)

A special virtue of this tidy notation is that the same form describes Lorentz
transformations which are not along the x direction; in fact, the S and S’ axes
need not even be parallel; the A matrix is more complicated, naturally, but
equation (3.11) still holds. [On the other hand, there is no real loss of generality
in using expression (3.10), since we are always free to choose parallel axes, and
to align the x axis along the direction of v.]

* In an expression such as this the Greek letter used for the summation index, », is of course
completely arbitrary. The same goes for the index g, although it must match on the two sides of the
equation. Thus equation (3.11) could just as well be written x* = A{x*. Either expression stands for
the set of four equations:

x¥ = A + A% + AT 4+ A3
xV = A 4+ At + A+ AL
x¥ = A3 + Al + Adx? 4+ A
x¥ = APC + Al + Adx? 4+ AdS
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Although the individual coordinates of an event change, in accordance
with equation (3.11), when we go from S to ', there is a particular combination
of them that remains the same (Problem 3.7):

I = (XO)Z _ (xl)Z _ (x2)2 _ (x3)2 (x0r)2 _ (xll)2 _ (x2.')2 _ (x3r)2 (312)
Such a quantity, which has the same value in any inertial system, is called an
invariant. (In the same sense, the quantity r> = x? + y? + z* is invariant under
rotations.) Now, 1 would like to write this invariant in the form of a sum:
330 x*x* but unfortunately there are those three irritating minus signs. To

keep track of them, we introduce the metric, g,,, whose components can be
displayed as a matrix g:

I 0 0 0
1o -1 0o o

=10 0 -1 0 (3.13)
o 0 0 -1

(.., goo = 1; g1 = g22 = €33 = —1; all the rest are zero).* With the help of g,,,
the invariant / can be written as a double sum:

W XEXT = g, xtx” (3.14)

IIMu

=2z

Carrying things a step further, we define the covariant four-vector x, (index
down) as follows:

/ X, =g,x" (3.15)

(e, xo = x° x; = —x!, xo = —x2, x3 = —x?). To emphasize the distinction we
call the “original” four-vector x* (index up) a contravariant four-vector. The
invariant J can then be written in its cleanest form:

I=xx" (3.16)

All this will no doubt seem like monstrous notational overkill, just to keep track
of three minus signs, but it’s actually very simple, once you get used to it. (What’s
more, it generalizes nicely to non-Cartesian coordinate systems and to the curved

spaces encountered in general relativity, though neither of these is relevant to

ne hnrn 3\
Lo LiwW

The position-time four-vector x* is the archetype for all four-vectors. We
define a four-vector, a*, as a four-component object that transforms in the same
way x* does when we go from one inertial system to another, to wit:

= Ara’ (3.17)
with the same coefficients A%, To each such (contravariant) four-vector we as-

* | should warn you that some physicists define the metric with the opposite signs (—1, 1, 1,
1). It doesn’t matter much—if I is invariant, so too is —. But it does mean you must be on the
lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the convention in
equation (3.13).
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sociate a covariant four-vector a,, obtained by simply changing the signs of the
spatial components, or, more formally

o ﬂy

= 2 1R)
“u &S uld J.10)

{
\
Of course, we can go back from covariant to contravariant by reversing the signs
again:

a“' = g“yay (3.19)
where g are technically the elements in the matrix g~' (however, since our
metric is its own inverse, g** is the same as g,,). Given any two four-vectors, a*
and b*, the quantity

a*b, = a b* = a°° — a'b' — a?p* — a’*v’ (3.20)

is invariant (the same number in any inertial system). We shall refer to it as the
scalar product of a and b; it is the four-dimensional analog to the dot product
of two three-vectors (there is no four-vector analog to the cross product).* If you
get tired of writing indices, feel free to use the dot notation:

ab=alb (3.21)

However, you will then need a way to distinguish this four-dimensional scalar
product from the ordinary dot product of two three-vectors. The best way is to
be scrupulously careful to put an arrow over all three-vectors (except perhaps
the velocity, v, which, since it is not part of a four-vector, is not subject to
ambiguity). In this book, I use boldface for three-vectors. Thus

a-b=a"%"—a-b (3.22)
We also use the notation a? for the scalar product of a* with itself:
a’=a-a=(a’ — a* (3.23)
Notice, however, that a? need not be positive. Indeed, we can classify all four-
vectors according to the sign of a*:

If 92 > 0, a* 1s called timelike

WAL EIWAE LRI RL LRIV

If a® <0, a* is called spacelike (3.24)
If a®> = 0, a* is called lightlike

From veciors it is a short step to {ensors. a second-rank tensor, s, carries
two indices, has 4> = 16 components, and transforms with two factors of A:

s = ARA ST (3.25)

a third-rank tensor, t***, has three indices, 4*> = 64 components, and transforms
with three factors of A:

N = ABATAMROT (3.26)

* The closest thing is (a“b” — a’b*), but this is a second-rank fensor, not a four-vector (see
below).
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and so on. In this hierarchy a vector is a tensor of rank 1, and a scalar (invariant)
s a tensor of rank zero. We construct covariant and “mixed” tensors by lowering
mdices (at cost of a minus sign for each spatial index), for example

5% = gns™ 5w = 8u&aS® (3.27)

and so on. Notice that the product of two tensors is itself a tensor [(a*h”) is a
wensor of second rank; (¢*t"*) is a tensor of fourth rank; and so on.] Finally, we
can obtain from any tensor of rank # + 2 a “contracted” tensor of rank 7, by
samming like upper and lower indices. Thus s*, is a scalar; #, is a vector; @, #**
8 a second-rank tensor.

3.3 ENERGY AND MOMENTUM

Suppose you're driving down the highway, and pretend for the sake of argument
that you’re going at close to the speed of light. You might want to keep an eye
oun two different “times”: if you’re worried about making an appointment in
San Francisco, you should check the stationary clocks posted now and then
abong the side of the road. But if you’re wondering when would be an appropriate
ume to stop for a bite to eat, it would be more sensible to look at the watch on
vour wrist. For according to relativity, the moving clock (in this case, your watch)
8 running slow (relative to the “stationary” clocks on the ground), and so too
8 vour heart rate, your metabolism, your speech and thought, everything. Spe-
afically, while the “ground” time advances by an infinitesimal amount dt, your
own (or proper) time advances by the smaller amount dr:

dr z/% (3.28)

At normal driving speeds, of course, v is so close to 1 that df and dr are essentially
wentical, but in elementary particle physics the distinction between laboratory

ame (read off the clock on the wall) and particle time (as it would appear on
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the particle’s watch) is crucial. Although we can always get from one to the other,
using equation (3.28), in practice it is usually most convenient to work with
proper time, because 7 is invariant. All observers can read the particle’s watch,
and at any given moment they must all agree on what it says, even though their
own clocks may differ from 1t and from one another.

When we speak of the “velocity” of a particle (with respect to the labo-
ratory), we mean, of course, the distance it travels (measured in the lab frame)
divided by the time it takes (measured on the lab clock):

dx
V= —

r (3.29)

But in view of what has just been said, it is also useful to introduce the “proper”
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velocity, n, which is the distance traveled (again, measured in the lab frame)
divided by the proper time:*

| 8-

= 3.30
n=— (3.30)

According to equation (3.28), the two velocities are related by a factor of ~v:
n=yv (3.31)

However, 5 is much easier to work with, for if we want to go from the lab system,
S, to a moving system, S, both the numerator and the denominator in (3.29)
must be transformed [leading to the cumbersome velocity addition rule (3.5)],
whereas in equation (3.30) only the numerator transforms; dr, as we have seen,
is invariant. In fact, proper velocity is part of a four-vector:

dx*
= i (3.32)
whose zeroth component 1s
0
t
oo d (3.33)
dr  (1/vy)dt
Thus 7 = v(C, Uy, Uy, Uz) (3.34)
Incidentally, n,n* should be invariant, and it is:
nat = Y c* — v2 — vj — v)) = ¥ — v¥/c?) = ¢ (3.35)

They don’t make ’em more invariant than that!

Classically, momentum is mass times velocity. We would like to carry this
over in relativity, but the question arises: Which velocity should we use—ordinary
velocity or proper velocity? Classical considerations offer no clue, for the two
are equal in the nonrelativistic limit. In a sense, it’s just a matter of definition,
but there is a subtle and compelling reason why ordinary velocity would be a

P TJhaennn mrmtrnaze vralanit A Alnirna Tha rmAint thic' Tf wa
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defined momentum as v, then the law of conservation of momentum would
be inconsistent with the principle of relativity (if it held in one inertial system,
it would nor hold in other inertial systems). But if we define momentum as mn,
then conservation of momentum is consistent with the principle of relativity (if
it holds in one inertial system, it automatically holds in all inertial systems). I’ll
let you prove this for yourself in Problem 3.10. Mind you, this doesn’t guarantee

* Proper velocity is a hybrid quantity, in the sense that distance is measured in the /ab frame,
whereas time is measured in the particle frame. Some people object to the adjective “proper” in this
context, holding that this should be reserved for quantities measured entirely in the particle frame.
Of course, in its own frame the particle never moves at all—its velocity is zero. If my terminology
disturbs you, call 5 the *“four-velocity.” I should add that although proper velocity is the more con-
venient quantity to calculate with, ordinary velocity is still the more narural quantity from the point
of view of an observer watching a particle fly past.
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that momentum is conserved; that’s a matter for experiments to decide. But it
does say that if we’re hoping to extend momentum conservation to the relativistic
domain, we had better not define momentum as mv, whereas mn 1s perfectly
acceptable.

That’s a tricky argument, and if you didn’t follow it, try reading that last
paragraph again. The upshot is that in relativity, momentum is defined as mass
umes proper velocity:

p=my (3.36)
Since proper velocity is part of a four-vector, the same goes for momentum:
p* = my* (3.37)

The spatial components of p* constitute the (relativistic) momentum three-vector:

mv
p=vYmy= 1——1)2/6'2- (3.38)

Meanwhile, the “time” component is
P’ = yme (3.39)

For reasons that will appear in a moment, we define the “relativistic energy,”
E. as

mc?

V1 — v?/c?

The zeroth component of p*, then, is E/c. Thus energy and momentum together
make up a four-vector—the energy-momentum four-vector:

E=ymc?= (3.40)

E
pt = (; , Dx» Dy, pz) (3.41)
Incidentally, from equations (3.35) and (3.37) we ha)re
E2
p.D* = o p’ = m*c? (3.42)

which, again, is manifestly invariant.
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the nonrelativistic regime (v < ¢), but the same cannot be said for relativistic
energy (3.40). To see how this quantity comes to be called “energy,” we expand

the radical in a Tavlor series:

+BSrivial 121§ A8 aAVWi Shal

1?34 1 3 vt
£=mc(1+——+ +---)=mcz+—mv2+—m—+--- 3.43

2¢2 8¢t 2 8 c? (3-43)
Notice that the second term here corresponds to the classical kinetic energy,
while the leading term (m¢?) is a constant. Now you may recall that in classical
mechanics only changes in energy are physically significant—you can add a
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constant with impunity. In this sense the relativistic formula is consistent with
the classical one, in the limit v <€ ¢ where the higher terms in the expansion are
negligible. The constant term, which survives even when v = 0, is called the rest
energy;

R = mc? (3.44)

the remainder, which is energy attributable to the motion of the particle, is the
relativistic kinetic energy:

) O I T
T=mc(y-1)=z-mr+-m—+--- (3.45)
2 8 ¢

(Notice that I have never mentioned relativistic mass in all this. It is a superfluous
quantity that serves no useful function. In case you encounter it, the definition
is Mg = ym; it has died out because it differs from E only by a factor of ¢
Whatever can be said about m could just as well be said about E, for instance,
the “conservation of relativistic mass” is nothing but conservation of energy,
with a factor of ¢? divided out.)

In classical mechanics there is no such thing as a massless particle; its
momentum (mv) would be zero, its kinetic energy (3 mv?) would be zero, it
could sustain no force, since F = ma—it would be a dynamical cipher. At first
glance you might suppose that the same would be true in relativity, but a careful
inspection of the formulas

mv mc?

P = —— E =

Vi —v¥/c?’ V1 — v?/c?

reveals a loophole: When m = 0 the numerators are zero, but if v = ¢, the
denominators also vanish, and these equations are indeterminate (0/0). So it is
just possible that we could allow m = 0, provided the particle always travels at
the speed of light. In this case equations (3.46) will not serve to define £ and p;
nevertheless, equation (3.42) presumably still applies, so that

(3.46)

E = |plc (3.47)
for massless particles. Personally, I would regard this “argument” as a joke, were
it not for the fact that at least two types of massless particles (the photon and
the neutrinos) are known to exist in nature. They do indeed travel at the speed
of light, and their energy and momentum are related by equation (3.47). So
evidently we must take the loophole seriously. You may well ask: If equations
(3.46) do not define p and E, what does determine the momentum and energy
of a massless particle? Not the mass (that’s zero by assumption); not the speed
(that’s always ¢). How, then, does a photon with an energy of 2 eV differ from
a photon with an energy of 3 eV? Relativity offers no answer to this question,
but curiously enough guantum mechanics does, in the form of Planck’s formula:

E=hv (3.48)
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Itis the frequency of the photon that determines its energy and momentum: The
2 eV photon is red, and the 3 eV photon is purple!

3.4 COLLISIONS

The reason for introducing energy and momentum is, of course, that these quan-
uties are conserved in any physical process. In relativity, as in classical mechanics,
the cleanest application of these conservation laws is to collisions. Imagine first
a classical collision, in which object 4 hits object B (perhaps they are both carts
on an air table), producing objects C and D. (See Fig. 3.2.) Of course, C and D
might be the same as 4 and B; but we may as well allow that some paint (or
whatever) rubs off 4 onto B, so that the final masses are not the same as the
original ones. (We do assume, however, that 4, B, C, and D are the only actors
m the drama; if some wreckage, W, is left at the scene, then we would be talking
about a more complicated process: A + B — C + D + W.) By its nature, a
collision is something that happens so fast that no external force, such as gravity,
or friction with the track, has an appreciable influence. Classically, mass and
momentum are always conserved in such a process; kinetic energy may or may
oot be conserved.

Classical Collisions

1. Mass is conserved, m, + mp = mc + mp.

2. Momentum 1s conserved, p, + pz = Pc + Pb-
3. Kinetic energy may or may not be conserved.

In fact, we may distinguish three types of collisions: “sticky” ones, in which the
kinetic energy decreases (typically, it is converted into heat); “explosive” ones,
wn which the kinetic energy increases (for example, suppose 4 has a compressed
spring on its front bumper, and the catch is relea/sed in the course of the collision
so that spring energy i1s converted into kinetic energy); and elastic ones, in which
the kinetic energy is conserved.

Types of Collisions (Classical)

(a) Sticky: Kinetic energy decreases, T4y + T > T¢c + Tp.
(b) Explosive: Kinetic energy increases, T4 + T < Tc + Tp.
(c) Elastic: Kinetic energy conserved, Ty + Tg = T+ Tp.

co””
A \D Do\

8 Figure 3.2 A collision in which

Before After A+B—C+ D.
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In the extreme case of type (a), the two particles stick together, and there is really
only one final object: 4 + B — C. In the extreme case of type (b), a single object
breaks in two: A — C + D (in the language of particle physics, 4 decays into
C + D).

In a relativistic collision, energy and momentum are always conserved. In
other words all four components of the energy-momentum four-vector are con-
served. As in the classical case, kinetic energy may or may not be conserved.

Relativistic Collisions

1. Energy is conserved, E4 + Eg = Ec + Ep.

2. Momentum is conserved p4 + ps = pc + Pp-
3. Kinetic energy may or may not be conserved.

Again, we may classify collisions as sticky, explosive, or elastic, depending on
whether the kinetic energy decreases, increases, or remains the same. Since the
total energy (rest plus kinetic) is always conserved, it follows that rest energy
(and hence also mass) increases in a sticky collision, decreases in an explosive
collision, and is unchanged in an elastic collision.

Types of Collisions (Relativistic)

(a) Sticky: Kinetic energy decreases, rest energy and mass increase.
(b) Explosive: Kinetic energy increases, rest energy and mass decrease.
(¢) Elastic: Kinetic energy, rest energy, and mass are conserved.

Please note: Except in elastic collisions, mass is not conserved* conversely, if
mass is conserved, the collision is elastic. In an explosive collision (or a particle
decay), rest energy is converted into kinetic energy (or, in the absurd language
of the popular press, infuriating to anyone with the slightest respect for dimen-
sional consistency, ‘“mass is converted into energy”).

In spite of a certain structural parallel between the classical and relativistic
analyses, there is a striking difference in the interpretation of inelastic collistons.
In the classical case we say that energy is converted from kinetic form to some
“internal” form (heat energy, spring energy, etc.), or vice versa. In the relativistic
analysis we say that it goes from kinetic energy to rest energy, or vice versa. How
can these possibly be consistent? After all, relativistic mechanics is supposed to
reduce to classical mechanics in the limit v < ¢. The answer is that all “internal”
forms of energy are reflected in the rest energy of an object. A hot potato weighs
more than a cold potato; a compressed spring weighs more than a relaxed spring.
On the macroscopic scale, rest energies are enormously greater than internal
energies, so these mass differences are utterly negligible in everyday life, and
very small even at the atomic level. Only in nuclear and particle physics are
typical internal energies comparable to typical rest energies. Nevertheless, in
principle, whenever you weigh an object, you are measuring not only the masses
of its constituent parts, but all of their interaction energies as well.

* In the old terminology we would say that relativistic mass is conserved, but rest mass is not.
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3 3
—gC EC
m . - -
m m #  Figure 3.3 Sticky collision of two equal
Before After  masses (Example 3.1).

3.5 EXAMPLES AND APPLICATIONS

Solving problems in relativistic kinematics is as much an art as a science. Although
the physics involved is minimal—nothing but conservation of energy and con-
servation of momentum—the algebra can be formidable. Whether a given prob-
lem takes two lines or seven pages depends a lot on how skillful and experienced
you are at manipulating the tools and the tricks of the trade. I now propose to
work a few examples, pointing out as I go along some of the labor-saving devices
that are available to you.?

EXAMPLE 3.1
Two lumps of clay, each of mass m, collide head-on at ¢ (Fig. 3.3). They
stick together. Question: What is the mass M of the final composite lump?
Question: What is the mass, M of the final composite lump?

Solution. Conservation of energy says E; + E, = E,;. Conservation of
momentum says p; + p> = pu- In this case conservation of momentum is
trivial: p; = —p», so the final lump is at rest (which was obvious from the
start). The initial energies are equal, so conservation of energy yields
2mc? 5
Mc* =2E, = —= (2mc?)
Vi —(3/5° 4
Conclusion: M = 3m. Notice that this is greazer than the sum of the
initial masses; in sticky collisions kinetic energy is converted into rest energy,
so the mass increases.

A particle of mass M, initially at rest, decays into two pieces, each of mass
m (Fig. 3.4). Question: What is the speed of each piece as it flies off?

Solution. This is, of course, the reverse of the process in Example 3.1.
Conservation of momentum just says that the two lumps fly off in opposite
directions at equal speed/é. Conservation of energy requires that

2m
M=-—==ox, so v=cVl - Q2m/M)
V1 — v?/c?
v v
M & m Figure 3.4 A particle decays into two

Before After equal pieces. (Example 3.2).
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This answer makes no sense unless M exceeds 2m; there has to be at least
enough rest energy available to cover the rest energies in the final state

{anv extrai c fina* 1t fan l'\n cnalad nin In tha form onf Linatie nnnfnn Wa
w@any exira 1s nng, 1t €an SCaxkeq Up In e Iorm O <anguc ene IgY). ¥¥<

say that M = 2m is the threshold for the process M — 2m to occur. The
deuteron, for example, is below the threshold for decay into proton plus
neutron (my = 1875.6 Mev/c%;, m, + m, = 1877.9 MeV/c?), and therefore
is stable. A deuteron can be pulled apart, but only by pumping enough
energy into the system to make up the difference. (If it puzzles you that a
bound state of p and » should weigh /ess than the sum of its parts, the
point is that the binding energy of the deuteron, which, like all internal
energy, is reflected in its rest mass, is negative. Indeed, for any stable bound
state the binding energy must be negative; if the composite particle weighs
more than the sum of its constituents, it will spontaneously disintegrate.)

EXAMPLE 3.3

A pion at rest decays into a muon plus a neutrino (Fig. 3.5). Question:
What is the speed of the muon?

Solution. Conservation of energy requires E, = E, + E,. Conservation
of momentum gives p, = p, + p,; but p, =0, so p, = —p,. Thus the muon
and the neutrino fly off back-to-back, with equal and opposite momenta.

To proceed, we need a formula relating the energy of a particle to its
momentum; equation (3.42) does the job. [You might have been inclined
to solve equation (3.38) for the velocity, and plug the result into equation
(3.40). But that would be very poor strategy. In general, velocity is a bad
parameter to work with, in relativity. Better to use equation (3.42), which
takes you directly back and forth between E and p.]

Suggestion 1. To get the energy of a particle, when you know
its momentum (or vice versa), use the invariant

E? — p’c? = m?c? (3.49)
In the present case, then:
E, = m,c?
- _ A...2.2 , _2
E, =cVymi” + p,

E, = |p.lc = Ip,lc
Putting these into the equation for conservation of energy, we have

m.c? = cVmic? + p2 + Ip,lc

or (m.c — |pl)* = mic* + pl

, 7

™ / “" Figure 35 Decay of the charged pion
Before After (Example 3.3).
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Sotving for |p,|, we find

ms; — m?
=—r
p.| 2m

"

Meanwhile, the energy of the muon [from eq. (3.49)] is
mi + m? 2

E, = 2m,

u

Once we know the energy and momentum of a particle, it is easy to
find its velocity. If E = ymc? and p = ymv, dividing gives
p/E = v/c?

Suggestion 2. If you know the energy and momentum of a
particle, and you want to determine its velocity, use

v = pc*/E (3.50)
So the answer to our problem is
v, = ———-—m’z' —m, c
L omk + m?

Putting in the actual masses, I get v, = 0.271c.

There is nothing wrong with that calculation; it was a straightforward
and systematic exploitation of the conservation laws. But I want to show
you now a faster way to get the energy and momentum of the muon, by
using four-vector notation. [I should put a superscript x4 on all the four-
vectors, but [ don’t want you to confuse the spacetime index g with the
particle identifier g, so here, and often in the future, I will suppress the
spacetime indices, and use a dot to indicate the scalar product.] Conser-
vation of energy and momentum requires

De =Dy + Dy, OF D,=pDr— D,
Taking the scalar product of each side with itself, we obtain
p:=pi+D.—2p.p,

2

p2=0; pi=mi> p=mi% and p,-p, =

Therefore 0 = mic® + mic® — 2m,E,

from which E, follows immediately. By the same token
Dy = DPr— Dy

Squaring yields

mic? = mic® — 2m,E,
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But E, = |p,Ic = |p,lc, so
2m,|p,| = (M2 — ml)c

which gives us |p,|. In this case the problem was simple enough that the
savings afforded by four-vector notation are meager, but in more compli-
cated problems the benefits can be enormous.

Suggestion 3. Use four-vector notation, and exploit the
invariant dot product.

One reason the use of invariants is so powerful in this business is that we

are free to evaluate them in any inertial system we like. Frequently the laboratory
frame is not the simplest one to work with. In a typical scattering experiment,
for instance, a beam of particles is fired at a stationary target. The reaction under
study might be, say, p + p — whatever, but in the laboratory the situation 1is
asymmetrical, since one proton is moving and the other is at rest. Kinematically,
the process is much simpler when viewed from a system in which the two protons
approach one another with equal speeds. We call this the center-of-momentum
(CM) frame, because in this system the total (three-vector) momentum is zero.

EXAMPLE 34

The Bevatron at Berkeley was built with the idea of producing antiprotons,
by the reaction p + p— p + p + p + p. Thatis, a high-energy proton
strikes a proton at rest, creating (in addition to the original particles) a
proton-antiproton pair. Question: What is the threshold energy for this
reaction (i.e., the minimum energy of the incident proton)?

Solution. In the laboratory the process looks like Figure 3.6a; in the CM
frame, it looks like Figure 3.6b. Now, what is the condition for threshold?
Answer: just barely enough incident energy to create the extra two particles.
In the lab frame it is hard to see how we would formulate this condition,
but in the CM it is easy: All four final particles must be at rest, with no
nergy “wasted” in the form of kinetic energy. (We can’t have that in the

=3
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Before After
Figure 3.6 p+p— p+ p+ p+ p. (a) In the lab frame; (b) in the CM frame.
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lab frame, of course, since conservation of momentum requires that there
be some residual motion.)

Let phor be the total energy-momentum four-vector in the lab; it is
conserved, so it doesn’t matter whether we evaluate it before or after the
collision. We’ll do it before:

2
ptor = (7, 1, 0,0)
where E and p are the energy and momentum of the incident proton, and
m is the proton mass. Let p¥or be the total energy-momentum four-vector
in the CM. Again, we can evaluate it before or after the collision, this time
we’ll do 1t after:

p%rOT = (4mC, 05 05 0)

since (at threshold) all four particles are at rest. Now ptor # p¥ort, Ob-
viously, but the invariant products p,rorP4or and p,rorPor are equal:

5 2
(; + mc) — p? = (4mc)
Using the standard relation (3.49) to eliminate p?, and solving for E, we
find

E = Tmc?

Evidently, the incident proton must carry a kinetic energy at least six times
its rest energy, for this process to occur. (And in fact the first antiprotons
were discovered when the machine reached about 6000 MeV.)

This is perhaps a good place to emphasize the distinction between a con-
served quantity and an invariant quantity. Energy is conserved—the same value
after the collision as before—but it is not invariant. Mass is invariant—the same
in all inertial systems—Dbut it is not conserved. Some quantities are both invariant
and conserved; many are neither. As Example 3.4 indicates, the clever exploi-
tation of conserved and invariant quantities can save you a lot of messy algebra.
It also demonstrates that some problems are easier to analyse in the CM system,
whereas others may be simpler in the lab frame.

Suggestion 4. If a problem seems cumbersome in the lab
frame, try analyzing it in the CM system.

Even if you’re dealing with something more complicated than a collision
of two identical particles, the center-of-momentum (in which pror = 0) is still
a useful reference frame, for in this system conservation of momentum is trivial:
zero before, zero after. But you might wonder whether there is always a CM
frame. In other words, given a swarm of particles with masses m,, m;, ms, . . .,
and velocities v;, v2, v3, ..., does there necessarily exist an inertial system in
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which the total (three-vector) momentum is zero? The answer is yes; I will prove
it by finding the velocity of that frame and demonstrating that this velocity is
less than ¢. The total energy and momentum in the lab frame (.5) are

Eror = 2 yimic%; ProT = 2, YiMiVi (3.51)

i

Since p4ot is a four-vector, we can use the Lorentz transformations to get the
momentum in system S’, moving in the direction of pror with speed v

ETOT)

|D'T0T| = ’Y(|DTOT| -8

In particular, this momentum is zero if v is chosen such that

v_ Iprotlc _ |2 yimuvi
¢ Ertor 2 ymic

Now, the length of the sum of three-vectors cannot exceed the sum of their
lengths (this geometrically evident fact is known as the triangle inequality), so

v _ 2 vimi(vi/c)
2 yim;

~z

©

and since v; < ¢, we can be sure that v < ¢.* Thus, the CM system always exists,
and its velocity relative to the lab frame is given by

DTOTC

(3.52)

M Eror

It seems odd, looking back at the answer to Example 3.4, that it takes an
incident kinetic energy six times the proton rest energy to produce a p-p pair.
After all, we’re only creating 2mc? of new rest energy. This example illustrates
the inefficiency of scattering off a stationary target; conservation of momentum
forces you to waste a lot of energy as kinetic energy in the final state. Suppose
we could have fired the two protons at one another, making the laboratory itself

tha ™A oot Than 1+ 1A onifh
tiie LM S_ym.‘c‘lu Then it would suffice to give each proton a kinetic energy of

only mc?, one-sixth of what the stationary-target experiment requires. This re-
alization led, in the early 1970s, to the development of so-called colliding-beam
machines (see Fig. 3.7). Today, virtually every new machine in high-energy phys-
ics is a collider.

EXAMPLE 3.5
Suppose two identical particles, each with mass m and kinetic energy 7,
collide head-on. Question: What is their relative kinetic energy, 1" (i.e.,
the kinetic energy of one in the rest system of the other)?

* | am tacitly assuming that at least one of the particles is massive. If all of them are massless,
we may obtain v = ¢, in which case there is no CM system. For example, there is no CM frame for
a single photon.
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(a) {b)
Figure 3.7 Two experimental arrangements: (a) Colliding beams; (b) fixed target.

Solution. There are many ways to do this one. A quick method is to write
down the total four-momentum in the CM and in the lab

2E E' + mc?
Dhor = 7,0 , Dot = “‘—C""““ap

set (pror)® = (Phror)*

(25)2 (E + mcz)z s
RN — s — — p
c c
use equation (3.49) to eliminate p’

2E? = mcA(E' + mc?)

and express the answer in terms of 7 = £ — mc? and T' = E' — mc?

T’=4T(I+ T) (3.53)

2mc?

The classical answer would have been 7" = 4T, to which this reduces when
T < mc?. (In the rest system of B, A has, classically, twice the velocity, and
hence four times as much kinetic energy as in the CM.) Now, a factor of
4 1s some benefit, to be sure, but the relativisiic gain can be greater by far.
Colliding electrons with a laboratory kinetic energy of I GeV, for example,
would have a relative kinetic energy of 4000 GeV!

REFERENCES AND NOTES

1. There are many excellent textbooks on Special Relativity. I recommend J. H. Smith,
Introduction to Special Relativity (New York: Benjamin, 1967). For a fascinating
(but unorthodox) approach, see E. F. Taylor and J. A. Wheeler, Spacetime Physics
(San Francisco: Freeman, 1966).

2. If you want to go into this more deeply, I recommend R. Hagedorn, Relativistic
Kinematics (New York: Benjamin, 1964).

y,

3.1. Solve equation (3.1) for x, y, z, tin terms of x’, ), z/, ', and check that you recover
equation (3.3).
3.2. (a) Derive equation (3.4).
(b) According to clocks on the ground (system .S), streetlights .4 and B (situated 4
km apart) were both turned on at precisely 8:00 .M. Which one went on first
according to an observer on a train (system S'), which moves from 4 toward
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33.

34.

3.5.

3.6.

3.7.

38.

3.9.
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B at 2 the speed of light? How much later (in seconds) did the other light go
on? [Note: As always in relativity, we are talking here about what S’ observed,
aﬁ‘er correcting for the time it took the light to reach her, not what she actually

chinh wanld dananAd A~
saw \wuluu WouiaG GCpena on where she was located on the u.uu.l} 1

(a) How do volumes transform? Specifically, if a container has volume ¥V in its
own rest frame, S', what is its volume as measured by an observer in S, with
respect to which it is moving at speed v?

(b) How do densities transform? (If a container holds p’ molecules per unit volume
in its own rest frame, S’, how many molecules per unit volume does it carry
in §?)

Cosmic ray muons are produced high in the atmosphere (at 8000 m, say) and travel

toward the earth at very nearly the speed of light (0.998 c, say).

(a) Given the lifetime of the muon (2.2 X 107° sec), how far would it go before
disintegrating, according to prerelativistic physics? Would the muons make it
to ground level?

(b) Now answer the same question using relativistic physics. (Because of time di-
lation, the muons last longer, so they travel farther.)

(¢) Now analyze the same process from the perspective of the muon. (In its reference
frame it only lasts 2.2 X 107° sec; how, then, does it make it to ground?)

(d) Pions are also produced in the upper atmosphere. [In fact, the sequence is
proton (from outer space) hits proton (in atmosphere) — p + p + pions. The
pions then decay into muons: #~ — u~ + ¥,; #* — p* + »,.] But the lifetime
of the pion is much shorter, a hundredth that of the muon. Should the pions
reach ground level? (Assume that the pions also have a speed of 0.998 c.)

As the outlaws escape in their getaway car, which goes 3¢, the cop fires a builet
from the pursuit car, which only goes 1c. The muzzle velocity (speed relative to
gun) of the bullet is j¢. Does the bullet reach its target

(a) According to prerelativistic physics?

(b) According to relativity?

Find the matrix M that inverts equation (3.11): x* = M%x" [use eq. (3.3)]. Show
that M is the matrix inverse of A: AM = 1.

Vvaslay AVA ALY Liiw Azaleviisy Aax L WL das saiva

Show that the quantity I [in eq. (3.12)] is invariant under the Lorentz transformation

3.7.
A second-rank tensor is called symmetric if it is unchanged when you switch the
indices (s** = s*); it is called antisymmetric if it changes sign (a** = —a*").

(a) How many independent elements are there in a symmetric tensor? (Since
s'2 = s these would count as only one independent element.)

(b) How many independent eiements are there in an aniisymmeiric iensor?

(¢) If s* is symmetric, show that s,, is also symmetric. If a* i1s antisymmetric,
show that a,, 1s antisymmetric.

(d) If s# is symmetric and 4** is antisymmetric, show that s*’q,, = 0.

(e) Show that any second-rank tensor (1**) can be written as the sum of an anti-
symmetric part (¢*’) and a symmetric part (s**). t* = ¢* + s**. Construct s*
and a*” explicitly, given .

A particle is traveling at 2¢ in the x direction. Determine its proper velocity, #* (all
four components).
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3.10.

311

3.12.
3.13.

3.14.

3.15.

3.16.

317,

Consider a collision in which particle 4 (with mass m, and proper velocity 5,) hits
particle B (mass mg, proper velocity np), producing particle C(rmc¢, nc) and particle
D(mp, np). Suppose that (relativistic) energy and momentum are conserved in
cxretatin 2 A axll sl — anbb L oMY TTolemer 4hhn T mcnsntrr toneeafmemantiame £ 7Y olaaes,
sysicim o (1.C., Py T Ppp = Pc T Ppj. VUSILE Uik LOICHIZ raiidionmauons (J. /7 j, SOOwW
that (relativistic) energy and momentum are also conserved in S'. (Do not assume
that mass is conserved—in general, it is not: my + mg # me + mp.)

Is p* timelike, spacelike, or lightlike, for a (real) particle of mass #? How about a
massless particle? How about a virtual particle?

How much more does a hot potato weigh than a cold one (in kg)?

A pion traveling at speed v decays into a muon and a neutrino, =~ — u~ + v,. If
the neutrino emerges at 90° to the original pion direction, at what angle does the
g come off? [dnswer: tan 8 = (1 — m2/m2)/(28v)]

Particle 4 (energy FE) hits particle B (at rest), producing particles C;, C,, ...:
A+B—C, +C, + +++ + C,. Calculate the threshold (i.e., minimum FE) for this
reaction, in terms of the various particle masses.

M>—mi—mp

[Answer: E= c’, where M=m, +nmy+ -+« + m,,jl
2mpg

Use the result of Problem 3.14 to find the threshold energies for the following
reactions, assuming the target proton is stationary:

@ pt+tp—p+p+a°

®p+p—pt+tpt+at+a

(¢c) *+p—p+p+n

@@ 7 +p— K+ 2°

e p+p—p+Z*+K°

Particle 4, at rest, decays into particles Band C (4 — B + C).
(a) Find the energy of the outgoing particles, in terms of the various masses.

2 2 2
my + mp — me
[Answer: Eg= c?

2mA

(b) Find the magnitudes of the outgoing momenta.

B N ]

VA(m3, m3, mc)
2my,

Answer: Ipsl = pcl =

J

where X is the so-called triangle function:

Ax, y, 2y=x2+ yr 4+ 22— 2xy — 2xz—2sz

L.

(¢) Note that A factors: Ma%, P2, ¢ =(a+b+da+b—ca—b+ca—»b

— N Thie |n i onee tn 7ara whan = 4 and run
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m4 < (mp + mc). Explain.

Use the result of Problem 3.16 to find the CM energy of each decay product in the
following reactions:

@ " —pu +y—

b) 7°— 7y +y

€ Kt —x" + «°

A A—p+a

() 9 — A+ K
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3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

3.24,
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(a) A pion at rest decays into a muon and a neutrino (=~ — g~ + »,). On the
average, how far will the muon travel (in vacuum) before disintegrating? [4nswer:
d = [(m? — m)/2m.my)]er = 186 m.]

(b) The length of the muon track in Figure 1.7 is about 0.6 mm (the pho
has been enlarged). How do you explain this?

Particle 4, at rest, decays into three or more particless 4 = B+ C+ D + « - -.

(a) Determine the maximum and minimum energies that B can have in such a
decay, in terms of the various masses.

(b) Find the maximum and minimum electron energies in muon decay, u~ — €~
+ v + v,

(a) A particle traveling at speed v approaches an identical particle at rest. What is
the speed of each particle in the CM frame? (Classically, of course, it would
just be v/2. Why isn’t this true relativistically?)

(b) Use your result in part (a) to compute the kinetic energy of each particle in the
CM frame, and thus rederive equation (3.53).

In reactions of the type A + B— A+ C, + C; + - - - (in which particle 4 scatters

off particle B, producing C,, C,, .. .), there is another inertial frame [besides the

lab (B at rest) and the CM (pror = 0)] which is sometimes useful. It is called the

Breit, or “brick wall,” frame, and it is the system in which A4 recoils with its mo-

mentum reversed (Pager = —Prefore), a8 though it had bounced off a brick wall. Take

the case of elastic scattering (4 + B — A + B); if particle 4 carries energy E, and
scatters at an angle #, in the CM, what is its energy in the Breit frame? Find the
velocity of the Breit frame (magnitude and direction) relative to the CM.

In a two-body scattering event, 4 + B — C + D, it is convenient to introduce the

Mandelstam variables

s=(pst ps)2/02
t=(ps— pcyic?
u = (pa— pp)/c*
(a) Show that s+ 4+ u=m% + mz + mz + mp.
The theoretical virtue of the Mandelstam variables is that they are Lorentz invariants.
with the same value in any inertial system. Experimentally, though, the more ac-
cessible parameters are energies and scattering angles.
(b) Find the CM energy of 4, in terms of s, #, u and the masses. [Answer: ES™ =
(s + m3 — md)c?2Vs]
(¢) Find the Lab (B at rest) energy of A. [Answer: E%® = (s — mj — mz)c?/2ms]
(d) Find the total CM energy (Etor = E4 + Egz = Ec + Ep). [Answer: ES8r =
Vse?
For elastic scattering of identical particles, 4 + 4 — A4 + A4, show that the Mandelstam
variables (Problem 3.22) become

s = Ap* + mPc)/c?
t = —2p*(1 — cos 8)/c?
u = —2p*%(1 + cos 0)/c?
where p is the CM momentum of the incident particle, and  is the scattering angle.

(Compton scattering.) A photon of wavelength A collides elastically with a charged
particle of mass m. If the photon scatters at angle 6, find its outgoing wavelength,
N. [Answer: N = X + (h/mc)(1 — cos 0)]
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This chapter is a grab bag of special topics having to do with symmetry. The

first section contains some general remarks about the mathematical description
of symmetry (“‘group theory”) and the relation between symmetry and con-
servation laws (Noether’s theorem). We then take up the case of rotational
symmetry and its relation to angular momentum and spin. This leads in turn
to the “internal” symmetries—isospin, SU(3), and flavor SU(6). Finally, we
consider “discrete” symmetries—parity, charge conjugation, and time reversal.
Except for the theory of spin (Sections 4.2, 4.3, and 4.4)—which will be used
extensively in subsequent chapters—and the material on parity (Section 4.6)—
which is useful background for Chapter 10—this chapter can be studied as
superficially (or as deeply) as the reader desires. I recommend a quick pass
at this stage and a return to specific sections later, as warranted. Some knowl-
edge of matrix theory is presupposed here; readers familiar with quantum
mechanics will find the sections on angular momentum an easy review (those
unacquainted with quantum mechanics may find them obscure, in which case
they should study the relevant chapter of an introductory quantum text). Group
theory is touched on here in a scandalously cursory fashion (my main purpose
is to introduce some standard terminology), but a serious student of elementary
particle physics should plan eventually to study this subject in far greater
detail.

4.1 SYMMETRIES, GROUPS, AND
CONSERVATION LAWS

Examine the graph in Figure 4.1. I have no idea what the functional form of
f(x) might be, but this muchT can say: it’s an odd function, f{—x) = —f(x).

103
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f{x) 4
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Figure 4.1 An odd function.

(If you don’t believe me, trace the curve, rotate the tracing by 180°, and check
that it perfectly fits the original graph.) It follows, for instance, that

+3
[A(=2)1° = ST, f_ , Jx)dx = 0,

g _4
dx|,, dx

I know that no cosines appear in the Fourier expansion of f(x), and that its
Taylor series contains only odd powers. In fact, I know quite a lot about f(x),
even though I don’t know its functional form, just from my observation that it
has a particular symmetry—oddness, in this case. In physics, intuition or a general
principle often suggests symmetries in a problem, and their systematic exploi-
tation can be an extremely powerful tool. [In some respects the appeal to sym-
metry is characteristic of an incomplete theory. For example, if we somehow
discovered the explicit form of f(x), say, f{x) = ¢ * sin(x>), then the theorems
in equation (4.1) would lose their luster. Why bother with partial information
when we can have it ¢//? But even in a mature theory, symmetry considerations
often lead to deeper understanding and calculational simplification; for instance.
if you’re integrating f{(x) from —3 to +3, it pays to notice that f{x) 1s odd, even
if you do know its functional form!]

The most obvious examples of symmetry in physics are, I suppose, crystals.
But we’re not so much interested here in static symmetries of shape as in dy-
namical symmetries of motion. The Greeks apparently believed that the sym-
metries of nature should be directly reflected in the motion of objects: Stars

must move in circles because those are the most symmetrical trajectories. Of
cource nlanete don’t. and that was embarrassing llt was not the last time that

VUL OV, IGLIVL) WWULL Ly RIS piiéer VY ARl GLAGRS2A0s an 11U Li1L

naive intuitions about symmetry ran into trouble with experiment). Newton
recognized that fundamental symmetries are revealed not in the motions of
individual objects, but in the set of all possible motions—symmetries are manifest
in the equations of motion rather than in particular solutions to those equations.
Newton’s law of universal gravitation, for instance, exhibits spherical symmetry—
the force is the same in all directions—yet planetary orbits are elliptical. Thus
the underlying symmetry of the system is only indirectly revealed to us; indeed,

+7 +7
o orac=2 [ vwra @n
-7 0
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TABLE 4.1 SOME SYMMETRIES AND THE ASSOCIATED
CONSERVATION LAWS

Symmetry Conservation law
Translation in time > Energy
Translation in space > Momentum
Rotation « Angular momentum
Gauge transformation — Charge

you might wonder how we would ever have discovered it from the observed
planetary trajectories if we didn’t have a pretty strong hunch that the gravitational
field of the sun *“ought” to be spherically symmetrical.

It was not until 1917 that the dynamical implications of symmetry were
completely understood. In that year Emmy Noether published her famous theo-
rem relating symmetries and conservation laws:

NOETHER’S THEOREM: SYMMETRIES <> CONSERVATION LAWS

Every symmetry of nature yields a conservation law; conversely, every conser-
vation law reveals an underlying symmetry. For example, the laws of physics
are symmetrical with respect to translations in time; they work the same today
as they did yesterday. Noether’s theorem relates this invariance to conservation
of energy. If a system is invariant under translations in space, then momentum
is conserved; if it is symmetrical under rotations about a point, then angular
momentum is conserved. Similarly, the invariance of electrodynamics under
gauge transformations leads to conservation of charge (we call this an internal
symmetry, in contrast to the space-time symmetries). I'm not going to prove
Noether’s theorem; the details are not terribly enlightening.! The important thing
is the profound and beautiful idea that symmetries are associated with conser-
vation laws (see Table 4.1).

I have been speaking rather casually about symmetries and I cited some
examples, but what precisely is a symmetry? It is an operation you can perform
(at least conceptually) on a system that leaves it invariant—that carries it into a
configuration indistinguishable from the original one. In the case of the function
in Figure 4.1, changing the sign of the argument, x — —x, and multiplying the
whole thing by —1 [fix) — —f(—x)] is a symmetry operation. For a meatier
example, consider the equilateral triangle (Fig. 4.2). It is carried into itself by a
clockwise rotation through 120° (R,), and by a counterclockwise rotation through
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Figure 4.2 Symmetries of the equilateral
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120° (R-), by flipping it about the axis 4a (R;), or around the corresponding
axis through B (Ry), or through C (R,). Is that all? Well, doing nothing ar all (I)
obviously leaves it invariant, so this too is a symmetry operation, albeit a pretty
trivial one. And then we could combine operations, for example, rotate clockwise
through 240°. But that’s the same as rotating counterclockwise by 120° (i.e.,
R% = R)). As it turns out, we have already identified all the distinct symmetry
operations on the equilateral triangle (see Problem 4.1).

The set of symmetry operations on any system must have the following
properties:

1. Closure. If R; and R; are in the set, then the product, R; R;—meaning:
first perform R;, then perform R; —is also 1n the set; that is, there exists
some Ry such that R;R; = Ry.

2. Identity. There is an element 7 such that /R; = R;I = R, for all elements
R;.

3. Inverse. For every element R; there is an inverse, R;', such that
RR'=R'R, =1

4. Associativity. R,‘(Rij) = (R,'Rj)Rk.

These are precisely the defining properties of a group. Indeed, the mathematical
theory of groups may be regarded as the systematic study of symmetries. Notice
that group elements need not commute: R;R; # R;R;, in general; if all the elements
do commute, the group is called Abelian. Translations in space and time form
an Abelian group; rotations do not.2 Groups can be finite (like the triangle group,
which has just six elements) or infinite (for example, the set of integers, with
addition playing the role of group “multiplication’’). We shall encounter contin-
uous groups (such as the group of all rotations in a plane) in which the elements
depend on one or more continuous parameters (the angle of rotation, in this
case) and discrete groups, in which the element may be labeled by an index that
takes on only integer values (all finite groups are, of course, discrete).

As it turns out, most of the groups of interest in physics are groups of
matrices. The Lorentz group, for instance, consists of the set of 4 X 4 A matrices
introduced in Chapter 3. In elementary particle physics the most common groups
are of the type mathematicians call U(n): the collection of all unitary n X n
matrices (see Table 4.2). (A unitary matrix is one whose inverse is equal to its
transpose conjugate: U L= O .) If we restrict further to unitary matrices with
determinant 1, the group is called SU(n). (The S stands for “special,” which just
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ELEMENTARY PARTICLE PHYSICS

Group name Matrices in group
Uln) n X n unitary (U*U = 1)
SU(n) n X n unitary with c}eterminant 1
O(n) n X n orthogonal (00 = 1)

SO(n) n X n orthogonal with determinant 1
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means “determinant 1) If we restrict ourselves to real/ unitary matrices, the
group is O(n). (O stands for “orthogonal’’; an orthogonal matrix i1s one whose
inverse is equal to its transpose: O~! = O.) Finally, the group of real, orthogonal,
n X n matrices of determinant 1 is SO(n). SO(n) may be thought of as the group
of all rotations in a space of n dimensions. Thus SO(3) describes the rotational
symmetry of our world, a symmetry that is related by Noether’s theorem to the
conservation of angular momentum. Indeed, the entire quantum theory of an-
gular momentum is really closet group theory. It so happens that SO(3) is almost
identical in mathematical structure to SU(2), which is the most important internal
symmetry in elementary particle physics. So the theory of angular momentum,
to which we turn next, will actually serve-us twice.

One final thing. Every group G can be represented by a group of matrices:
For every group element a there is a corresponding matrix M,, and the cor-
respondence respects group multiplication, in the sense that if ab = ¢, then
M, M, = M.. A representation need not be “faithful”: there may be many distinct
group elements represented by the same matrix. (Mathematically, the group of
matrices is h-omomorphic, but not necessarily isomorphic, to G.) Indeed, there
is a trivial case, in which we represent every element by the 1 X 1 unit matrix
(which is to say, the number 1). If G 1s a group of matrices, such as SU(6) or
O(18), then it is a (faithful) representation of itself—we call it the fundamental
representation. But there will in general be many other representations, by ma-
trices of various dimensions. For example, SU(2) has representations of dimen-
sion 1 (the trivial one), 2 (the fundamental one), 3, 4, 5, and in fact every positive
integer. A major problem in group theory is the enumeration of all the repre-
sentations of a given group. Of course, you can always construct a new repre-
sentation by combining two old ones, thus

MP | (zeros)

(zeros) | MY

But we don’t count this separately; when we list the representations of a group,
we are talking about the so-called irreducible representations, which cannoi be
decomposed into block-diagonal form. Actually, you have already encountered
several examples of group representations, probably without realizing it: An
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group, SO(3), and a vector belongs to the three-dimensional representation; four-
vectors belong to the four-dimensional representation of the Lorentz group; and
the curious geometrical arrangements of Gell-Mann’s Eightfold Way correspond

to irreducible representations of the group SU(3).

4.2 SPIN AND ORBITAL ANGULAR MOMENTUM

The earth, in its motion, carries two kinds of angular momentum: orbital angular
momentum, rmv, associated with its annual revolution around the sun, and
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spin angular momentum, Jw, associated with its daily rotation about the north-
south axis. The same goes for the electron in a hydrogen atom: It too carries
both orbital and spin angular momentum. In the macroscopic case the distinction
is not terribly profound; after all, the spin angular momentum of the earth 1s
nothing but the sum total of the “orbital” angular momenta of all the rocks and
dirt clods that make it up, in their daily “orbit”” around the axis. In the case of
the electron this interpretation is not open to us: The electron, as far as we know,
1S a true point particle; its spin angular momentum is not attributable to con-
stituent parts revolving about an axis, but is simply an intrinsic property of the
particle itself (see Problem 4.8).

Classically, we are free to measure all three components of the orbital
angular momentum vector, L. = r X myv, to any desired accuracy, and these
components can assume any values whatever. In quantum-mechanics, however,
it is impossible in principle to measure all three components simultaneously; a
measurement of L,, say, inevitably alters the value of L,, by an unpredictable
amount. The best we can do is to measure the magnitude of L, (or rather, its
square: L? = L - L) together with one component (which we customarily take to
be the z component, L,). Furthermore, these measurements can only return
certain “allowed” values.* Specifically, a measurement of L? always yields a
number of the form

I+ A2 4.2)
where [ is a nonnegative integer:
1=0,1,2,3,... (4.3)
For a given value of /, a measurement of L, always gives a result of the form
msh (4.4)
where »1; is an integer in the range [—/, +/]:
my=—-L—-I+1,...,—-1,0,+1,...,[—1,1 4.5)
[(2] + 1) possibilities in all]. Figure 4.3 may help you to visualize the situation.
Here / = 2, so the magnitude of L is V64 = 2.454; L, can assume the values
2k, h, 0, —h, or —2A. Notice that the angular momentum vector cannot be
oriented purely in the z direction.

The eame ognec for enin anonlar moamentiim: mancnremont nf 2 = Q. Q
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can only return values of the form
s(s + DA? (4.6)

In the case of spin, however, the quantum number s can be a half-integer as
well as an integer:

s=0,4,1,3,2,3,... (4.7)

_ * I am not going to prove the quantization rules for angular momentum, and if this materiat
1s new to you, I suggest that you consult a textbook on quantum mechanics. Al I propose to do here
is summarize the essential results we will need in what follows.
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Figure 4.3 Possible orientations of the
angular momentum vector for / = 2.

For a given value of s, a measurement of .S; must yield an answer of the form

m,h (4.8)
where m, is an integer or half-integer (whichever s is) in the range [—s, s]:
mi=-—s,—s+1,...,s— 1,8 (4.9)

[(2s + 1) possibilities].

Now, a given particle can be put into any orbital angular momentum state
vou wish, but for each type of particle the value of s is fixed. Every pion or kaon,
for example, has s = 0; every electron, proton, neutron, and quark carries s =
{: for the p, the ¥, the photon, and the gluon, s = 1; for the A’s and the @7, s =
{: and so on. We call s the “spin” of the particle. Particles with half-integer spin
are known as fermions—all baryons, leptons, and quarks are fermions; particles
with integer spin are known as bosons—all mesons and mediators are bosons
(see Table 4.3).

4.3 ADDITION OF ANGULAR MOMENTA

Angular momentum states are labeled with a “ket”: |Im;) or |sm,). Thus if I say
the electron in a hydrogen atom occupies the orbital state |3 —1) and the spin
state |4 1), I mean that / = 3, m; = —1, s = } (which is unnecessary, of course;
if it’s an electron, s must be 1), and m; = 1. Now, it may happen that we are
not interested in the spin and orbital angular momenta separately, but rather in

TABLE 4.3 CLASSIFICATION OF PARTICLES BY SPIN

|
. 1. .
! Bosons (integer spin) Fermions (z-integer spin)
. ) 1 .3
Spin 0 Spin 1 Spin 3 Spin 3
—_— Mediators Quarks, leptons — —Elementary
Pseudo-scalar mesons | Vector mesons | Baryon octet Baryon decuplet | —Composite
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the fotal angular momentum, J = L + S. (In the presence of coupling between
L and S—tidal, if it’s the earth-sun system; magnetic, for the electron-proton
system—it is J, and not L and S individually, that will be conserved.) Or per-
haps we are studying the two guarks that go to make a ¢ meson; in this case.
as we shall see, the orbital angular momentum 1is zero, but we are confronted
with the problem of combining the two quark spins to get the total spin of the
¥: S =8, + S;. In either case the question arises: How do we add two angular
momenta

J= +d (4.10)

Classically, of course, we just add the components. But in quantum me-
chanics we do not have access to all three components; we are obliged to work
with one component and the magnitude. So the question becomes: If we combine
states | jim,y and | jamy ), what total angular momentum state(s) | jm) do we get?
The z components still add, naturally, so

m=m;+ m, 4.11)

but the magnitudes do not; it all depends on the relative orientation of J, and
J; (Fig. 4.4). If they are parallel the magnitudes add, but if they are antiparallel
the magnitudes subtract; in general, the magnitude of the vector sum is some-
where between these extremes. As it turns out, we get every j from (j, + j») down
to | j; — j»l, in integer steps:*

J=li—hblih—Al+1L, ..., +iR) =1, +5k) (4.12)

For instance, a particle of spin 1 in an orbital state / = 3 could have total angular
momentum j = 4 (i.e., J? = 20h%), 0rj =3 (J2 = 1243, 0rj = 2 (J? = 6A2).

EXAMPLE 4.1
A quark and an antiquark are bound together, in a state of zero orbital
angular momentum, to form a meson. What are the possible values of the
meson’s spin?

Solution. Quarks carry spin {,sowecanget3 + 31 =10or4 —1=0.The
spin-0 combination gives us the “pseudo-scalar” mesons, 7’s, K’s, 9, 7/

“scalar” means spin 0; “pseudo-" will be explained shortly. The spin-1
combination gives the “vector” mesons, p’s, K*’s, ¢, w; “vector”’ means
spin 1.

To add three angular momenta, we combine two of them first, using equa-
tion (4.12), and then add on the third. Thus if we allow the quarks in Example
4.1 an orbital angular momentum / > 0, we get mesons with spin / + 1, /, and

Figure 4.4 Addition of angular mo-
menta.
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! — 1. Because the orbital quantum number has to be an integer, all mesons
carry integer spin (they’re bosons). By the same token, all baryons (made up of
three quarks) must have half-integer spin (they’re fermions).

EXAMPLE 4.2
Suppose you combine three quarks in a state of zero orbital angular mo-
mentum. What are the possible spins of the resulting baryon?

Solution From two quarks, each spin 4, we get a total angular momentum
of 1 + 1 =1or3— 4 =0. Adding in the third quark yields 1 + 4 =3 or
1 -1 =1 (when the ﬁrst twoaddto1),and0 + 1 = 2 I (when the ﬁrst two
add to zero). Thus the baryon can have a spin of 3 or 3, and the latter can
be achieved in two different ways. In practice, s = 3 is the decuplet, s = }
is the octet, and evidently the quark model would allow for another family
with s = 1. If we permit the quarks to revolve around one another, throwing
in some orbital angular momentum, the number of possibilities increases
accordingly.

Well, equation (4.12) tells us what total angular momenta j we can obtain
by combining j; and j,, but occasionally we require the explicit decomposition
of | jym; )| j;m,) into states of total angular momentum | jm):

(11+12)

| jim o) = | Chimitlimy,  withm=m;+my (4.13)
Jj= }l“J2

The numbers Ci,7 2, are known as Clebsch-Gordan coefficients. A book on
group theory or advanced quantum-mechanics will explain how to calculate
them. In practice, we normally look them up in a table. (There is one in the
Particle Data Booklet, and the case j;, = 2, j, = 3 is reproduced in Figure 4.5).
The Clebsch-Gordan coefficients give the probability of getting j(j + 1)A2, if
we measure J° (the total angular momentum squared) on a system consisting
of two angular momentum states | j;m,) and | jm, ): The probability is the square
of the corresponding Clebsch-Gordan coefficient.

EXAMPLE 4.3

The electron in
spin state |3 3). I
the probability of ach?

atom occupies the orbital state |2 —1) and the
measure J?, what values might we get, and what is

"'P - ~a v - =
alivl i ) 4

Solution. The possible values of j ar
- 4= % The z components add: m = —1 + 1 = -1, We go to the
Clebsch—Gordan table (Fig. 4.5) labeled 2 X 1, which indicates that we are
combining ji = 2 with j, = 4, and look for the horizontal row, labeled —1,

1: these are the values of m, and m,. Reading off the two entries, we find
12 —1>| 3= \/7|5/2 —3y— Vﬁ3/2 ——) So the probability ofgettmg
j=3is2, and the probability of getting j =  is 3. Notice that the probabilities
add to 1, as, of course, they should.

o ] L o= " L
I T 53— & 1
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5/2
2x1/2 )6 ez 32
2 121 1 3/2  +3/2
+2 -1/2 |15 45 | 52 372
+1  +1/2 4/5 —1/5 [+1/2 +1/2
1 -1/2 | 2/ 3/5| 52 3/2
0 +1/2 | 3/6 -2/5|—-1/2 -1/2
o -1/2| 3/ 2/5| 52 312
-1 +1/2| 2/5 -3/5|-3/2 -3/2
-1 ~1/2| 45 1/5| 5/2
-2 +1/2 | 1/5 -4/ }-5/2
-2 =12 | 1

Figure 4.5 Clebsch-Gordan coefficients for j, = 2, j» = 4. (A square root sign over each
number is implied.)

EXAMPLE 4.4

We know from Example 4.1 that two spin-} states combine to give spin 1
and spin 0. Find the explicit Clebsch—-Gordan decomposition for these
states.

Solution. Consulting the 3 X 1 table, we find

135033 = |11

11 =LY = (1/V2)[10) + (1/V2)[00) (4.14)
-HI3 = (l/f)|10>-(1/f)|00>

2

(=10
I
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Thus the three spin 1 states are

111y = 13333

10 - (121 DIt = + 11 =HliD) *.13)

-1y =13 -3 -3

whereas the spin 0 state is

00) = (/V2)[I4415 =15 — 13 —HPHH] (4.16)
[By the way, equations (4.15) and (4.16) can be read directly off the Clebsch-
Gordan table; the coefficients work both directions:

Jusi2

This time we read down the columns, instead of along the rows.] The
spin-1 combination is called the “triplet,” for obvious reasons, and spin 0
is called the “singlet.” For future reference, notice that the triplet is sym-
metric under interchange of the particles, 1 < 2, whereas the singlet is
antisymmetric (that is, it changes sign). Incidentally, in a singlet state the
spins are oppositely aligned (antiparallel); however, 1t is not the case that
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in a triplet state the spins are necessarily parallel; they are for m = 1 and
m = —1, but not for m = 0.

4.4 SPIN 3

The most important spin system is s = %; the proton, neutron, electron, all
quarks, and all leptons carry spin 1. Furthermore, once you understand the
formalism for s = 1, any other case is a relatively simple matter to work out. So
I'll pause here to develop the theory of spin } in some detail. A particle with
spin { can have m; = } (“spin up”) or m; = —3 (“*spin down”). Informally, we
represent these two states by arrows: 4 and {. But a better notation is afforded

by two-component column vectors, or spinors:

A T

It is often said that a particle of spin { can only exist in one or the other of these
two states, but that is quite false. The most general state of a spin-§ particle is

the linear combination
a 1 0
(B) - “(0) " 6(1) @.19)

where « and $ are two complex numbers. It is true that a measurement of S,
can only return the value +1% or —4#, but the first outcome, say, does not

E:

tap—

. : 1 :
prove that the particle was 1n the state ( ) prior to the measurement. In the

general case (g) , || is the probability that a measurement of S; would yield

the value +1#, and 8] is the probability of getting —3 . Since these are the
only allowed results, it follows that

=1 (4.20)
Apart from this ‘“normalization” condition, there is no a priori constraint on

the numbers « and 3.
Suppose now that we are to measure S, or S, on a particle in the state

(84
( 6) . What results might we get, and what is the probability of each? Symmetry

dictates that the allowed values be +3 h; after all, it’s perfectly arbitrary which
direction we choose to call z in the first place. But determining the probabilities
is not so simple. To each component of S we associate a 2 X 2 matrix:*

* Again, the derivation of these matrices will be found in any quantum-mechanics text. My
purpose here is to show you how angular momentum is handled in particle physics, not to explain
why it is done this way.
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- h{0 1 . h{0 —i . Al 0)
S == , S, =—| , S, == 421
2(1 0) ¥ 2(1 0) 2(0 —1 (4.21)

The eigenvalues of S, are =A/2, and corresponding normalized eigenvectors

arc*
1/V2
Xe = (if/vz) 422

(see Problem 4.15). An arbitrary spinor (g) can be written as alinear combination

of these eigenvectors:
@y (V2 1/1/5)
(B) = a(l/ﬁ) + b(—l/ﬁ (4.23)

where a=1/V2Xa+8);  b=(1/V2)a—B) (4.24)

The probability that a measurement of S, will yield the value 14 is |a}?; the
probability of getting —3 # is b, Evidently, |al* + [6]* = 1 (see Problem 4.16).
The general procedure, of which this was a particular instance, is as follows:

1. Construct the matrix, A4, representing the observable 4 in question.

2. The allowed values of 4 are the eigenvalues of A.

3. Write the state of the system as a linear combination of eigenvectors of
A; the absolute square of the coefficient of the ith eigenvector is the
probability that a measurement of 4 would yield the ith eigenvalue.

EXAMPLE 4.5

) a )
Suppose we measure 52 on a particle in the state ( ) . What values might
we get, and what is the probability of each?

Solution. The matrix representing S2 would be the square of the matrix

representing .S,
., h2{1 0
Si=— ( ) 4.25
4 \0 1 ( )

* A nonzero column matrix

\./

is called an eigenvector of a given n X n matrix M if
My = Ax

for some number A (the eigenvalue). Notice that any multiple of x is still an eigenvector, with the
same eigenvalue.
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w66 -56)

every spinor is an eigenvector of S2, with eigenvalue £2/4. Thus we would
be certain to get h*/4 (probability 1). The same goes for $2 and S?,
so every spinor is an eigenstate of $2 = $2 + $2 + §2, with elgenvalue
3A2/4. This should come as no surprise—in general for spin s we must
have $% = s(s + 1)h2

For mathematical purposes the factor of #/2 in equation (4.21) is ugly,
and 1t 1s customary to introduce the Pauli spin matrices:

0 1 0 —i\ 1 0
""_(1 0)’ "y"(i 0)’ “z_(o —1) (4.26)

so that S = (#1/2)e. The Pauli matrices have many interesting properties, some
of which are explored in Problems 4.19 and 4.20. We shall encounter them
repeatedly in the course of this book.

In a sense, spinors (two-component objects) occupy an intermediate po-
sition between scalars (one component) and vectors (three components). Now,
when you rotate your coordinate axes, the components of a vector change, in a
prescribed manner (see Problem 4.6), and we might inquire how the components
of a spinor transform, under the same circumstances. The answer? is provided

by the following rule:
“) = vey“ 4.27
()~ vol;) (427

where U(0) is the 2 X 2 matrix
U@ = e 2 (4.28)

The vector # points along the axis of rotation, and its magnitude is the angle of
rotation, in the right-hand sense, about that axis. Notice that the exponent here
16 1tealf n rmraterv 1Y A v swsmsemoos e Al tlaro £ | gy [ " P
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for the power series:
el=1+A+ 42 +342+ - (4.29)

(see Problem 4.21).* As you can check for yourself (Problem 4.22), U(#) is a
unitary matrix of determinant 1; in fact, the set of all such rotation matrices
constitutes the group SU(2). Thus spin-1 particles transform under rotations
according to the fundamental, two-dimensional representation of SU(2). Simi-
larly, particles of spin 1, described by vectors, belong to the three-dimensional
representation of SU(2); spin-3 particles, described by a four-component object,

* Beware: For matrices it is not the case that e?e® = ¢**%, in general. You might want to
check this by using the matrices in Problem 4.21. However, the usual rule does apply if A and B
commute (i.e., if AB = BA).
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transform under the four-dimensional representation of SU(2); and so on. (The
construction of these higher-dimensional representations is explored in Problem
I mentioned earlier, SU(2) 1s essentially* the same group as SO(3), the group of
rotations in three dimensions. Particles of different spin, then, belong to different
representations of the rotation group.

4.5 FLAVOR SYMMETRIES

There’s an extraordinary thing about the neutron, which Heisenberg observed
shortly after its discovery in 1932: apart from the obvious fact that it carries no
charge, it is almost identical to the proton. In particular, their masses are aston-
ishingly close, n1, = 938.28 MeV/c?, m, = 939.57 MeV/c?). Heisenberg® proposed
that we regard them as two “states™ of a single particle, the nucleon. Even the
small difference in mass might be attributed to the fact that the proton is charged.
since the energy stored in its electric field contributes, according to Einstein’s
formula (E = mc?) to its inertia. Unfortunately, this argument suggests that the
proton should be the heavier of the two, which is not only untrue, but would be
disastrous for the stability of matter. More on this in a moment. If we could
somehow “turn off > all electric charge, the proton and neutron would, according
to Heisenberg, be indistinguishable. Or, to put it more prosaically, the strong
forces experienced by protons and neutrons are identical.

To implement Heisenberg’s idea, we write the nucleon as a two-component
column matrix

[0 4
N = 4.30)
(B) (
with p= ((l)) and n= ((1)) (4.31)

This is nothing but notation, of course, but it is notation seductively reminiscent
of the spinors we encountered in the theory of angular momentum. By direct
analogy with spin, S, we are led to introduce isospin, 1.} However, I is not
a vector in ordinary space, with components along the coordinate directions x.
y, and z, but rather in an abstract “isospin space,” with components we’ll call
I,, I,, and I5. On this understanding, we may borrow the entire apparatus of

* There is actually a subtle distinction between SU(2) and SO(3). According to Problem 4.21.
the matrix U for rotation through an angle of 2w is —1; a spinor changes sign under such a rotation.
And yet, geometrically, a rotation through 2= is equivalent to no rotation at all, SU(2) is a kind of
“doubled” version of SO(3), in which you don’t come back to the beginning until you’ve turned
through 720°. In this sense spinor representations of SU(2) are not true representations of the rotation
group, and that’s why they do not appear in classical physics. In quantum mechanics only the square
of the wave function carries physical significance, and in the squaring the minus sign goes away.

1 The word derives from the older term isotopic spin, which was misleading, since two isotopes
of a given nucleus have different numbers of nucleons, whereas isospin rotations preserve the number
of nucleons. Nuclear physicists use the (better) term isobaric spin.
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angular momentum, as developed earlier in the chapter. The nucleon carries
isospin 4, and the third component, /5, has the eigenvalues* +3 (the proton)
and —4 (the neutron):

p=134) n=l-D (4.32)
The proton is “isospin up”; the neutron is “isospin down.” This is still just
notation; the physics comes in Heisenberg’s proposition that the strong inter-
actions are invariant under rotations in isospin space, just as, for example, elec-
trical forces are invariant under rotations in ordinary configuration space. We
call this an “internal” symmetry, because it has nothing to do with space and
time, but rather with the relations between different particles. A rotation through
180° about axis number | in isospin space converts protons into neutrons, and
vice versa. If the strong force is invariant under rotations in isospin space, it
follows, by Noether’s theorem, that isospin is conserved in all strong interactions,
just as angular momentum is conserved in processes with rotational invariance
in ordinary space.?

In the language of group theory, Heisenberg asserted that the strong inter-
actions are invariant under an internal symmetry group SU(2), and the nucleons
belong to the two-dimensional representation (isospin 3;). In 1932 this was a
bold suggestion; today the evidence is all around us, most conspicuously in the
“multiplet” structure of the hadrons. Recall the Eightfold Way diagrams in
Chapter 1: The horizontal rows all display exactly the feature that caught Hei-
senberg’s eye in the case of the nucleons; they have very similar masses but
different charges. To each of these multiplets we assign a particular isospin /,
and to each member of the multiplet we assign a particular /5. For the pions,
I=1:

=11, =105, =« =[1-1) (4.33)
forthe A, I = O:
A =100 (4.34)
for the A’s, I = 3:
At =133),  At=131), A°=13-3),  AT=[3-3) (435)
and so on. To determine the isospin of a multiplet, just count the number of

particles it contains; since I3 ranges from —7 to +/, in integer steps, the number
of particles in the multiplet is 27 + 1:

multiplicity = 27 + 1 (4.36)

* There is no factor of A in this case; isospin is dimensionless, by convention.

+ By the way, it is tempting to overstate the so-called “charge independence” of the strong
forces (the fact that they are the same for protons as for neutrons). It does ror say that you’ll get the
same result if you substitute an individual proton for a neutron, only if you interchange all protons
and neutrons. [For example, there exists a bound state of the proton and the neutron (to wit, the
deuteron), but there is no bound state of two protons or two neutrons.] Indeed, any such assertion
would be incompatible with the Pauli exclusion principle, since a proton and a neutron can be in
the same quantum state, but two neutrons (or two protons) cannot.
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The third component of isospin, /3, is determined by the charge, Q, of the particle.
We assign the maximum value, I; = I, to the member of the multiplet with the
highest charge, and fill in the rest in order of decreasing Q. For the “pre-1974”
hadrons-—those composed of u, d, and s quarks only—the explicit relation be-
tween Q and I is the Gell-Mann-Nishijima formula:

Q=L+34+Y9) (4.37)

where A 1s the baryon number and S'is the strangeness.* Originally, this equation
was a purely empirical observation, but in the context of the quark model it
follows simply from the isospin assignments for quarks: «# and d form a “doublet”
(like the proton and the neutron):

wu=lip,  d=1i- (4.38

and all the other flavors carry isospin zerot (see Problems 4.25 and 4.26).

But classification is not all that isospin does for us. It also has important
dynamical implications. For example, suppose we have two nucleons. From the
rules for addition of angular momenta we know that the combination gives a
total isospin of 1 or 0. Specifically (using Example 4.4), we obtain a symmetric
isotriplet:

(@ 11> =pp
(b) 110> = (1/V2)(pn + np)
(¢) 1—-1>=nn (4.39)

and an antisymmetric isosinglet:
100 = (1/¥2)pn — np) (4.40)

Experimentally, the neutron and proton form a single bound state, the deuteron
(d); there 1s no bound state of two protons or of two neutrons. Thus the deuteron
must be an isosinglet. If it were a triplet, all three states would have to occur
since they differ only by a rotation in isospin space. Evidently there is a strong
attraction in the / = 0 channel, but not in the / = | channel. Presumably the
potential describing the interaction between two nucleons contains a term of
the form IV - I®, which takes the value J in the triplet configuration and —3 in
the singlet (see Problem 4.27).

Isospin invariance has implications, too, for nucleon-nucleon scattering.
Consider the processes

@ p+tp—d+ =t
b p+n—d+a°
(¢) n+tn—-d+x (4.41)

* Since Q, 4, and S are all conserved by the electromagnetic forces, it follows that I, is also
conserved. However, the other two components, and hence also [/ itself, are not conserved in elec-
tromagnetic interactions. For example, in the decay z° — v + v, I goes from 1 to 0. As for the
weak interactions, they don’t even conserve S, so I; is not conserved in weak processes (for exam-
ple, A—p+ 7).

1 Since isospin pertains only to the strong forces, it is not a relevant quantity for leptons. If
you insist, all leptons and mediators carry isospin zero.
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Since the deuteron carries / = 0, the isospin states on the right are [11), |10,
and |1 —1), respectively, whereas those on the left are [115, (1 V2X( 10 +100)),
and |1 —15. Only the I = 1 combination contributes (since the final state in each
case is pure I = 1, and 1sospin is conserved), so the scattering amplitudes are in
the ratio

My My M= 1:(1/V2): 1 (4.42)

As we shall see, * the cross section, a, goes like the absolute square of the amplitude;
thus

o, 0p.0:.=2:1:2 (4.43)

Process (¢) would be hard to set up in the laboratory, but (a) and (b) have been
measured, and (when corrections are made for electromagnetic effects) they are
found to be in the predicted ratio.

As a final example, let’s consider pion-nucleon scattering, #N — wN. There
are six elastic processes:

@ 7« +p—x"+p ) #+p—r+p
¢ = +p—a +p d #t+n—7t+n
) °+n—x"+n f) = +n—a +n (4.44)

and four charge-exchange processes:

® #"+n—-x+p (h) =°+p—o7at+n
i +n—on +p ) = +p—7"+n (4.45)
Since the pion carries 7 = 1, and the nucleon I = 1, the total isospin can be %

or 4. So there are just two distinct amplitudes here: M3, for / = 3 and M, for
I = 1. From the Clebsch-Gordan tables we find the following decompositions:

o+ p: 1134 = 133 |
w° + p: [10)134) = V2/3134) — (1/V3)l34
w4 LD =/ -1 - V233 -4 | (4.46)
-+ n: 14 =1y = (1/V3)34) + V2/3134)
7+ n: [10) =4y = V27313 —4) + (1/V3)l} — )

4|l -l -1y =133 )

My = Mo= M, (4.47)

Moo= M+ 2, = (V273 — (V2/3)M, (4.48)

(I'll let you work out the rest, see Problem 4.28). The cross sections, then, stand
in the ratio

* The theory of scattering amplitudes and cross sections will be developed in Chapter 6. In
this and the following paragraph I anticipate later results, but I hope it is clear from the context how
the calculation proceeds. If you wish, skip these two paragraphs for now.
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0q.0c.0; = 9'-/”;3'2 . |.M3 + 2M1|2 : 2|.M3 - .M,lz (4.49)
At a CM energy of 1232 MeV there occurs a famous and dramatic bump in
pion-nucleon scattering, first discovered by Fermi in 1951;” here the pion and
nucleon join to form a short-lived “resonance” state—the A. We know the A
carries I = %, so we expect that at this energy J#; > M,, and hence

0,:0::0,=9:1:2 (4.50)

Experimentally, it is easier to measure the toral cross sections, so (¢) and (j) are
combined:

ot (7"+ + p) .
Otot (77_ + p)

As you can see in Figure 4.6, this prediction is well satisfied by the data.

(4.51)

200 — T T T T L A B

190 L (1232) i
180 -
170 |- —
160 |- -
150 |- ~
140 [ .
130 [ s
120 |- .
110 - —
100 |- . .

90 - -

O, _, (mb)
)
R+]

80 |- -1

o L (1688) T p i

o A
i \ | |
60 \ (1525) ,\/ 19201
! i /
A /
/

/A | (2190)

40 |

i
[
|

50 | '

|
Iy
h
|

30 !

20 -
!

10 ! .

0 1 | ] i 1 | 1 | 1 1 ! ] ] H ]

900 1100 1300 1500 1700 1900 2100 2300 2500
Mass of 7 p system (MeV)/c?
Figure 4.6 Total cross sections for #*p (solid line) and = p (dashed line) scattering.
(Source: S. Gasiorowicz, Elementary Particle Physics (New York: Wiley, copyright ©
1966, page 294. Reprinted by permission of John Wiley and Sons, Inc.)
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In the late fifties history repeated itself. Just as in 1932 the proton and
neutron were seen to form a pair, it was now increasingly clear that the nucleons,
the A, the 2’s, and the E’s together constituted a natural grouping within the
baryon family. They all carry spin 3, and their masses are similar. It is true that
the latter range from 940 MeV/c2, for the nucleons, up to 1320 MeV/c?, for the
='s, so it would be stretching things a bit to argue that they are all different states
of one particle, as Heisenberg had implied for the proton and neutron. Nev-
ertheless, it was tempting to regard these eight baryons as a supermultiplet, and
this presumably meant that they belonged in the same representation of some
enlarged symmetry group, in which the SU(2) of isospin would be incorporated
as a subgroup. The critical question became: What is the larger group? (The
“Eight Baryon Problem,” as it was called, was not always phrased this way; at
the time most physicists were surprisingly ignorant of group theory. Gell-Mann
worked out most of the formalism he needed from scratch, and only later learned
that it was well known to mathematicians.) The Eightfold Way was Gell-Mann’s
solution to the Eight Baryon Problem. The symmetry group is SU(3); the octets
constitute eight-dimensional representations of SU(3), the decuplet a ten-di-
mensional representation, and so on. One thing that made this case more difficult
than Heisenberg’s was that no naturally occurring particles fall into the funda-
mental (three-dimensional) representation of SU(3), as the nucleons, and later
the K’s, the =’s, and so on, do for SU(2). This role was reserved for the quarks:
u, d, and s together form a three-dimensional representation of SU(3), which
breaks down into an isodoublet (#, d) and an isosinglet (s) under SU(2).

Of course, when the charmed quark came along, the flavor symmetry group
of the strong interactions expanded once again—this time to SU(4) (some SU(4)
supermultiplets are shown in Fig. 1.13). But things barely paused there before
the arrival of the bottom quark, taking us to SU(5), and the putative top quark,
SU(6). However, there is an important caveat in this neat hierarchy: Isospin,
SU(2), is a very “good” symmetry; the members of an isospin multiplet differ
in mass by at most 2 or 3%, which is about the level at which electromagnetic
corrections would be expected.* But the Eightfold Way, SU(3), is a badly “bro-
ken” symmetry; mass splittings within the baryon octet are around 40%. The
symmetry breaking is even worse when we include charm; the A7 (udc) weighs
more than twice the A (1ds), although they are in the same SU(4) supermultiplet.
It is worse still with bottom, and absolutely terrible with top.

Why is isospin such a good symmetry, the Eightfold Way fair, and flavor
SU(6) so poor? The Standard Model blames it all on the quark masses. Now,
the theory of quark masses is a slippery business, given the fact that they are not

8
accessible to direct experimental measurement. Various arguments® suggest that

the u and d quarks are intrinsically very light, about ten times the mass of the
electron. However, within the confines of a hadron their effective mass is much

greater. The precise value, in fact, depends on the context; it tends to be a little
\

* Indeed, it used to be thought that isospin was an exact symmetry of the strong interactions,
and the whole of the symmetry breakmg was attributable to electromagnetic contamination. The fact
that the n-p mass splitting is in the wrong direction to be purely electromagnetic was troubling,
however, and we now believe that SU(2) is only an approximate symmetry of the strong interactions.
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higher in baryons than in mesons (more on this in Chapter 5). In somewhat the
same way, the effective inertia of a teaspoon is greater when you’re stirring honey
than when you’re stirring tea, and in either case it exceeds the true mass of the
spoon. Generally speaking, the effective mass of a quark in a hadron is about
350 MeV/c? greater than its bare mass (sce Table 4.4). Compared to this, the
quite different bare masses of up and down quarks are practically irrelevant;
they function as though they had identical masses. But the s quark is distinctly
heavier, and the ¢, b, and ¢ quarks are widely separated. Apart from the differences
in quark masses, the strong interactions treat all flavors equally. Thus isospin is
a good symmetry because the effective  and d masses are so nearly equal (which
is to say, on a more fundamental level, because their bare masses are so small):
the Eightfold Way is a fair symmetry because the effective mass of the strange
quark is not foo far from that of the u# and d. But the heavy quarks are so far
apart that their flavor symmetry is severely broken. Of course, this “explanation™
raises two further questions: (1) Why does the binding of quarks into hadrons
increase their effective mass by about 350 MeV/c?? The answer presumably lies
within QCD, although the details are not yet understood.’ (2) Why do the bare
quarks have the particular masses they do? Is there some pattern here? To this
question the Standard Model offers no answer; the six bare quark masses, and
also the six lepton masses, are simply input parameters, for now, and it is the
business of theories beyond the Standard Model to say where they come from.

4.6 PARITY

Prior to 1956 it was taken for granted that the laws of physics are ambidextrous:
that is, the mirror image of any physical process also represents a perfectly possible
physical process. To be sure, we drive on the right (at least, Americans do) and
our hearts are on the left, but these are obviously historical or evolutionary
accidents; it could just as well have been the other way around. Indeed, most
physicists regarded the mirror symmetry (or “parity invariance”) of the laws of
nature as self-evident. But in 1956 Lee and Yang'® were led to wonder (for
reasons we will come back to at the end of this section) whether there had been
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any experimental test of this assumption. Searching the literature, they were

TABLE 4.4 QUARK MASSES (MeV/c?)

Effective mass
Quark flavor Bare mass in mesons in baryons

’ 4 4.2 310 363
Light quarks | d 7.5

L s 150 483 538

[ c 1,100 1,500
Heavy quarks - b 4,200 4,700

L t >23,000

The second column lists the bare (or “current™) mass; the third column lists the effective (or “constituent”)
mass. Warning: These numbers are somewhat speculative and model-dependent.
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Figure 4.7 In the beta decay of cobalt 60,
S most electrons are emitted in the direction
of the nuclear spin.

surprised to discover that although there was ample evidence for parity invariance
mn strong and electromagnetic processes, there was no confirmation in the case
of weak interactions. They proposed a test, which was carried out later that year
by C. S. Wu,!! to settle the issue. In this famous experiment, radioactive cobalt
60 nuclei were carefully aligned, so that their spins pointed in, say, the z direction
(Fig. 4.7). Cobalt 60 undergoes beta decay, and Wu recorded the direction of
the emitted electrons. What she found was that most of them came out in the
“northerly” direction, that is, in the direction of the nuclear spin.

That’s all there was to it. But that simple observation had astonishing
umplications. For suppose we examine the mirror image of that same process
(Fig. 4.8). The image nucleus rotates in the opposite direction; its spin points
downward. And yet the electrons (in the mirror) still came off upward. In the
mirror, then, the electrons are emitted preferentially in the direction opposite to
the nuclear spin. Here, then, is a physical process whose mirror image does not
occur in nature; evidently parity is not an invariance of the weak interactions.
If it were, the electrons in Wu’s experiment would have to come out in equal
distribution (“north” and “south”), but they don’t.

The overthrow of parity had a profound effect on physicists—devastating
10 some, exhilarating to others.'? The violation is not a small effect; as we shall
see in Chapter 10, it is in fact “maximal.” Nor is it limited to beta decay in
cobalt; once you /ook for it, parity violation is practically the signature of the
weak force. It is most dramatically revealed in the behavior of the neutrino. Let
me explain. In the theory of angular momentum the axis of quantization is, by

/

A

/e

N
i

Figure 4.8 Mirror image of Figure 4.7:
Mirror Most electrons are emitted opposite to
nu\clear spin.
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Figure 4.9 Helicity. In (a) the spin and velocity are parallel (helicity +1); in (b) they are
antiparallel (helicity —1).

convention, the z axis. Of course, the orientation of the z axis is completely up
to us, but if we are dealing with a particle traveling through the laboratory at
velocity v, a natural choice suggests itself: Why not pick the direction of motion
as the z axis? The value of (m;/s) for this axis is called the helicity of the particle.
Thus a particle of spin ! can have a helicity of +1 (m, = }) or —1 (m, = —3):
we call the former “right-handed” and the latter “‘left-handed.”* The difference
is not terribly profound, however, because it is not Lorentz-invariant. Suppose
I have a right-handed electron going to the right (Fig. 4.9a), and someone else
looks at it from an inertial system traveling to the right at a speed greater than
v. From his perspective the electron is going to the left (Fig. 4.9b); but it is still
spinning the same way, so this observer will say it’s a /ef-handed electron. In
other words, you can convert a right-handed electron into a left-handed one
simply by changing your frame of reference. That’s what I mean when I say the
distinction is not Lorentz-invariant.

But what if we applied that same reasoning to a neutrino, instead of an
electron? The neutrino is massless, so it travels at the speed of light, and hence
there is no observer traveling faster. It is impossible to “‘reverse the direction of
motion” of a neutrino by getting into a faster-moving reference system, and
therefore the helicity of a neutrino (or any other massless particlet) is Lorentz-
invariant—a fixed and fundamental property, which is not an artifact of the
observer’s reference frame. It becomes an important experimental matter to
determine the helicity of a given neutrino. Until the mid-fifties everyone assumed
that half of all neutrinos would be left-handed, and half right-handed, just like
photons. What they, in fact, discovered was that

ALL NEUTRINOS ARE LEFT-HANDED,
AND ALL ANTINEUTRINOS ARE RIGHT-HANDED.

Of course, it’s tough to measure the helicity of a neutrino directly; they’re hard
enough to detect at all. There is, however, a relatively easy indirect method.
using the decay of the pion: #~ — g~ + ¥,. If the pion is at rest, the muon and

T 1M M

the antineutrino come out back to back (Fig. 4.10). Moreover, since the pion

* In Chapter 10 I shall introduce a technical distinction between “handedness” and helicii)
but for the moment we shall use the terms interchangeably.

+ For massless particles only the maximal value of |m,| occurs. For example, the photon can
have m, = +1 or m; = —1, but not m, = 0. So the helicity of a massless particle is always *1. In
the case of the photon these represent states of left- and right-circular polarization. The absence of
m;, = 0 corresponds to the absence of longitudinal polarization in classical optics.
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Figure 4.10 Decay of 7~ at rest.
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has spin 0, the muon and the antineutrino spins must be oppositely aligned.*
Therefore if the antineutrino is right-handed, the muon must be right-handed
too (in the pion rest frame)—and this is precisely what is found experimentally.'?
Measurement of the muon helicity, then, enables us to determine the antineutrino
belicity. By the same token, in =" decay the antimuon is always left-handed,
and this indicates that the neutrino is left-handed. For contrast, consider the
decay of the neutral pion, #°® — ~ + . Once again, in any given decay the two
photons must have the same helicity. But this is an electromagnetic process,
which respects parity, and thus, on the average, we get just as many right-handed
photon pairs as left-handed pairs. Not so for neutrinos; they only interact weakly,
and every one is left-handed; the mirror image of a neutrino does not exist.{
That is about the starkest violation of mirror symmetry you could ask for.1

In spite of its violation in weak processes, parity invariance remains a valid
symmetry of the strong and electromagnetic interactions. It is useful, therefore,
to develop some formalism and terminology. First a minor technical point: in-
stead of reflections, which oblige us to choose arbitrarily the plane of the “mirror”,
we’ll talk about inversions, in which every point is carried through the origin to
the diametrically opposite location (Fig. 4.11). Both transformations have the
property of turning a right hand into a left hand; in fact, an inversion 1s nothing
but a reflection followed by a rotation (180° about the y axis, in the figure). Thus
in the cases of interest (which also possess rotational symmetry) it is a matter of
indifference which one is used. Let P denote inversion; we call it the “parity
operator.” If the system in question is a right hand, P turns it into an upside-

* The orbital angular momentum (if there is any) points perpendicular to the outgoing velocities,
s0 it does not affect this argument,

t+ This is perhaps too strong a statement. There could, I suppose, be right-handed neutrinos
around, but they do not interact with ordinary matter by any mechanism presently known. If it turns
out that neutrinos have a small but nonzero mass, then, of course, right-handed neutrinos must exist.
None of this, however, can alter the fact that when a #~ decays, the emerging u~ is right-handed in
the CM frame and that by itself destroys mirror symmetry.

By the way, back in 1929, shortly after the publication of Dirac’s equation, Weyl presented a
beautifully simple theory of massless particles of spin 1, which had the feature that they carried a
fixed “handedness.” At the time Weyl’s theory aroused limited interest, since there were no massless
particles known, except for the photon, which carries spin 1. When Pauli introduced the neutrino,
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in 1931, you might suppose that he would dust off Weyl’s theory and put it to use. He did not. Pauli
rejected Weyl's theory out of hand, on the ground that it violated mirror symmetry. He lived to
regret this mistake, and in 1957 Weyl’s theory was triumphantly vindicated.

1 It may occur to you, as it did to many physicists at the time, that if we simultaneously
convert all particles into their antiparticles, then a kind of mirror symmetry is restored; the image of
*r~ — u~ + v, (with a right-handed antineutrino) becomes = — u* + », (with a left-handed neutrino),
which is perfectly okay. This realization was some comfort, until 1964, when it, too, was shown to
fail. More on this in the following sections.
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down and backward /eff hand (Fig. 4.11b). When applied to a vector, a, P produces
a vector pointing in the opposite direction: P(a) = —a. How about the cross
product of two vectors: ¢ = a X b? Well, if P changes the sign of a and of b, then
evidently c itself does not change sign: P(c) = c. Very strange! Apparently there
are two kinds of vectors—*“ordinary” ones, which change sign under the parity
transformation, and this other type, of which the cross product is the classic
example, which do nor. We call the former “polar” vectors, when the distinction
must be drawn, and the latter “pseudo” (or “axial”) vectors. Notice that the
cross product of a polar vector with a pseudovector would be a polar vector.
You will have encountered pseudovectors before, perhaps without using
this language; angular momentum is one, and so is the magnetic field. In a theory

with parity invariance, you must never add a vector to a pseudovector, just as

in a theory with rotational symmetry, you cannot add a vector to a scalar. For
example, in the Lorentz force law, F = g(E + v/c X B), it is the cross product
(a polar vector) that enters; B itself could never be added to E. As we shall see,
it is precisely the addition of a vector to a pseudovector in the theory of weak
interactions that leads to the breakdown of parity. Finally, the dot product of
two polar vectors does not change sign under P, but the dot product of a polar
vector and a pseudovector [or the triple product of three vectors: a - (b X ¢)] does
change sign. So there are two kinds of scalars, too: the “ordinary” kind, which
don’t change sign, and “pseudoscalars,” which do. All this is summarized in
Table 4.5.*

* The terminology extends very simply to special relativity: a* = (a° a) is called a pseudo-
vector if its spatial components constitute a pscudovector P(a) = a; p is a pseudoscalar if it goes into
minus itself under spatial inversions P(p) = —
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TABLE 4.5 BEHAVIOR OF SCALARS AND VECTORS
UNDER THE PARITY TRANSFORMATION, P

Scalar : Ps)=s
Pseudoscalar : P(p)=-—
Vector (or polar vector) 1 P(v)y=-—
Pseudovector (or axial vector) : Pa)=a

If you apply the parity operator ¢wice, of course, you’re right back where
you started:

Pi=1] (4.52)

(The parity group, then, consists of just two elements: [ and P.) It follows that
the eigenvalues of P are +1 (see Problem 4.34). For example, scalars and pseudo-
vectors have eigenvalue +1, whereas vectors and pseudoscalars have eigenvalue
—1. The hadrons are eigenstates of P and can be classified according to their
eigenvalue, just as they are classified by spin, charge, isospin, strangeness, and
s0 on. According to Quantum Field Theory the parity of a fermion (half-integer
spin) must be opposite to that of the corresponding antiparticle, while the parity
of a boson (integer spin) is the same as its antiparticle. We take the quarks to
have positive intrinsic parity, so the antiquarks are negative.* The parity of a
composite system in its ground state is the product of the parities of its constituents
(we say that parity is a “multiplicative” quantum number, in contrast to charge,
strangeness, and so on, which are “additive”.} Thus the baryon octet and decuplet
have positive parity, [(+1)°], whereas the pseudoscalar and vector meson nonets
have negative parity [(—1)(+1)]. (The prefix “pseudo” tells you the parity of the
particles.) For excited states there is an extra factor of (—1), where /is the orbital
angular momentum.'* Thus, in general, the mesons carry a parity of (—1)"*! (see
Table 4.6). Meanwhile, the photon is a vector particle (it is represented by the
vector potential 4*). Its spin is 1 and its intrinsic parity is — 1.}

The mirror symmetry of strong and electromagnetic interactions means
that parity is conserved in all such processes. Originally, everyone took it for

* This choice is completely arbitrary; we could just as well do it the other way around. Indeed,
in principle we could assign positive parity to some quark flavors and negative to others. This would
lead to a different set of hadronic parities, but the conservation of parity would still hold. The rule
stated in the text is obviously the simplest, and it leads to the conventional assignments.

+ There is less to this distinction than meets the eye; in a sense, it results from a notational
anomaly. Scrupulous consistency would require that we write the parity operator in exponential
form, P = "X with the operator K playing a role analogous to, say, spin [see eq. (4.28)]. The
eigenvalues of K would be 0 and 1, corresponding to +1 and —1 for P, and multiplication of parities
would correspond to addition, mod 2, of K.

1 Incidentally, you will notice here a certain parallel between parity and angular momentum.
Just as angular momentum comes in two varieties—orbital (associated with the pamcle S motlon)
and spin (an intrinsic property of the particle itself), so too does parity. There is the factor =1
(associated with the spatial configuration) and the intrinsic parities of the constituents. But whereas
the net angular momentum of a composite system is the sum of the individual terms, the net parity
is the product.
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TABLE 4.6 QUANTUM NUMBERS OF MESONS COMPOSED
OF u, d, AND s QUARKS

Orbital Net Typical mass
ang. mom. spin J I=1 =1 =0 MeV/c?

[=0 s=0 0" T K n,n 500
s=1 1— p K* w, ¢ 800

/=1 s=0 1 B 0, H? 1250
0++ 5 ; ¢, S* 1150

s=1 [ 1t A 0, D, 1300

2+ A, K* Lr 1400

granted that the same goes for the weak interactions as well. But a disturbing
paradox arose in the early fifties, known as the “tau—theta puzzle.” Two strange
mesons, called at the time 7 and 8, appeared to be identical in every respect—
same mass, same spin, same charge, and so on—except that one of them decayed
into two pions and the other into three pions, states of opposite parity:

gt —xt + 0 (P=+1)
+ at+ 70+ a0
T rt+at+a P==0 (8>3

It seemed most peculiar that two otherwise identical particles should carry dif-
ferent parity. The alternative, suggested by Lee and Yang in 1956 was that
7 and 0 are really the same particle (now known as the K*), and parity is simply
not conserved in one of the decays. This idea prompted their search for evidence
of parity invariance in the weak interactions and, when they found none, to
their proposal for an experimental test.

4.7 CHARGE CONJUGATION

Classical electrodynamics is invariant under a change in the sign of all electric
charges; the potentials and fields reverse their signs, but there is 2 compensating
charge factor in the Lorentz law, so the forces still come out the same. In ele-
mentary particle physics we introduce an operation that generalizes this notion
of “changing the sign of the charge”—it’s called charge conjugation, C, and it
converts each particle into its antiparticle:

Clp) = |p) (4.54)

“Charge conjugation™ is something of a misnomer, for C can be applied to a
neutral particle, such as the neutron (yielding an antineutron), and it changes
the sign of all the “internal” quantum numbers—charge, baryon number, lepton
number, strangeness, charm, beauty, truth—while leaving mass, energy, mo-
mentum, and spin untouched.
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As with P, application of C twice brings us back to the original state:
c?=1 (4.55)

and hence the eigenvalues of C are =1. Unlike P, however, most of the particles
in nature are clearly not eigenstates of C. For if |p) is an eigenstate of C, it
follows from equation (4.54) that

Clp) = %lp) = |p) (4.56)

so |p) and |p) differ at most by a sign, which means that they represent the same
physical state. Thus only those particles that are their own antiparticles can be
eigenstates of C. This leaves us the photon, as well as all those mesons which lie
at the center of their Eightfold Way diagrams: =°, #, v, p°, ¢, w, ¥, and so on.
Because the photon is the quantum of the electromagnetic field, which changes
sign under C, it makes sense that the photon’s “charge conjugation number” is
—1. It can be shown'® that a system consisting of a spin-4 particle and its anti-
particle in a configuration with orbital angular momentum / and total spin s
constitutes an eigenstate of C, with eigenvalue (—1)"**. According to the quark
model, the mesons in question are of precisely this form: For the pseudo-scalars,
[=0and s=0,so C = +1; for the vectors, / = 0 and s = 1, so C = —1. (Often,
as in Table 4.6, C is listed as though it were a valid quantum number for the
entire supermultiplet; in fact it pertains only to the central members.)

C is a multiplicative quantum number, and, like parity, it is conserved in
the strong and electromagnetic interactions. Thus, for example, the #° decays
into two photons:

-+ 4.57)

(C = +1 before and after), but it cannot decay into three photons. (For a system
of n photons, C = (—1)".) Similarly, the w goes to #° + +, but never to #° + 2.
In the strong interactions, charge conjugation invariance requires, for example,
that the energy distribution of the charged pions in the reaction

p+p—a+7 +a° (4.58)

should (on the average) be identical.!® On the other hand, charge conjugation is
not a symmetry of the weak interactions: when applied to a neutrino (left-handed,
remember) C gives a left-handed antineutrino, which does not exist. So the
charge-conjugated version of any process involving neutrinos is certainly nof a
possible physical process. And purely hadronic weak interactions also show vi-

olations of C as well as P.
Recaunge o few nnrhnlpc are eigenstates of C 1ts direct annlmaf on 1in ele-
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mentary particle physics is rather limited. Its power can be somewhat extended,
if we confine our attention to the strong interactions, by combining it with an
appropriate isospin transformation. Rotation by 180° about the number 2 axis
in isospin space* will carry I3 into —13, converting, for instance, a #* into a 7.

* Some authors use the number | axis. Obviously, any axis in the 1-2 plane will do the job.
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If we then apply the charge conjugation operator, we come back to 7*. Thus
the charged pions are eigenstates of this combined operator, even though they
are not eigenstates of C alone. For some reason the product transformation is

called “G-parity™:
G = CR,, where R,=¢™" (4.59)

All mesons that carry no strangeness (or charm, beauty, or truth) are eigenstates
of G-* for a multiplet of isospin I the eigenvalue is given (see Problem 4.36) by

G = (-1)C (4.60)
where C is the charge conjugation number of the neutral member. For a single
pion, G = —1, and for a state with n pions

G=(-1) (4.61)
This is a very handy result, for it tells you how many pions can be emitted in a
particular decay. For example, the p mesons, with / = 1, C = —1, and hence

G = +1, can go to two pions, but not to three, whereas the ¢, the w, and the ¥
can go to three, but not to two.

4.8 CP VIOLATION

As we have seen, the weak interactions are not invariant under the parity trans-
formation P: the cleanest evidence for this is the fact that the antimuon emitted
in pion decay

- u +, (4.62)

always comes out left-handed. Nor are the weak interactions invariant under C,
for the charge-conjugated version of reaction (4.62) would be

- u + 7, (4.63)

with a left-handed muon, whereas in fact the muon always comes out right-
handed. However, if we combine the two operations we’re back in business: CP
turns the left-handed antimuon into a right-handed muon, which is exactly what
we observe in nature. Many people who had been shocked by the fall of parity
were consoled by this realization; perhaps it was the combined operation that
our intuition had been talking about all along—maybe what we should have

meant by the “mirror image” of a right-handed electron was a left-handed pos-

$hzamze ode TR 33;m2 A Aafia
itron.t If we had defined parity from the start to be what we now call CP, the

* K*, for example, is not an eigenstate of G, for R, takes it to K®, and C takes that to K°. The
idea could be extended to the K’s, by using an appropriate SU(3) transformation in place of
R,, but since SU(3) is not a very good symmetry of the strong forces, there is little advantage n
doing so.

t Incidentally, we could perfectly well take electric charge to be a pseudoscalar in classical

electrodynamics; E becomes a pseudovector and B a vector, but the results are all the same. It is
really a matter of taste whether you say the mirror image of a plus charge is positive or negative.
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trauma of parity violation might have been avoided (or at any rate postponed).
It is too late to change the terminology now, but at least this pacifies our visceral
sense that the world “ought” to be left-right symmetric.

tha 1 -
CP invariance has bizarre uupu\.,atxuua for the neutral K mesons, as was

first pointed out in a classic paper by Gell-Mann and Pais.!” They noted that
the K°, with strangeness +1, can turn into its antiparticle K°, strangeness —1

K= R° (4.64)

through a second-order weak interaction we now represent by the diagrams in
Figure 4.12. (The possibility of such an interconversion between two particles
is almost unique to the neutral kaon system; among the “stable™ particles only
D°D® and B°B° share the property. See Problem 4.38.) As a result, the particles
we normally observe in the laboratory are not K° and K°, but rather some linear
combination of the two. In particular, we can form eigenstates of CP, as follows.
Because the K’s are pseudoscalars

PIK® = —|K®, PIK®) = —|K®) (4.65)
On the other hand, from equation (4.54)

CIK®) = R, CIR®) = K (4.66)
Accordingly CPK% = ~|K%,  CPIR®) = —|K®) (4.67)

and hence the (normalized) eigenstates of CP are
K = (1/V2XIK® — [R®) and  |Ky) = (1/V2)(K®) + |R®))  (4.68)
with
CPIK\) = |K;) and CPK,) = -|K) (4.69)

Assuming CP is conserved in the weak interactions, K, can only decay into a
state with CP = +1, whereas K, must go to a state with CP = —1. Typically,

KO Ko
,/—-—A——-\\ l‘-—!&,——\\
S A d s d
W -
¢ — —— —— y '
I Y !
u A u W'l +W’
| |
w- ! u i
*———
d A 5 d s
w—g \’—vﬁ—/
KO KO

Figure 4.12 Feynman diagrams contributing to K° 2 K°. (There are others, including
those with one or both # quarks replaced by cor ¢.)
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neutral kaons decay into two or three pions. But we have already seen that the
two-pion configuration carries a parity of +1, and the three-pion system has
P = —1 [eq. (4.53)]; both have C = +1. Conclusion: K, decays into two pions
(never three); K, decays into three pions (never two):

K; I 211', Kz — 37 (470)

Now, the 27 decay is much faster, because the energy released is greater. So if
we start with a beam of K®’s

KO = (1/V2)(K) + |K2D) (4.71)

the K, component will quickly decay away, and down the line we shall have a
beam of pure K,’s. Near the source we should see a lot of 27 events, but farther
along we expect only 3w decays.

Well ... that’s a lot to swallow. As Cronin put it, in a delightful
memoir: '8

So these gentlemen, Gell-Mann and Pais, predicted that in addition to the short-
lived K mesons, there should be long-lived K mesons. They did it beautifully,
elegantly and simply. I think theirs is a paper one should read sometime just for
its pure beauty of reasoning. It was published in the Physical Review in 1955. A
very lovely thing! You get shivers up and down your spine, especially when you
find you understand it. At the time, many of the most distinguished theoreticians
thought this prediction was really baloney.

But it wasn’t baloney, and in 1956 Lederman and his collaborators discovered
the K, meson at Brookhaven.'” Experimentally, the two lifetimes are

7, = 0.89 X 107'° sec
72 =5.2 X 1078 sec (4.72)

so the K,’s are mostly gone after a few centimeters, whereas the K;’s can travel
many meters. Notice that K, and K, are not antiparticles of one another, like
K° and K° rather, each is its own antiparticle (C = —1 for K, and C = +1 for
K>). They differ ever-so-slightly in mass; experiments give®

m,—m; =35%X10°%eV (4.73)

The neutral kaon system adds a subtle twist to the old question, “What is
a particle?” Kaons are typically produced by the strong interactions, in eigenstates
of strangeness (K° and K°), but they decay by the weak interactions, as eigenstates
of CP(K, and K,). Which, then, is the “‘real” particle? If we hold that a “particle”
must have a unique lifetime, then the “true” particles are K, and K,.* But we
need not be so dogmatic. In practice, it is sometimes more convenient to use
one set, and sometimes the other. The situation is in many ways analogous to
polarized light. Linear polarization can be regarded as a superposition of left-
circular polarization and right-circular polarization. If you imagine a medium
that preferentially absorbs right-circularly polarized light, and shine on it a linearly
polarized beam, it will become progressively more left-circularly polarized as it

* This, incidentally, was the position advocated by Gell-Mann and Pais.
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passes through the material, just as a K° beam turns into a K, beam. But whether
you choose to analyze the process in terms of states of linear or circular polar-
aation is largely a matter of taste.

The neutral kaons provide a perfect experimenial system for testing CP
mvariance. By using a long enough beam, we can produce an arbitrarily pure
sample of the long-lived species. If at this point we observe a 27 decay, we shall
know that CP has been violated. Such an experiment was reported by Cronin
and Fitch in 1964.2' At the end of a beam 57 feet long, they found 45 two-pion
events in a total of 22,700 decays. That’s a tiny fraction (roughly one in 500),
but unmistakable evidence of CP violation. Evidently the long-lived neutral
kaon is not a perfect eigenstate of CP after all, but contains a small admixture
of K 1+

L> vilz |K2> + 5|K1>) (474)
The coeflicient € is a measure of nature’s departure from perfect CP invariance;
experimentally its magnitude is about 2.3 X 1072,

Although the effect is small, and has never been observed outside the neutral
kaon system, CP violation poses a far deeper problem than parity ever did. The
sonconservation of parity was quickly incorporated into the theory of weak
mteractions (in fact, part of the “new’ theory—Weyl’s equation for the neu-
tnno—had been “waiting in the wings” for many years). Parity violation was
easier to handle precisely because it was such a Jarge effect: a/l neutrinos are left-
kanded, not just 50.01% of them. Parity is, in this sense, maximally violated, in
the weak interactions. By contrast, CP violation is a small effect on any scale,
and no one has yet found a “natural” way to accommodate 1t.*

The Fitch-Cronin experiment destroyed the last hope for any form of
exact mirror symmetry in nature. And subsequent study of the semileptonic
decays of K; has revealed even more dramatic evidence for CP violation. Al-
though 34% of all K;’s decay by the 3= mode we have discussed, some 39%
go to

(a) =" +e +7,
or by = +et+ v, (4.75)

Notice that CP takes (a) into (b), so if CP were conserved, and K; were a pure
agenstate, (a) and (b) would be equally probable. But experiments show”? that
K; decays more often into a positron than into an electron, by a fractional
amount 3.3 X 1073, Here for the first time is a process that makes an absolute
distinction between matter and antimatter, and provides an unambiguous, con-
vention-free definition of positive charge: it is the charge carried by the lepton
preferentially produced in the decay of the long-lived neutral K meson. The fact
that C'P violation permits unequal treatment of particles and antiparticles suggests

* A complex phase factor é in the Kobayashi-Maskawa matrix is a convenient vehicle for
mtroducing CP violation into the Standard Model. Indeed, it was this that led Kobayashi and Maskawa
W propose a third generation of quarks, before even charm was discovered. At present, however, &
® an arbitrary input parameter, which (like the other elements in the KM matrix) nobody knows
»ow to calculate.
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that it may be responsible for the dominance of matter over antimatter in the
universe.??

4.9 TIME REVERSAL AND THE TCP THEOREM

Suppose we made a movie of some physical process, say, an elastic collision of
two billiard balls. If we ran the movie backward, would it depict a possible
physical process, or would the viewer be able to say with certainty “No, no.
that’s impossible; the film must be running in reverse”? In the case of classical
elastic collisions the “time-reversed” process is perfectly possible. (To be sure.
if we put a /ot of billiard balls in the picture the backward version may be highly
improbable; we would be surprised to see the balls gather themselves together
into a perfect triangle, with a single cue ball rolling away, and we would strongly
suspect that the film had been reversed. But that’s just because we know it would
be extraordinarily difficult to set up the necessary starting conditions, such that
all the balls would roll together at just the right speeds and in just the right
directions. Thus the initial conditions may give us a clue to the “arrow of time,”
but the laws governing the collisions themselves work just as well forward as
backward.) Until fairly recently it was taken for granted that all elementary
particle interactions share this time-reversal invariance. But with the downfall
of parity it was natural to wonder whether time reversal was really so sacred.”

As it turns out, time reversal is a lot harder to test than P or C. In the first
place, whereas all particles are eigenstates of P, and many are eigenstates of C.
none is an eigenstate of T (the “time-reversal operator,” which runs the movie
backward).* So we cannot check the “conservation of 7™ simply by multiplying
numbers, the way we can for P and C. The most direct test would be to take a
particular reaction (say, n + p — d + v), and run it in reverse (d + v — n + p).
For corresponding conditions of momentum, energy, and spin, the reaction rate
should be the same in either direction. (This is called the “principle of detailed
balance,” and it follows directly from time-reversal invariance.) Such tests work
fine for the strong and electromagnetic interactions, and a variety of processes
have been checked. The results have always been negative (no evidence of T
violation), but this is hardly surprising. On the basis of our experience with P
and C we expect to see a failure of time reversal in the weak interactions, if
anywhere. Unfortunately, inverse-reaction experiments are tough to do in the
weak interaciions. Take, for 1nSLance, the typical weak decay A — p* + #~. The
inverse reaction would be p* + ™ — A, but we are never going to see such a
process, because the strong interaction of the proton and the pion will totally
swamp the feeble weak interaction. To avoid strong and electromagnetic con-
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tamination, we might go to a neutrino process. But it is notoriously difficult to
do accurate measurements on neutrinos, and here we are presumably looking
for a very small effect. In practice, therefore, the critical tests of T invariance
involve careful measurements of quantities that should be precisely zero if T is
a perfect symmetry. The classic example is a static electric dipole moment on

* A particle can be identical to its mirror image, and, if it’s neutral, to its own antiparticle.

but it can’t very well be identical to itself-going-backward-in-time (at least, not if anything ever
happens to it).
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an elementary particle.* Probably the most sensitive experiment to date is Ram-
sey’s upper limit on the electric dipole moment of the neutron:#

N~25 Apxe
v

ld! < e ( \Au} (4.76)

=
X
—

where e is the charge of the proton. As of 1985, no experiment has shown direct
evidence of T violation.

Nevertheless, there is a compelling reason to believe that time reversal
cannot be a perfect symmetry of nature. It comes from the so-called 7CP theorem,
one of the deepest results of quantum field theory.?® Based only on the most
general assumptions—Lorentz invariance, quantum mechanics, and the idea
that interactions are carried by fields—the TCP theorem states that the combined
operation of time reversal, charge conjugation, and parity (in any order) is an
exact symmetry of any interaction. It is simply impossible to construct a quantum
field theory in which the product TCP is violated. If, as the Fitch-Cronin ex-
periment demonstrated, CP is violated, there must be a compensating violation
of T. Of course, like any assertion of impossibility, the TCP theorem may just
be a measure of our lack of imagination; it must be tested in the laboratory, and
that is one reason it is so important to look for independent evidence of T
violation. But the TCP theorem has other implications that are also subject to
experimental verification: If the theorem is correct, every particle must have
precisely the same mass and lifetime as its antiparticle.t Measurements have
been made on a number of particle-antiparticle pairs; the most sensitive test to
date is the K° — K° mass difference, which, as a fraction of the X° mass, is
known to be less than 6 X 107", So the TCP theorem is on extremely firm
ground theoretically, and it is relatively secure experimentally. Indeed, as one
prominent theorist has put it, if a departure is ever found, “all hell breaks loose.”
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4.1.

4.2,

43.

44.

45.

46.

Prove that I, R, R_, R;, R,, and R, are all the symmetries of the equilateral
riangle. [Hint: One way to do this 1s to label the three corners, as in Figure 4.2. A
given symmetry operation carries A into the position formerly occupied by 4, B,
or C. If A — A, then either B— Band C — C, orelse B— C and C — B. Take
it from there.]

Construct a “multiplication table” for the triangle group, filling in the blanks on
the following diagram:

-+

! R R- Rs R, R,

[In row i, column j, put the product R;R;.] Is this an Abelian group? How can you
tell, just by looking at the multiplication table?

The triangle group, like any other group, has a trivial one-dimensional represen-

tation. It also has a nontrivial, one-dimensional representation, in which the elements

are not all represented by 1. Work out this second one-dimensional representation.

That is, figure out what number (1 X 1 matrix) each group element is represented

by. Is this representation faithful?

Work out the symmetry group of a square. How many elements does it have?

Construct the multiplication table, and determine whether or not the group is

Abelian.

(a) Show that the set of all unitary » X » matrices constitutes a group. (To prove
closure, for instance, you must show that the product of two unitary matrices
is itself unitary.)

(b) Show that the set of all » X n unitary matrices with determinant 1 constitutes
a group.

{c) Show that O(r») is a group.

(d) Show that SO(n) is a group.

Consider a vector A in two dimensions. Suppose its components with respect to

Cartesian axes x, V, are (ay, a,). What are its components (a%, a}) in a system x’,

' which is rotated, counterclockwise, by an angle 8, with respect to x, y? Express

your answer in the form of a 2 X 2 matrix R(6):

WEEW
ay ay
Show that R is an orthogonal matrix. What is its determinant? The set of al/ such

rotations constitutes a group; what is the name of this group? By multiplying the
matrices, show that R(6,)R(#,) = R(8, + 6,); is this an Abelian group?
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4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.
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1 0
Consider the matrix (0 ) . Is it in the group O(2)? How about SO(2)? What

is 1ts effect on the vector A of Problem 4.6? Does it describe a possible rotation of

the plane?

Suppose we interpret the electron literally as a classical solid sphere of radius r.

mass 1, spinning with angular momentum /. What is the speed, v, of a point on

its “equator™? Experimentally, it is known that r is less than 107'¢ cm. What is the

corresponding equatorial speed? What do you conclude from this?

When you’re adding angular momenta, using equation (4.12), it is useful to check

your results by counting the number of states before and after the addition.

For instance, in Example 4.1 we had two quarks to begin with, each could have

ms = +1 or m;, = —4, so there were four possibilities in all. Afier adding the

spins, we had one combination with spin 1 (hence m, = 1, 0, or —1) and one with

spin O (m, = 0)—again, four states in all.

(a) Apply this check to Example 4.2.

(b) Add angular momenta 2, 1, and %: list the possible values of the total angular
momentum, and check your answer by counting states.

Show that the “original” beta-decay reaction n — p + ¢ would violate conservation
of angular momentum (all three particles have spin 3). If you were Pauli, proposing
that the reaction is really » — p + e + ., what spin would you assign to the
neutrino?

In the decay A*" — p + n*, what are the possible values of the orbital angular
momentum quantum number, /, in the final state?

An electron in a hydrogen atom is in a state with orbital angular momentum quan-
tum number / = 1. If the total angular momentum quantum number j is 3, and
the z component of total angular momentum is $#, what is the probability of
finding the electron with m, = +1?

Suppose you had two particles of spin 2, each in a state with .S, = 0. If you measured
the toral angular momentum of this system, given that the orbital angular mo-
mentum is zero, what values might you get, and what is the probability of each”
Check that they add up to 1.

Suppose you had a particle of spin 3, and another of spin 2. If you knew that their
orbital angular momentum was zero, and that the toral spin of the composite system
was %, and its z component was —§, what values might you get for a measurement
of S; on the spin-2 particle? What is the probability of each? Check that they add
up to 1.

: S mn oz PRV o
1

and find the associated eigenvalues.

Show that |al* + |b]> = 1, [equation (4.24)], provided the spinor in question is
normalized [gquatinn (4.20)).

ST A

(a) Find the eigenvalues and normalized eigenspinors of S,, [equation (4.21)].
o
(b) If you measured S, on an electron in the state ( ) , what values might you
get, and what is the probability of each?

1 /V's')

Suppose an electron is in the state ( .
2/V3

(a) If you measured S, what values might you get, and what is the probability of
each?
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(b) If you measured S,, what values might you get, and what is the probability of
each?

(c) If you measured S,, what values might you get, and what is the probability of
each?

(4L

4.19. (a) Show that 62 = ¢2 = o2 = 1. (““1” here really means the 2 X 2 unit matrix; if
no matrix is specified, the unit matrix is understood.)
(b) Show that o0, = io,, 0,0, = I0x, 0,0%x= 0.
These results are neatly summarized in the formula

0i0;. = Oy + Ieguox

(summation over k implied), where &, is the Kronecker delta:

{l, ifi=j }
6,:,' = .
0, otherwise

and ¢, is the Levi-Civita symbol:

-1, if ijk = 132, 213, or 321

1, if ik = 123,231, or 312
€5k =
0, otherwise

4.20. Use the results of Problem 4.19 to show that
(a) The commutator, [4, B] = AB — BA, of two Pauli matrices is [o;, ;] = 2ie;0,.
(b) The anticommutator, {A, B} = AB + BA, is {a;, ¢;} = 25,.
(c) For any two vectorsaand b, (6-a)(c+b) =a-b + io-(a X b).

4.21. (a) Show that e™*/2 = jg,.
(b) Find the matrix U representing a rotation by 180° about the y axis, and show
that it converts *““spin up” into “spin down”, as we would expect.
(c) More generally, show that

] - f

U(f) = cos 37 i(f - o) sin 3

where U(f) is given by equation (4.28),  is the magnitude of 8, and 8 = 6/9.
[Hint: Use Problem 4.20, part (c).]

4.22. (a) Show that U, in equation (4.28), is unitary.
(b) Show thatdet U = 1.
[Hint: You can either do this directly (however, see footnote on page 115), or
else use the results of Problem 4.21.]

4.23. The extension of everything in Section 4.4 to higher spin is relatively straightforward.
For spin 1 we have three states (m, = +1, 0, —1), which we may represent by

column vectors;
1 0 0
o). [1). o)
0 0 1

respectively. The only problem is to construct the 3 X 3 matrices S, S, and S..
The latter is easy:
{a) Construct S, for spin 1.
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4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.
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To obtain S, and S, it is easiest to start with the “raising” and “lowering”
operators, S. = S, + iS,, which have the property

Silsm) = AVs(s + 1) — m(m £ D)|s(@m £ 1))

(b) Construct the matrices S, and S_, for spin 1.
(¢) Using (b), determine the spin-1 matrices S, and S,.
(d) Carry out the same construction for spin 3.

Determine the isospin assignments |/ I3} for each of the following particles (refer

to the Eightfold Way diagrams in Chapter 1): -, =7, Z°, p*, 5, K°.

(a) Check that the Gell-Mann-Nishijima formula works for the quarks u, 4.
and s.

(b) What are the appropriate isospin assignments, |I I;), for the antiquarks, @, d.
and §? Check that your assignment is consistent with the Gell-Mann-Nishijima
formula.

[Since Q, I;, A, and S all add, when we combine quarks together, 1t follows
that the Gell-Mann-Nishijima formula holds for all hadrons made out of u, d.
s, #, d and §]

(a) The Gell-Mann-Nishijima formula, equation (4.37), was proposed in the early
fifties, which is to say long before the discovery of charm, beauty, or truth.
Using the table of quark properties (on page 47), and the quark isospin
assignments, equation (4.38), deduce the general formula expressing ¢ in terms
ofAd, I,,S C B and T.

(b) Because u and d are the only quarks with nonzero isospin, it should be possible
to express I; in terms of U (“upness”) and D (“downness™). What'’s the formula?
Likewise, express A4 in terms of the flavor numbers U, D, S, C, B, and T.

(c) Putting it all together, obtain the formula for Q in terms of the flavor numbers
(that is, eliminate 4 and I; from your formula in part (a)). This final version
represents the cleanest statement of the Gell-Mann-Nishijima formula, in the
three-generation quark model.

For two isospin-} particles, show that IV - I® = } in the triplet state and —3 in the

singlet. [Hint: Lo, = I'V + I®; square both sides.]

(a) Referring to equations (4.47) and (4.48), work out all the =V scattering am-
plitudes, /1, through M;, in terms of M, and M;.

(b) Generalize equation (4.49) to include all 10 cross sections.

(c) In the same way, generalize equation (4.50).

Find the ratio of the cross sections for the following reactions, when the total
CMenergyis 1232 MeV: (@) + p— K+ Z% (D)7 +p— K"+ Z7;(c) =
+p— K"+ 2",

What are the possible total isospins for the following reactions: (a) K™ + p — Z7
+ 7% (b) K~ + p — Z* + = . Find the ratio of the two cross sections, assuming
one or the other isospin channel dominates.

On the graph in Figure 4.6 we see “resonances” as 1525, 1688, 1920, and 2190 (as
well as the one at 1232). By comparing the two curves, determine the isospin of
each resonance. The nomenclature is N (followed by the mass) for any state with

= 1 and A for any state with = 3. Thus the nucleon is M939), and the “‘original”
A is A(1232). Name the other resonances, and confirm your answers by looking in
the Particle Data Booklet.

The Z*° can decay into Z* + =, Z° + 7% or 2~ + 7" (also A + =°, but we’re not
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433.

435.

437.

438.

4.39.

concerned with that here). Suppose you observed 100 such disin
many would you expect to see of each type?
(a) The « particle is a bound state of two protons and two neutrons, that is, a ‘He

nucleus. There is no isotope of hydrogen with an atomic weight of four (‘H),
nor of lithium *Li. What do you conclude about the isospin of an « particle?
(b) The reaction d + d — o + =° has never been observed. Explain why not.

(c) Would you expect *Be to exist? How about a bound state of four neutrons?

(a) Using equation (4.52), prove that the eigenvalues of P are £1.

(b) Show that any function f{x, y, z) can be expressed as the sum of an eigenfunction
fi(x, y, ) with eigenvalue +1 and an eigenfunction f_(x, y, z) with eigenvalue
—1. Construct the functions f; and /_, in terms of /.

(a) Is the neutrino an eigenstate of P? If so, what is its intrinsic parity?
(b) Now that we know r* and #* are actually both the K*, which of the decays in
equation (4.53) actually violates parity conservation?

(a) Using the information in Table 4.6, determine the G parity of the following
mesons: 7(140), p(770), «(783), 7(549), #(958), ¢(1020), f{1270).
(b) Show that R,/I0) = (—1)’|I0), and use this result to justify equation (4.60).

The dominant decays of the n meson are
n— 2y (39%), n—3x(56%), n— 7wy (5%)

and it’s classified as a “stable” particle, so evidently none of these is a purely strong

interaction. Offhand, this seems odd, since at 549 MeV/c? the 5 has plenty of mass

to decay strongly into 2w or 3.

(a) Explain why the 27 mode is forbidden, for both strong and electromagnetic
interactions.

(b} Explain why the 37 mode is forbidden as a strong interaction, but allowed as
an electromagnetic decay.

For two particles to interconvert, 4 2 B, it is necessary that they have the same
mass (which in practice means that they must be antiparticles of one another), the
same charge, the same baryon and lepton numbers. In the Standard Model, with
the usual three generations, show that 4 and B would have to be neutral mesons,
and identify their possible quark contents. Which of these particles have been found,
so far? Why doesn’t the neutron mix with the antineutron, in the same way as the
K° and K° mix to produce K; and K,? Why don’t we see mixing of the neutral
strange vector mesons K°* and K°*?

Suppose you wanted to inform someone on a distant galaxy that humans have their
hearts on the left side. How could you communicate this unambiguously, without
sending an actual “handed” object (such as a corkscrew, a circularly polarized light
beam, or a neutrino). For all you know their galaxy may be made of antimatter.
You cannot afford to wait for any replies, but you are allowed to use English.






Most of this chapter is devoted to the nonrelativistic theory of two-particle
bound states, with emphasis on hydrogen (e"p*), positronium (e e*), char-
monium (c), and bottomonium (bb). This material is not used in subsequent
chapters and may be skimmed, saved for later, or skipped entirely. Two tools
from elementary quantum mechanics are essential: the Schrodinger equation
and perturbation theory; readers unacquainted with these subjects should refer
to the appropriate sections of an introductory quantum text (though the es-
sential points are reviewed here, as they arise). The final two sections (5.8
and 5.9) concern relativistic light quark systems—the familiar mesons and
barvons—about which far less can be said with confidence. I concentrate on
the spin/flavor/color structure of the wave functions and develop a model for
estimating masses and magnetic moments. This material does not involve
the Schrodinger equation or perturbation theory and can be read independently
of Sections 5.1 through 5.7. It will be used briefly later on, in the latter part
of Chapter 9.

Until recently, the theory of bound states played a rather minor role in particle
physics. There was, of course, hydrogen (proton plus electron)—but this (the
simplest atom) fell in the domain of atomic physics. And there was the deuteron
(proton plus neutron)—but this (the simplest nontrivial nucleus) belonged more
properly to nuclear physics. The quark model, though, changed everything. Sud-
denly the hadrons themselves were bound states—all mesons were two-quark
systems, and all baryons were three-quark systems. With this discovery the theory

of bound states became an important component of elementary particle physics.

143



144 5/BOUND STATES

The analysis of a bound state is stmplest when the constituents travel a:
speeds substantially less than ¢, for then the apparatus of nonrelativistic quantum:
mechanics can be brought to bear. Such is the case for hydrogen and for hadrons
made out of heavy quarks (¢, b, and ¢). The more familiar light-quark states
(made out of u, d, and s) are much more difficult to handle, because they are
intrinsically relativistic, and quantum field theory (as currently practiced) is no:
well suited to bound-state problems. (Most of the techniques available start from
the premise that the particles are initially free, and free again after some brie’
interaction (a collision, typically), whereas in a bound state, by its nature, the
particles interact continuously over a long period.) At present, therefore, there
exists a very rich theory of “charmonium” (cc, the ¥ meson system) and “bot-
tomonium” (bb, the T system), but comparatively little can be said about the
excited states of ui (say) or dd. How can we tell whether a given bound state 1<
relativistic or not? The simplest criterion is the following: If the binding energs
is small compared to the rest energies of the constituents, then the system 1<
nonrelativistic.* For example, the binding energy of hydrogen is 13.6 €V, whereas
the rest energy of an electron is 511,000 eV—this is clearly a nonrelativistic
system. On the other hand, quark-quark binding energies are on the order of a
few hundred MeV, which is about the same as the effective rest energy of v,
or s quarks, but substantially less than ¢, b, and ¢ (see Table 4.4). So the ligh:

quark hadrons are relativistic, but the heavy quark systems are not.
For most of this chapter we shall restrict our attention to nonrelativistic

bound states of two particles. To establish the framework for this discussion |
must first review some basic quantum mechanics.! The principal foundation
for nonrelativistic quantum theory is Schrodinger’s equation. I cannot pretend
to derive the Schrodinger equation—any more than one can derive Newton's
laws of motion—it is, after all, an axiom of the theory. But I can perhaps
make it plausible, as follows. In classical mechanics the sum of the kinetic en-
ergy (Amv?> = p*/2m) and the potential energy (V(x, y, z)) is a constant—the
total energy (E):+

1
—p*+V=E (5.1
2m

In quantum mechanics the momentum p is replaced by the momentum operator
h ( hd h 0 o h 3 \

—V n_— py— —— )

i " dexY iaytt i az)
* In general, the total energy of a composite system is the sum of three terms: (i) the res:

energy of the constituents, (ii) the kinetic energy of the constituents, and (iii) the potentiai energy o

the configuration. The latter two are typically comparable in size (the precise relation is givent by the

virial theorem, which you can look up on any mechanics or guantum text), If the binding energy 1s
much less than the constituent rest energies, so too is their kinetic energy, and hence the system is
nonrelativistic. On the other hand, if the mass of the composite structure is substantially different
from the sum of the rest masses of the constituents, then the kinetic energy is large and the system
is relativistic.

t In a dissipative system (say, one with friction), the mechanical energy is not conserved. But
on the microscopic level there is no such thing as a dissipative force, and what may have looked like
nonconservation of energy on the macroscopic scale is simply a conversion of energy into an unseen
form (typically heat).

o
p— (5.-'
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and energy by the operator
E—ih 9 (5.3)
at

Equation (5.1) becomes a collection of derivatives, which we take to act on the
“wave function,” ¥(x, y, z, t):

(—h—2V2+V)‘I'=z'h—a—\I' (5.4)
2m ot |
This is the (time-dependent) Schrddinger equation. The solution (¥) describes
a particle of mass m in the presence of a specified potential energy function V.
Specifically, |W(x, ¥, z, 0)|* dx dy dz is the probability of finding the particle in
the volume element d3x = dx dy dz, at time . Since the particle must be some-
where, the integral of |¥|? over all space has to be 1:

fl\mzd-"x =1 (5.5

We say that the wave function is “normalized.”*

The Schrodinger equation can be solved by “separation of variables.” To
begin with, we look for solutions that are simple products of a function of position,
¥x, y, z), and a function of time, f{(¢):}

Y(x, y, z, 1) = ¥x, y, 2)A0) (5.6)
With this ansitz, equation (5.4) can be written

1 h? ih df

—|-—V*+ ) =—— 5.7

¥ ( 2m vy f dt (3.7)

The left side depends only on position, the right side depends only on time; the
only way this equation can hold for all x, y, z, and ¢ is if both sides are in fact
constant. Physically, this “‘separation constant” represents the total energy of the
particle, so we call it E:

h2
(— — VvV + V)\(/ = EY (5.8)
2m
L df
ih — = Ef (5.9)

The second of these 1s easy to solve:}

* Notice that a solution to the Schrddinger equation (5.4) can be muitiplied by any constant
and still remain a solution. In practice, we fix this constant by demanding that equation (5.5) be
satisfied; this process is called “normalizing” the wave function.

1 Of course, most solutions to the Schridinger equation do not have this form. For a justification
of the method of separation of variables, see, for example, reference 2, Section 3.3.

T The general solution to equation (5.9) includes an overall mulitiplicative constant. However,
since we're going to multiply f by ¢ [eq. (5.6)], we may as well absorb the constant into ¢ and keep
f as simple as possible.
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o) = et (5.10)

The first [eq. (5.8)] is called the time-independent Schrodinger equation. The
operator on the left is known as the “Hamiltonian”:
hZ
=——V+V (5.11)
2m
and the (time-independent) Schrédinger equation has the form of an eigenvalue
equation:

HY = EY (5.12)

Y is an eigenfunction of H, and E is the eigenvalue. Evidently, the complete
wave function for a particle of mass m and energy E, under the influence of a
potential energy V(x, y, z), 18

W(x, y, z, ) = Yx, y, z)e " F* (5.13)

where V satisfies equation (5.8).*

In the case of a spherically Symmetrical (or “central”) potential, V' is a
function only of the distance from the origin, and we adopt the usual spherical
coordinates (r, 6, ¢), in which the Laplacian, V* = &#/dx* + 8%/0y* + 8°/0z°
takes the form?

1 9 0 1 3 0 1 &
Vi=—=—|r? —) + ( 0 ) - - 14
r* ar (r dr] r*sin 8 sin 90) ' r?sin® 6 3¢° (5.14)

The time independent Schrodinger equation can now be solved by further sep-
aration of variables. Writing

(r, 8, ) = R(NOO)Y(¢) (5.15)

equation (5.8) reduces to three (ordinary) differential equations for the functions
R, O, and &:

1 d { l(l + 1)
- — 72 V(ir) — E) R 5.16
redr\ dr) I- ( (r) )] ( )
d do ]
sin § — pr (sm 6 %) = [m,z — K1+ 1)sin® 6]9 (5.17)
d*® »
— = ~miP 5.18
The separation constants, / and #1;, have been aptly chosen, for they correspond
precisely to the orbital angular momentum quantum numbers introduced in

Chapter 4. The solution to equation (5.18) is easy:t

* Notice that [¥}? = |[¢|2. For most purposes it is only the absolute square of the wave function
that matters, and we shall work almost exclusively with . Casually, we often refer to  as “the wave
function,” but remember that the complete wave function carries the exponential time dependence.

+ The second (linearly independent) solution, € ~im# is covered by letting my; run to negative
values. We could use sin(m;¢) and cos(m;$) instead, and in electrostatics (where the same problem
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B(p) = o™ (5.19)

Solutions to equation (5.17) are less familiar; they are the so-called associated
Legendre functions:>

O(0) = P(cos §) (5.20)
where (in case you’re interested)*
d (+mp
PR = (= 2R ) @ - 1y (5:21)

Actually, it is customary to combine O and &, with a conventional normalization
factor, to form spherical harmonics:+

(2] + 1) (l - m,)'
4 (I + my)

Yie, ¢) = (—D)™Pi(cos f)e'™9 (5.22)
Spherical harmonics are tabulated in many places (including the Particle Data
Booklet); a few of the more useful ones are given in Table 5.1.

Please don’t let the complicated-looking formulas distract you. I include
them mainly for completeness, but also to demonstrate that there is nothing
mysterious about the angular part of the wave function; it’s just that it involves
functions that are not terribly familiar. Notice, however, that in spite of the fancy
mames, they’re only combinations of sines, cosines, and exponentials. Our real
concern is not with the angular dependence at all, but rather with equation
(5.16), which carries the sole reference to the specific potential. We can simplify
the situation slightly by introducing a new function:

w(r) = rR(r) (5.23)
m terms of which equation (5.16) becomes
h? d*u h2 K+ 1)
-+ | V() +— =E 5.24
2m dr? [ (r) 2m  r? ]u “ (5.24)

We call this the “radial Schrédinger equation”; curiously enough, it has exactly
the same form as equation (5.8) for one dimension, except that the potential is
augmented by the so-called “centrifugal barrier,” (A2/2m)i(l + 1)/r°.

Equation (5.24) 1s about as far as we can pursue the matter in general
terms; at this point we have to put in the particular potential () for the problem
at hand. The strategy then will be to solve the radial equation for 1(r) and combine

anses in solving Laplace’s equation) we would, since the potential must be real. But there is no
such constraint on , and in quantum mechanics the exponential form (5.19) is preferable, because,
unlike the sine and cosine, it is an eigenstate of L,. Notice that m; must be an integer, in order that
(¢ + 27) will equal $(¢); after all, ¢ and ¢ + 27 describe the same geometrical point.

* Notice that equation (5.21) makes sense only if /, like m;, is an integer, and gives zero if
m; > [. There exist solutions to equation (5.17) for other values of / and m;, but they do not vield
sormalizable wave functions.

t This assumes n; 2 0; for m; < 0, we use Y7 = (—1)™(Y;™)*,
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TABLE 5.1 SPHERICAL HARMONICS FOR /=0,1,2, AND 3

Y8=—1—, Y9 = \/icosﬂ, Yi= 3—(390326—1,,
4r \/41‘- \/1617
Yy= — (5cos* 8 — 3 cos ),
1611'

Y==-\/g;sinﬂe"°’, Y5=—\/;:15rsinﬂcosﬂe*’¢
Y§=—\/gsm6(5ms 6~ 1)e*
Y- \/gsm b e, Y= \/;,zzisinzﬁcosﬂef"
Y§=—\A%sm30a¢

the result with the appropriate spherical harmonic to get the full wave function
. In the course of solving the radial equation, however, we shall discover that
only certain special values of E lead to acceptable results. For most values of £
the solution to equation (5.24) blows up at large r, and yields a nonnormalizable
wave function. Such a solution does not represent a possible physical state. This
rather technical detail is the source of the most striking and important feature
of quantum mechanics: a bound system cannot have just any old energy (as it
could classically); instead, the energy can take on only certain specific values,
the so-called “allowed energies” of the system. Indeed, our real concern is not
with the wave function itself, but with the spectrum of allowed energies.

5.2 THE HYDROGEN ATOM

The hydrogen atom consists, of course, of an electron and a proton. The proton,
however, is so heavy (relatively) that it essentially just sits at the origin; the wave
function in question is that of the electron. Its potential energy, due to the electrical
attraction of the nucleus, is (in Gaussian units)
€2
V(r) = — - (5.25)

When this potential is put into the radial equation, it is found (see Problem 5.5)
that normalizable solutions occur only when E assumes one of the special values

m€4 v 2 1 2
En= —W= —a " mc 2_’12 = —-13.6 eV/n (n= 1, 2, 3:) (526)
e? 1
here =— = — 5.27
wher * T he 137.036 6.27)
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ts the fine structure constant. The corresponding (normalized) wave function is*

, ((2V (n—1-11N"" wﬁml2r\’ -~ -
¥uim(r, 0, ) = un } onln + l)']J\ e \n—} Pl 1 k—}Y 0, ¢) (5.28)

2
where a= mh—ez = 0.529 X 10~ cm (5.29)

ts the “Bohr radius” (roughly speaking, the radius of a hydrogen atom) and

L2,2) = (—1)?(%,)p[e2(§z)q(e-"zq)] (5.30)

ts an associated Laguerre polynomial. Obviously, the wave function itself is a
bit of a mess, but that’s not really what concerns us. The crucial thing is the
formula of the allowed energies, equation (5.26). [This result was first obtained
by Bohr in 1913 (more than a decade before the Schrodinger equation was
introduced) by a brilliant (although, in retrospect, extraordinarily lucky) amalgam
of classical ideas and primitive quantum theory, a blend, as Rabi put it, of
“artistry and effrontery.””] Observe that the wave function is labeled by three
numbers: #, {the “principal quantum number’’), which can be any positive in-
teger—it determines the energy of the state [eq. (5.26)]; /, an integer which ranges
from O up to n — 1 and specifies the total orbital angular momentum [eq. (4.2)];
and m;, an integer which can assume any value between —/ and +/, giving the
z component of the angular momentum [eq. (4.4)]. Evidently, there are 2/ + 1
different m;’s, for each / and » different I’s, for each ». The total number of
distinct states that share the same principal quantum number 7, and hence the
same energy, 1s, therefore

n—1

>RI+1)=n (5.31)

=0

This is called the degeneracy of the nth energy level. Hydrogen is a surprisingly
degenerate system; spherical symmetry alone dictates that the 2/ + 1 states with
a given value of the total angular momentum should be degenerate, since they
differ only in the orientation of L, but this suggests a sequence 1, 3, 5,7, ...,
whereas the energy levels of hydrogen have much higher degeneracies: 1, 4, 9,
16, .. .. So far, however, we have neglected the electron’s spin, as well as a small
relativistic effect. Their inclusion, as we shall see in the next section, leads to
corrections that “hift” the “extra” degeneracy, splitting the Bohr energies into
groups of closely spaced levels.

Before coming to that, however, I should describe how the quantized energy
levels of hydrogen reveal themselves in the laboratory, for in practice we do not
measure the energies themselves, but rather the wavelength of the light emitted
when the electron makes a transition from a higher level to a lower one (or the
light absorbed when it goes the other way).> The photon carries the difference
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m energy between the initial and final states. According to the Planck formula

feq. (1.1)], then

me* (1 1)

oon=h=Eini' —Epa=—T5Sl5—— 5.32

Eph t v tial final 2h2 (1’1,2 I’l}) ( )
The emitted wavelength, therefore, is given by
1 1 1

X = R(n—f2 - n—?) (533)
me’c

where R= s (5.34)

This is the famous Rydberg formula for the spectrum of hydrogen. It was dis-
covered experimentally by nineteenth-century spectroscopists, for whom R was
amply an empirical constant. The greatest triumph of Bohr’s theory was its
derivation of the Rydberg formula, and its calculation of R in terms of the
fundamental constants m, ¢, ¢, and A (see Fig. 5.1).

5.3 FINE STRUCTURE

As the precision of experimental spectroscopy improved, small departures from
the Rydberg formula were detected. Spectral lines were resolved into doublets,
tnplets, and even larger families of closely spaced peaks. This fine structure is
actually attributable to two distinct mechanisms: one a small relativistic correc-
von, and the other a magnetic coupling between the electron’s spin and its
orbital motion. We shall analyze the two effects separately, and then com-
binc them.

But first a word about perturbation theory. Suppose we have solved the

Schrodinger equation for some Hamiltonian H, in the sense that we know the
allowed energies F and the corresnondine wave functions J/ ( 1 beine whatever

e e -5 AANS RALW WA LA R NS LANsSRll eV W AMSLLWLANSLIEL bt 22 Y Y AL LW Y WL

collection of 1nd1ces 15 used to label the states; in the case of hydrogen it stands
for n, /, and m;). Now suppose we change the Hamiltonian slightly, adding a
small perturbation AH, so that the new Hamiltonian is # + AH. This will
presumably displace the energy levels a bit, and we may ask the question: By
bow much, AE}, is the jth energy level shifted? The answer, to good approxi-
mation, is that A E; is the average value of A H, as computed in the state y; (see
Problem 5.8):*

AE = (AHY, = f v AH, dx (5.35)

* I think this is a reasonably plausible result, but if you want to see it derived, look in any
mtroductory quantum text (such as those in ref, 1) under “perturbation theory.”
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5.3.1 The Relativistic Correction

In developing the Schridinger equation, I used the classical formula for kinetic
energy: T = p?/2m. The relativistic formula (3.45), expressed in terms of p, is

T = Vp°c? + mPc* — mc* = me?[V1 + (p/mc)* — 1]

= mc?[1 + 5(p/me)* — f(p/mo)* + - -+ —1]
2 4

p p
z%—mﬂ---. (5.36)

The lowest-order relativistic correction to the Hamiltonian is therefore
— 1 4
AHyg = — Py (5.37)

Now, to apply equation (5.35), we need the expectation value of p* (using the
quantum replacement (5.2) for p) in the state Y, . . . , and that does not look
easy. Fortunately, we can get around it by using the fact that in such a state

2

P _E -V (5.38)
2m
Thus
AEnm = — nicz (B2 — 2EAVY + (V) (5.39)

Since V = —e?/r, we now require only the expectation values of 1/r and 1/r*.
These are worked out in the more advanced quantum texts:5

1 1
() == (5.40)

1 1

where a, again, is the Bohr radius (5.29). Using these expressions in equation
(5.39), we find that

AEy = —a® Zi[ 2n —3] 42
Ea=—a'me 45| 0D (5.42)

The Bohr energy levels go like o’mc? [eq. (5.26)]; the relativistic correction
carries two more powers of «, and hence is smaller by a factor of about 107,
So we’re talking about a very small perturbation indeed. The fine structure con-
stant, o, owes its name to the fact that it (or rather, ) sets the relative scale of

the fine structure in hydrogen.*

* However, one might say equally well that o sets the scaie of the Bohr levels themselves, in
the sense that o = —2E, /mc>.
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5.3.2 Spin-Orbit Coupling

From the electron’s point of view it is the proton that circles around, and this
orbital motion creates a magnetic field at the center given by*

B=— (5.43)

or, in terms of the electron’s orbital angular momentum, L = rmv:

B=——L (5.44)
mcer

The spinning electron constitutes a tiny magnetic dipole, with dipole momentt

p=——-=s (5.45)
mc

From classical electrodynamics we know that the energy of a magnetic dipole u
in the presence of a magnetic ficld B is’

W=—-u-B (5.46)

But the electron is not in an inertial frame;} to make all this rigorous we should
really speak of the “instantaneously comoving frame” of the electron, the inertial
system whose velocity coincides with that of the electron at a given moment.
Following the motion of the electron, then, involves a continuous succession of
infinitesimal Lorentz transformations, as we step from one comoving frame to
the next. This procedure leads to the so-called Thomas precession,® which in the
present context simply introduces a factor of . The Hamiltonian for spin-orbit
coupling is thus

o2
—55(L-S) (5.47)

A, = 2mc?r

PR LS R, P PRy P, PR,

* You can get this most mmpxy Uy 1uumug up the formula for the mdgnc field at the cenier
of a circular ring, B = 2xI/rc, and using I = e/t for the “proton current,” where ¢ = 21rr/v is the time
it takes to complete one revolution. Alternatively, exploit the fact that if B = 0 in one inertial system
(the proton’s), then B = —v/c X E in a system moving with velocity v; in this case E is the field of
the proton: e/r2.

t The proportionality factor between u and S is known as the gyromagnetic ratio. Classically,
tt should have the value —e/2mc, and this is correct for orbital angular momentum. But for relativistic

reasons spin is “twice as effective as it ought to be” in producing a magnetic dipole. One of the major
successes of Dirac’s original theory of the electron was its explanation of this extra 2. As it happens,

Pl UL LALIEY 8 VAIpAtas ALY VR VAR VIVVMI VAL YA 1w VapaGiaGunavi

however, even this is not quite right; there are minute corrections introduced by quantum electro-
dynamics that were first calculated by Schwinger in the late forties. By now both experimental and
theoretical determinations of the anomalous magnetic moment of the electron have been carried out
to fantastic precision, and stunning agreement. The Particle Data Booklet lists 13 significant digits!
For our present purpose, though, the magnetic moment of the electron is ek /2mc, the Bohr magneton.

1 One can, of course, analyze the whole problem in the rest frame of the proton. From this
perspective there is no magnetic field, and spin-orbit coupling is attributable to the torque r on a
magnetic dipole m that moves with velocity v through an electric field E: 7 = —(1/c)m X (v X E).
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In the presence of spin-orbit coupling neither L nor S is separately con-
served; the conserved quantity is the fota/ angular momentum, J = L + S.°

Squaring, we have

JP=1*+8*+2L-S (5.48)
and hence, using expressions (4.2) and (4.6), we have
L-S=4njj+ 1) —l+1)—s(¢s+ 1) (5.49)

where j, / and s are the quantum numbers describing total, orbital, and spin
angular momenta, respectively (for the electron, s = }, of course). This time we
need the expectation value of r:*

| 1
—\ = S
<r3> K+ Hi + DrPa® (5-50)
Putting this into equation (5.35), we find

LUGHD -+ 1) — 3]
an’ll+ Hil+ 1

AE, = a*mc (5.51)
Notice that this is of the same order as the relativistic correction, a*mc?, even
though the physical agencies involved are (in this treatment) entirely different.
The combination of the two effects, equations (5.42) and (5.51), yields the total
fine structure for hydrogen. Using the fact that j can only be / + } or / — § [eq.
(4.12)], we obtain (Problem 5.9)

1 2n 3
AEg = —a*mc? e ((j T 5) (5.52)
Curiously, this formula is identical to that for the relativistic correction alone,
equation (5.42), except that / is replaced by j. The energies are all depressed
(AEs is negative). Since / can take on any integer value from 0 to n — 1, j can
be any half-integer from 1 to n — }, so the nth energy level, E,, splits into n
sublevels (see Fig. 5.2). -

5.4 THE LAMB SHIFT

A striking feature of the fine structure formula (5.52) is that it depends only on
J, not on /; in general, two different values of / share the same energy. For example,
the 25, (n=2,1=0,j = {)yand 2P, (n = 2,1 = 1, = }) states should remain
perfectly degenerate. In 1947 Lamb and Retherford performed a classic exper-
iment'° which demonstrated that this is not, in fact, the case; the S state is slightly

* See reference 6. When / = 0, {+*) blows up. Really, this case should be handled separately.
Fortunately, the / cancels out, and our final result, equation (5.52), is correct even when / = 0. The
spin-orbit coupling by itself is zero, of course, when the orbital angular momentum vanishes, but
there is a compensating correction to the relativistic part of the fine structure, having to do with the
non-Hermiticity of p* when / = 0.
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Figure 5.2 Fine structure in hydrogen. The #th Bohr level (fine line) splits into 7 sublevels
(dashed lines), characterized by j = 4,3, ..., (n — ). Except for the last of these, two
different values of / contribute to each level: / = j — 3 and [ = j + 1. Spectroscopists’
nomenclature—S for / = 0, Pfor / = 1, D for [ = 2, F for / = 3—is indicated. All levels
are shifted downward, as shown (the diagram is not to scale, however).

higher in energy than the P state. The explanation of this Lamb shifi was provided
by Bethe, Feynman, Schwinger, Tomonaga, and others: it is due to the quanti-
zation of the electromagnetic field itself. Everywhere else in this discussion—in
the calculation of the Bohr levels, in the derivation of the fine structure formula,
and even in the analysis of hyperfine structure in the next section—the electro-
magnetic field is treated entirely classically. Coulomb’s law is the basis for equa-
tion (5.25); the Biot-Savart Law yields equation (5.43); the Lorentz force law is
responsible for equation (5.46). The Lamb shift, by contrast, is an example of a
radiative correction in quantum electrodynamics, to which the semiclassical*
theory is insensitive. In the Feynman formalism, it results from loop diagrams,
such as those in Figure 5.3, which we shall discuss quantitatively later on.
Qualitatively, the first diagram in Fig. 5.3 describes spontaneous production
of electron-positron pairs in the neighborhood of the nucleus, leading to a partial
screening of the proton’s charge (Fig. 2.1). The second diagram reflects the fact
that the ground state of the electromagnetic field is not zero;!! as the electron
moves through the “vacuum fluctuations” in the field, it jiggles slightly, and this
alters its energy. The third diagram leads to a tiny modification of the electron’s

*1 call it semiclassical because the electron is treated quantum mechanically, whereas the
electrodynamic field is treated classically.
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Vacuum polarization Electron mass renormalization Anomalous magnetic moment

Figure 5.3 Some loop diagrams contributing to the Lamb shift.

magnetic dipole moment; equation (5.45) picks up a factor (1 + «/27) = 1.00116.
We are not in a position to calculate these effects now, but for completeness.
here are the results:'?

Forl=0
|
AELamb = a5m62 ﬁ {k(n, 0)} (5.53)

where k(n, 0) is a numerical factor that varies slightly with », from 12.7 (for
n=1)to 13.2 (for n — o).

Forl# 0

forj=1+1 (554

1
AELamb = a5m62 Z’? {k(n, l) =+

1
w(j+ I+ %)}’
where k(n, [} is a very small number (less than 0.05) which varies slightly with
n and I Evidently the Lamb shift tiny, except for states with / = 0, for which 1t
amounts to about 10% of the fine structure. However, because it depends on /.
it lifts the degeneracy of the pairs of states with common 7 and j, on Figure 5.2.
and in particular it splits the 25, and 2P, levels (See Problem 5.11).

5.5 HYPERFINE STRUCTURE

The fine structure and the Lamb shift are minute corrections to the Bohr en-
ergy levels, but they are not the end of the story; there is a refinement that is
smaller still (by a factor of a thousand), due to the spin of the nucleus. The pro-
ton, like the electron, constitutes a tiny magnet, but because it is so much
heavier, the same angular momentum (4#) corresponds to a much smaller

u1p01c moment:*
B =Yp S (5.55)

(The proton is a composite object, and its magnetic moment is not simply
eh/2myc, as it would be for a truly elementary particle of spin 4. Hence the

* In fancier language, the proton’s gyromagnetic ratio is much smaller than the electron’s.
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Figure 5.4 Field of a magnetic dipole. In the plane of the current loop, B points down
outside the ring, and up inside the ring,

factor v,, whose experimental value is 2.7928. Later on we shall see how to
calculate this quantity in the quark model.) The nuclear spin interacts with the
electron’s orbital motion by the same mechanism as the spin-orbit contribution
to the fine structure, only this time there is no hanky-panky about changing
reference systems, and no Thomas precession to worry about. Referring to our
earlier calculation [eq. (5.47)], we find that the nuclear spin-orbit interaction is*

2
e
AHy, = W (L-S,) (5.56)
At the same time, the proton spin also interacts directly with the electron
spin. In many books on ¢lectricity and magnetism'3 it is shown that a magnetic
dipole u sets up a field

(u-O)r ] (5.57)

B(r) l [ 3
r) =— —

r’ 2 F
Actually, this formula is not quite right; if we picture the dipole as a tiny current
loop, equation (5.57) says that in the plane of the loop (where i - r = 0) B always
points in the direction opposite to u, whereas inside the loop B is in fact parallel
to u (see Fig. 5.4). It is true that as we shrink the loop down, to make a “perfect”
point dipole, the region where the field has the “wrong” direction gets smaller
and smailer, On the other hand, its strength gets larger and larger, since all those
field lines must pass through the ring. The correct handling of this “anomalous”

field is a rather delicate problem in classical electrodynamics;'* the conclusion
1< that

Bl WAILAL

1 . 8
B(r) = 3 [3 (”r—:-)r — u] + i 83(r) (5.58)

where 6°(r) is the Dirac delta functiont—infinite at = 0 and zero elsewhere.
As long as you stay away from the origin, the “naive” formula (5.57) is perfectly

* Note that equation (5.44) picks up a minus sign this time, since we’re talking about the field
of an orbiting electron, not a proton.

T The delta function is discussed in Appendix A. For now, all you need to know is that
[ fin&*(r)d*r = f10). Technically, the first term in equation (5.58) applies to the region outside a tiny
sphere of radius ¢, and the second term to the region inside. At the end of a calculation e is set equal
10 zero.
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correct. However, as we shall soon see, the delta function term makes a crucial
contribution to hyperfine structure. In the present case the proton sets up the
field B, and the energy of the electron in its presence is given by equation (5.46).
Thus the spin-spin Hamiltonian is

2
3t = 2 L G, 1) = (5,801 + 5 (8,800 (559
where S, and S, are the spin angular momenta of the proton and electron,
respectively.

Together, the nuclear spin-orbit interaction (5.56) and the proton-electron
spin-spin coupling (5.59) are responsible for the hyperfine structure of hydrogen.
To calculate the resuiting energy shifts, we again use the standard formula from
perturbation theory (5.35). At this point the treatment is quite different for states
with / = 0, so we’ll consider them first. Since the orbital angular momentum is
zero, there is no spin-orbit coupling. Moreover, because the wave function is
spherically symmetrical (Y36, ¢) = 1 /\/21;) the expectation value of the first
term in equation (5.59) vanishes (see Problem 5.12). This leaves only the delta
function contribution

8wy,e’
3mmyc?
From equation (5.28) we find (Problem 5.13) that

AFEn =

(Sp * Se)“l’nOO(O)l2 (5-60)

[Wn00(0)? = (5.61)

wn3a3
Let F=L+S.+S,=J+8, (5.62)

be the total angular momentum of the atom, with quantum numbers fand m;;
in the present case L = 0, so F2 = S7 + S5 + 2S,-S,, and hence

h? h? 3
Sp*Se =7[f(f+ 1) = ssp + 1) = 8else + 1] = —2—[f(f+ 1)—5] (5.63)

Thus AEy = (ﬂ)a“mc
m

D

247
3’

|:f(f+ 1) — %] (5.64)

Comparing the fine structure formula (5.52), we see that the difference in scale
is due to the mass ratio (m/m,) in front; it follows that hyperfine effects in
hydrogen are about one thousand times smaller. Notice that f can take on two
values: zero, in the singlet state (when the spins are oppositely aligned) and one,
in the triplet state (when the spins are parallel). Thus each / = 0 level divides
into two, with the singlet pushed down and the triplet pushed up (Fig. 5.5). For
n = 1 the energy gap is

32y, E%
3m,c?

(5.65)

€= Etriplet - Esinglet =

corresponding to a photon of wavelength
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Figure 5.5 Hyperfine splitting for / = 0

2rhe

€

A:

=21.1 cm (5.66)

This is the transition that gives rise to the famous “21-centimeter line” in mi-
crowave astronomy. !’

For / = 0, as we have seen, the hyperfine structure comes entirely from
the “contact” term in the spin-spin coupling; for / # 0 it is exactly the reverse.
This time the delta function contributes nothing; the wave function (5.28) goes
like 7/ at small 7, so y(0) = 0 when / > 0. Physically, the centrifugal (pseudo-)
force keeps the electron away from the nucleus. Accordingly, we now have

v’
AEy == pope < [(L-S,) + 3(S,- FXSe ) — (Sp.se)]> (5.67)

This expectation value is calculated, for instance, by Bethe and Salpeter;'® the
result is

(MY e s S D =G+ D - ]
ABw (m)"‘ "W G+ DI D) ©-68)

As it turns out, this formula works for / = 0 as well, since in that case j = 1,
P | P,

ana "w'e recover equatiOu (5.64). Because the proton carries spin 2, fcan only
be j + ; orj — %; with this in mind, equation (5.68) simplifies slightly:

AE, _(m)\ 4, 2 +1 for f=j +

Each of the levels in Figure 5.2, characterized by particular values of », [, and j,

18 split into two—one movine un. and the other down
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5.6 POSITRONIUM

The theory we have developed here for ordinary hydrogen carries over, with
some modifications, to the so-called “exotic” atoms, in which either the proton
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or the electron is replaced by some other particle. For instance, one can make
muonic hydrogen (p*r "), pionic hydrogen (p*= "), positronium (e*e”), muonium
(u*¢7), and so on. Of course, these exotic states are unstable, but many of them
last long enough to exhibit a well-defined spectrum. In particular, positronium
provides a rich testing ground for quantum electrodynamics. It was analyzed
theoretically by Pirenne in 1944, and first produced in the laboratory by Deutsch
in 1951.17 In recent years positronium has assumed a special importance as the
model for quarkonium.

The most conspicuous difference between positronium and hydrogen is
that we are no longer dealing with a heavy, essentially stationary nucleus, around
which the electron orbits, but rather with two particles of equal mass, both orbiting
around the common center. As in classical mechanics, this two-body problem
can be converted into an equivalent one-body problem with the reduced mass

mni;

od = ————— 5.70
Myreq my + my ( )

For if the two-body Hamiltonian has the form

pi P
H=—"1+ =4 V(,n) (5.71)
2m, 2my
and if the potential depends only on the separation distance, r = |rz — ry/, and
if we work in the CM system, where p; = —pz = p, then

p2

H=
2m,ed

+ V() (5.72)

which is the Hamiltonian for a single particle of momentum p and mass Mq,
whose “radial” coordinate, r, is the distance between 1 and 2. The unperturbed
Hamiltonian for positronium is of the form (5.71), with m; = m» = m, so that
Mm.q = m/2 and V = —e?/r, the same as hydrogen. So we get the unperturbed
energy levels for positronium by the simple substitution m — m/2 in the Bohr
formula (5.26):*

1
ER® = LE, = —a’mc? an? n=123,...) (5.73)

N

For example, the ground-state binding ener

ergy
perturbed wave functions are the same as before (5.28), except that the Bohr
radius, which goes like 1/m [see eq. (5.29)], is doubled:

gy is 13.

eV/2 = 6.8 eV. The un-

a

N
1.vU

!

—8 emn
< 107° cm (5.74)

N

= 2a
The perturbations run much as before, apart from pesky numerical factors.
For example, the relativistic correction picks up a factor of 2:

* In the case of ordinary hydrogen, the reduced mass differs from the electron mass by only
a very small amount, about 0.05%. Nevertheless, technically the m in the Bohr formula is the reduced
mass, and this does lead to observable differences between the spectra of hydrogen and deuterium.
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1 1
AHw = — 501 —

1
.75
8miic 8mic i P (5.75)

8mic? P: = 4m

On the other hand, the expectation value of p* in the hydrogenic state y,;,, goes
like (mc)*, so for positronium it is reduced by (3)*. All told, then, the relativistic
correction for positronium is one eighth that of hydrogen [eq. (5.42)]. More
significant is the fact that in positronium the hyperfine splitting is of the same
order as the fine structure (a*mc?), since the mass ratio (m/m,) which suppresses
proton spin effects in hydrogen is one in positronium.* Meanwhile, since the
“nucleus” (e*) is not stationary, we are no longer working with a truly static
potential, and there is a new correction due to the finite propagation time for
the electromagnetic field. This can be calculated using classical electrodynamics;
it has the form

2

e | .
AHp = — It 7 P+ @MY (5.76)

and its contribution is also of order (a*mc?). When all this is put together, the
fine structure formula for positronium is found to be'®

. 1 11 u+%q
pos _ 4 2 _ 2
Ea = aime® o [3271 QI+ 1) (5:77)
where ¢ = 0 for the singlet spin combination, whereas for the triplet
[ —(3]+ 4) _ )
, forj=1[+1
I+ QI+ 3) orJ
1 . L
= = ’7
€ T TEE forj=1 (5.78)
Bi—-1 :
- forj=1—-1
\ 1(21 - 1) ’ orj l J

(In hydrogen, where the proton spin (S,) contributes only at the hyperfine level,
we used J for the sum of the electron’s spin and orbital angular momentum
(J = L + S,); for the total angular momentum we needed a new letter: F = J
+S,=L+S.+S,. In positronium the two spins contribute on an equal footing,
and it is customary to combine them first (S = S, + S,) and use J for the total:
J=L+S=L+S,+8S,]

The Lamb shift, of order o’ mc?. makes a smallish correction to this: how-

L2200 222225 LN AN 9 2iESAv WS S CALAGRAARTAS VWAL WWLLWAL LW LAsidy RANSV

ever, since the “accidental” degeneracy is already broken at the fine structure
level in positronium, the Lamb shift loses much of its interest, and I shall not
consider it here. There is, however, an entirely new perturbation, with no analog

* This leads to some terminological confusion in the literature. I'll use the words “fine structure”
for all perturbations of order a*mc?, except the pair annihilation term (see below) including the spin-
spin and positron spin-orbit couplings, whose analogs in hydrogen would be called “hyperfine.”
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Figure 5.6 Pair annihilation diagram,
€ y which affects the spectrum of positronium
but does not occur in hydrogen.

in hydrogen, resulting from the fact that e™ and ¢ can annihilate temporarily
to produce a virtual photon. In the Feynman picture this process is represented
by the diagram in Figure 5.6. Because it requires that the electron and positron
coincide, this perturbation is proportional to |(0)|%, and hence occurs only when
I = 0. [See remarks before eq. (5.67).] Moreover, since the photon carries spin
1, it takes place only in the triplet configuration. We are not in a position yet to
calculate this correction, but it raises the energy of the triplet S states by an
amount

1
AE,un = o*mc? P (1=0,5s=1) (5.79)

Note that it is of the same order as the fine structure. The complete splitting of
the n = 1 and n = 2 Bohr levels in positronium is indicated on Figure 5.7.
[Positronium states are conventionally labeled n‘**1/;, with / given in spectros-
copist’s notation (S for [ = 0, P for [ = 1, D for [ = 2, etc.), and s the total spin
(0 for the singlet, 1 for the triplet).]

As in the case of hydrogen, positronium can make transitions from one
state to another with the emission or absorption of a photon, whose wavelength
is determined by the difference in energy between the two levels. Unlike hydrogen,
positronium can disintegrate completely, the positron annihilating the electron
to produce two or more real photons. (Why can’t they go to a single real photon?)
The charge conjugation number for positronium is (—1)"**, while for # photons
C = (—1)" (see page 129). Thus charge conjugation invariance prescribes the
selection rule

(—1)* = (-1y (5.80)

for the decay of positronium in state /, s into # photons. Since the positron and
electron overlap only when / = 0, such decays occur only from S states.* Evi-
dently, the singlet (s = 0) must go to an even number of photons (typically two),
whereas the triplet (s = 1) must go to an odd number (typically three). As we

* Actually, positronium can in principle decay directly from a state with / > 0 by a higher-
order process, but it is much more likely to cascade down to an S state first, and decay from there.
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shall see in Chapter 7, the two-photon annihilation cross section* for low relative
velocity v in the singlet configuration is
2y

o= 41ra2( ’; ) (5.81)

mecv

In terms of this cross section, the decay rate is
T = ov|(0)? (5.82)

Using equation (5.61) with the Bohr radius appropriate to positronium [eq.
(5.74)], we obtain

T = o’mc? Sh (5.83)
In particular, the lifetime, 7 = I'"!, of the ground state is
2h
T=—S——5 = 1.25 X 107! sec (5.84)
a’mc

5.7 QUARKONIUM

In the quark model all mesons are two-particle bound states, 4,42, and 1t is
natural to ask if the methods we have developed for hydrogen and positronium
can be applied to mesons as well. There are two immediate difficulties with this
program:

1. Unlike hydrogen and positronium, in which the forces at work are en-
tirely electromagnetic and well understood, quarks are bound by the strong force.
We don’t know what potential to use, in place of Coulomb’s law, or what the
strong analog to magnetism might be, to obtain the spin couplings. In principle,
these are derivable from chromodynamics, but no one at present knows how to
do the calculation. Still, we can make some educated guesses, for chromodynam-
ics is very similar in structure to electrodynamics, except for some nonlinear
terms which, in the light of asymptotic freedom, probably don’t contribute much
at short distances. In the language of QCD (quantum chromodynamics), the
short-distance behavior is dominated by one-gluon exchange, just as in QED
(quantum electrodynamics) it is dominated by one-photon exchange. Since the
gluon and the photon are both massless spin-1 particles, the interactions are, in

this approximation, identical, apart from the overall coupling constant (e in
nlaca af ) and varione ea-called ““color f'am‘nrq which result from counting the
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number of different colors of gluons that contnbute to a given process. All of
this will be discussed in Chapter 9; for now, the essential point is that at short
range we expect a Coulombic potential, V" ~ 1/r, and a fine-hyperfine structure
that is qualitatively similar to that of hydrogen and positronium. On the other

* This paragraph anticipates some material on cross sections, decay rates, and lifetimes that
will be discussed in Chapter 6. It is included here for completeness.



5.7 QUARKONIUM 165

hand, at large distances we have to account for quark confinement: the potential
must increase without limit. The precise functional form of V(r) at large r is
rather speculative; some authors favor a harmonic oscillator potential, V' ~ r?,
others a logarithmic dependence, V' ~ In(r). Perhaps the simplest is a linear
potential, ' ~ r, corresponding to a constant force. The fact is, any of these can
match the data presently available reasonably well, because they do not differ
substantially over the rather narrow range of distances for which we have sensitive
probes. For our purposes, then, we may as well choose

fashc
3 r

where «, is the chromodynamic analog to the fine structure constant, and $ is
the appropriate color factor, which we’ll caiculate in Chapter 9. Experimentally,
Fy is about 16 tons (1), which is to say that a quark and an antiquark attract one
another with a force of at least 16 tons, regardless of how far apart they are.*
This perhaps makes it easier to understand why no one has ever managed to
pull a quark out of a hadron.

2. The light quark (%, d, s) mesons are intrinsically relativistic, since the
binding energies (typically a few hundred MeV) are not small compared to the
constituent masses. Everything we have done was based on nonrelativistic quan-
tum mechanics, in particular, the Schrédinger equation. Itis true that we included
a relativistic correction, but it was only a lowest-order approximation to begin
with, and the use of perturbation theory for this and the other contributions to
fine and hyperfine structure was predicated on the assumption that they make
very small modifications in the energy levels (the splitting is grossly exaggerated
in Figures 5.2 and 5.7). Unfortunately, an exact solution of the relativistic bound-
state problem is not available at this stage. For the heavy quarks (¢, b, ¢}, though,
the nonrelativistic theory should work reasonably well.t Even here, however,
the binding energy (F) is such a substantial fraction of the total that we are
disposed to regard the various energy levels as representing different mesons,
with masses given by

V(r) = — + For (5.85)

2

— e 1 } Al PN (& Q£
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Shortly before the discovery of the y, Politzer and Appelquist'® suggested
that if a heavy “charm’ quark existed (as Glashow and others had proposed) it
should form a nonrelativistic bound state c¢¢, with a spectrum of energy levels

* At extremely short distances F; and «, themselves decrease, leading to asymptotic freedom,
1t for now we shall treat them as constants,

(L1 10 ¥y 2 L3yt 2 Q3 LRSS,

1 In the case of a purely Coulombic potential, E/mc? ~ o [eq. (5.26)], so the binding energy
15 a fixed fraction of the rest energy of the constituents, regardless of their mass. If this were true in
chromodynamics, the heavy quark mesons would be no less relativistic than the light ones. However,
two things work in our favor here, both attributable to the fact that a bound state of two heavy
particles is typically smaller than one of two light particles [the Bohr radius, for example, goes like
1/m (eq. (5.29)]: (i) the light quark mesons are more sensitive to the confining term in the potential,
and the binding energies of a linear potential go like m™'/*, not m, and (ii) because of asymptotic
freedom, «, itself is smaller for the heavy quark states; experimentally, it’s about 0.5 for the ¢ meson,
but closer to 0.2 for the .
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similar to positronium. They called the system “charmonium” (which does more
to emphasize the parailel than to beautify the language). When the y was found,
in 1974, it was quickly identified as the 1°S state of charmonium. (In the SLAC
experiments the y was produced from ¢*¢™ annihilation through a virtual photon:
e*e” — v — 1, so it has to carry the same quantum numbers as y—in particular,
spin 1. Thus it could not be the ground state of charmonium, but presumably
it was the lowest-lying state with total angular momentum 1.) Consulting the
positronium level diagram (Fig. 5.7), we immediately anticipate a spin-0 state
at lower mass (the 1'S,) and six n = 2 configurations. Within two weeks the y/'
(23S,) was found. This was easy, because it again carries the same spin—and
parity—as the photon; it was produced in the same way as the ¢, simply by
cranking up the beam energy. In due course allthe n=1and n =2 states were
discovered,?’ save for the 2' P, at a predicted mass of about 3500 MeV/c?, which
presents special experimental problems. The following nomenclature has been
adopted: singlet .S states (spin 0) are called 7.’s; triplet S states (spin 1) are y’s;
and triplet P states (spin O, 1, or 2) are designated xo, X1, X2. For a while the
value of n was indicated by primes, but this quickly got out of hand, and the
current practice is simply to list the mass parenthetically; thus for n = 1 we have
¥ = ¢(3100); for n = 2, ¥' = Y(3685); for n = 3, Y" = Y(4030); for n = 4, Y=
¥(4160); and so on.* The correlation between states of charmonium and those
of positronium is almost perfect (Fig. 5.7). Bear in mind that the gap between
the two n = 1 levels, which would be called hyperfine splitting in the case of
hydrogen, is a factor of 10'! greater in charmonium than in positronium. Yet
even over so huge a change of scale, the ordering of the energy levels and, fora
given value of n, their relative spacing, are strikingly similar.f Unfortunately,
the exact solutions to the Schrddinger equation with linear-plus-Coulomb po-
tential are not known, and I cannot give you a simple formula for the “Bohr”
energies. However, it can, of course, be done numerically (see Table 5. 2), and
F, can then be chosen so as to fit the data (that’s how the value of 16 tons—or,
in more sensible units, 900 MeV/fm—was obtained).?' (See Problem 5.21.)
All the charmonium states with n = 1 and n = 2 are relatively long-lived,
because the OZI rule (Chap. 2, Sect. 2.5) suppresses their strong decays. For
n = 3 the charmonium masses lie above the threshold for (OZI-allowed) pro-
duction of two charmed D mesons (D°, D° at a mass of 1865 MeV/c?, or D*,
at 1869 MeV/c?). Their lifetimes are therefore much shorter, and we call them
“quasi-bound states” (see Fig. 5.8). Quasi-bound states of charmonium have
been observed going up at least as high as n = 4.
In the aftermath of the November Revolution there was widespread spec-
ulation about the possible existence of a third quark generation (b and 1), and

[ 28 Simadvwarhhe 7L & SA22282S L4l ALl ALIvI
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* Some authors, including those of the Particle Data Booklet, number states consecutively,
starting with 1 for each combination of s, /, and j, so that what I call a 2P state (in Fig. 5.7) is listed
as | P. Sorry about that. Incidentally, the $(3770) is a displaced 3°D; state, and does not really belong
in this hierarchy.

+ In the early days there was some consternation when the 5. and 7 appeared to be about 150
MeV/c? too light, but the experiments were wrong, and the corrected values are in accord with theory.
See reference 20.
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TABLE 5.2 “BOHR” ENERGY LEVELS FOR LINEAR-PLUS-
COULOMB POTENTIAL (EQ. 5.85) WITH VARIOUS
VALUES OF F,. THEY ARE FOR S-STATES (/=0
AND ASSUME o, = 0.2, m = 1500 MeV/c?
(REDUCED MASS, 750 MeV/c?).

Fo E, P E, E,
(MeV/fm) (MeV) (MeV) (MeV) (MeV)
500 307 677 961 1210
1000 533 1100 1550 1940
1500 727 1480 2040 2550

Numerical results from unpublished tables prepared by Richard E. Crandall.

in 1976 Eichten and Gottfried? predicted that “bottomonium” (b5) would exhibit
a hierarchy of bound states even richer than charmonium (Fig. 5.9). The bottom
analog to the D meson (to wit, the B) had an estimated mass large enough that
not only the n = 1 and n = 2, but also the n = 3 levels should be bound. In
1977 the upsilon meson was discovered, and immediately interpreted as the 135,
state of bottomonium. At present, the S, states have been found for 7 up to 4,
as well as the six *P states for n = 2 and n = 3. It happens that the level spacings
in the ¥ and T systems are remarkably similar (Fig. 5.10), in spite of the fact
that the bottom quark is more than three times as heavy as the charm quark.
For a purely Coulombic potential the spacing is directly proportional to mass,
[eq. (5.26)], whereas for a purely linear potential it goes like m ™"/ (Problem
5.20). If we take the interquark potential (5.85) seriously, the equal spacing must
be due to a conspiracy of the two terms and an accidental feature of the particular
value of Fy (which we adjusted, remember, to fit the y data). The much heavier
“toponium” (#f) system should be more sensitive to the short-distance (Coulom-

at 70 n D+ D~
—r— —t— —t— —— ——

u d d d d o c d d T
h

[ E I

|

— —
v ¥
(a) (b)

Figure 5.8 (a) OZI-suppressed decay for charmonium below the DD threshold, (b) OZI-
allowed decay for charmonium above the DD threshold.
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Figure 5.9 Bottomonium. Note that there are far more bound states than for charmo-
nium—compare Fig. 5.7. (From “Quarkonium,” by E. Bloom and G. Feldman. Copynght
© May 1982 by Scientific American, Inc. All rights reserved.)

bic) part of the potential, and presumably will not share the equal spacing of
and T.*

Incidentally, charmonium and bottomonium are only the first two of six
possible “quarkonium” systems; in addltlon to toponium, we can look forward

Cvcul.uahy to the mixed uuuxb;ﬂatIOPQ "h "’f and ht The model for ThPQE‘ how-

ever, will be muonium (u*e"), rather than positronium.

5.8 LIGHT QUARK MESONS

Consider now the mesons made entirely out of /ight quarks («, d, 5). These are
relativistic systems, remember, so we cannot use the Schrodinger equation, and

* However, a logarithmic potential gives level separations that are independent of mass,
so if the toponium system does match the y and T splittings, it will be an argument for using
V(r) ~ In(r).
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T'"(10570)
438, ¥ (4160)
1.0
338, V¥ (4030)
T'"(10350)
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2%, v'(3685) 1(10020)
0.5
ob 13, ¥ (3097) T (9460)

Figure 5.10 Level spacings in the { and T systems. (Source: D. H. Perkins, Introduction
to High-Energy Physics, 2d Ed. (Reading, MA: Addison-Wesley, 1982), p. 214.)

the theory is rather limited.?* In particular, we shall not concern ourselves with
the spectrum of excited states (Table 4.6), as we did in the case of the heavy
quarks, but will confine our attention to the ground state, with / = 0. The quark
spins can be antiparallel (singlet state, s = 0) or parallel (triplet state, s = 1); the
former configuration yields the pseudoscalar nonet, the latter gives the vector
nonet (Fig. 5.11).

To begin with I want to clear up a problem that was not resolved in Chapter
1. We obtained nine mesons simply by combining a quark and an antiquark in
all possible combinations (Chap. 1, Sect. 1.8), but this left three neutral states
with strangeness 0 (ui, dd, and s5), and it was not clear which of these was the
x°, which the 5, and which the 4’ (or, in the vector case, the 0%, w, and ¢). We
are now in a position to resolve the ambiguity. The up and down quarks constitute
an isospin doublet:

w=l4h,  d=l-h (587
So too do the antiquarks:
a--hly,  d=1i- (5.88)

(Notice that d carries Is = +3, and iZ has I; = —3; within a multiplet, the particle
with the higher charge is assigned the greater I3. The minus sign is a technical
detail 2* which does not affect the argument here in any essential way.) When
we combine two particles with I = 4, we obtain an isotriplet (eq. 4.1 5)
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Pseudoscalar nonet Vector nonet
Figure 5.11 Light-quark mesons with / = 0.

1 1) =—-ud
110 = (uid — dd)/V2 (5.89)
1 —1) = di
and an isosinglet (4.16)
00 = (uit + dd)/V2 (5.90)

In the case of the pseudoscalar mesons the triplet is the pion; fog the vector
mesons it is the p. Evidently the #° (or the p°) is neither ui nor dd, but rather
the linear combination

7°, p° = (uit — dd)/V2 (5.91)

If you could pull a #° apart, half the time you’d get a u in one hand and a i in
the other, and half the time you’d get adand a d.

This leaves two I = 0 states (the isosinglet combination, equation (5.90),
and s§) which must represent » and 5’ (or w and ¢). Here the situation is not so
clean, for these particles carry identical quantum numbers, and they tend in
practice to “mix.” In the case of the pseudoscalars the physical states appear
to be

n = (uit + dd — 2s5)/V6 (5.92)
7 = (uii + dd + s5)/V3 (5.93)
whereas for the vector mesons we find
w = (uil + dd)/V2 (5.94)
¢ = 5§ (5.95)

To the extent that the Eightfold Way is a good symmetry, the pseudoscalar
combinations are more ‘“natural”, since the %, which treats u, d. and s sym-
metrically, is unaffected by SU(3) transformations; it is a “singlet” under SU(3),
in exactly the same sense that the 7% is a singlet under SU(2) (isospin). The »,
meanwhile, transforms as part of an SU(3) “octet”, whose other members are
the three pions and the four K’s. (This is, in fact, the original pseudoscalar octet.)
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Figure 5.12 Quarks and antiquarks.

By contrast, neither the ¢ nor the w is an SU(3) singlet. They are, you might
say, “maximally” mixed, since the strange quark is isolated from the other two.
[Incidentally, the other meson nonets seem to follow the ¢-w mixing pattern,
with the possible exception of the D and E (Table 4.6).]

Meanwhile, the strange mesons are constructed by combining an s quark
with u or d

Kt = us, K° =d5, K®=—sd, K =su (5.96)

In the language of group theory, the three light quarks belong to the fundamental
representation (denoted 3) of SU(3), whereas the antiquarks belong to the con-
jugate representation (3) (See Fig. 5.12). What we have done is to combine these
representations, obtaining an octet and a singlet:

3®3=8®1 (5.97)

just as in Chapter 4 we combined two two-dimensional (spin-}) representations
of SU(2) to obtain a triplet and a singlet:*

202=3®1 (5.98)

If SU(3) were a perfect symmetry, all the particles in a given supermultiplet
would have the same mass. But they obviously do not; the K weighs more than
three times the =, for example. As I indicated in Chapter 4, the breaking of
flavor symmetry is due to the fact that the quarks themselves have unequal
masses; the 1 and d quarks weigh about the same (which is why isospin is such
a good symmetry) but the s quark is substantially heavier. Roughly speaking,
the K’s weigh more than the #’s because they contain an s in place of a u or d.
But that cannot be the whole story, for if it were, the p’s would weigh the same
as the w’s; after all, they have the same quark content and are both in the spatial
ground state (n = 1, / = 0). Since the pseudoscalar and vector mesons differ only
in the relative orientation of the quark spins, the difference in their masses must
be attributed to a spin-spin interaction, the QCD analog to hyperfine splitting

L' LALLLALU W bW JUAAL IFRrALL AL RWEIRNW RANSSSy SISV CLLiBehin,

in the ground state of hydrogen. The QED formula, remember, is

* Unfortunately (from the point of view of notational consistency) representations of SU(3)
are customarily labeled by their dimensionality, whereas representations of SU(2) are more often
identified by their spin, so that equation (5.98) would usually be written § ® § = 1 @ 0. By the way,
it happens that the fundamental representation of SU(2) is equivalent to its conjugate there’s only
one kind of spin 4. That’s why we were able in equation (5.88), to represent @ and d in terms of
ordinary isospin-} states. For SU(3) this is no longer the case.
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TABLE 5.3 PSEUDOSCALAR AND VECTOR
MESON MASSES (MeV/c?)

Meson Calcuiated Observed
T 140 138
K 484 496
" 559 549
p 780 776
w 780 783
K* 896 892
é 1032 1020
ABy= TV (s S () (5.60)
h 3mmye? ¢ P ! '

It seems reasonable to suppose that the spin-spin coupling in QCD has a similar
structure; that is, it should be proportional to the dot product of the spins and
inversely proportional to the product of the constituent masses. On this as-
sumption we are led to the following meson mass formula:

(Sl 'Sz)
mn;

M(meson) = m; + my, + A (5.99)
The coefficient A is related to [Y(0)|?, which we are not in a position to calculate.
One assumes it is the same for all the vector and pseudoscalar mesons, since
they occupy the same quantum state.* By the usual trick of squaring S =
S; + S; [see eq. (5.63)], we find that

1 h?, for s = 1 (vector mesons)} (5.100)

S,+S; = {_% h?, for s = 0 (pseudoscalars)

For constituent masses #1, = my; = 310 MeV/c?, m, = 483 MeV/c?, the “best-
fit” value of 4 is (2m,/h)*160 MeV/c?, and we obtain the results in Table 5.3.
Considering its somewhat shaky theoretical foundation, equation (5.99) works
surprisingly well, matching seven independent meson masses to an accuracy of
about 1%, with three adjustable input parameters. (Notice, however, that the 5’
is not included in the table. See Problem 5.22.)

5.9 BARYONS

Some day, presumably, we shall be able to make nonrelativistic heavy-quark
baryons—ccc, perhaps, or even, cbt. These are the baryonic relatives of quar-

* In my view this is a questionable assumption: (i) For a Coulombic potential we know [egs.
(5.61 and 5.29)] that [¥{0))* goes like the cube of the reduced mass (for a linear potential it is proportional
to m). Why preserve the explicit mass dependence in the denominator of equation (5.99), if we are
prepared to ignore it in the numerator? (ii) The central (Z; = 0) members of each nonet combine a
quark with its own antiquark, and hence admit annihilation diagrams, just as positronium does, that
are not possible for the other mesons. However, nothing succeeds like success, and equation (5.99)
works remarkably well.
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TABLE 5.4 LIGHT-QUARK BARYONS (J = SPIN, P = PARITY, S = STRANGENESS, 7 =
ISOSPIN. THIS IS NOT A COMPLETE LIST; BARYONS WITH SPINS AS HIGH
AS ¥ HAVE BEEN OBSERVED.)

[ o
s =-1

SU@3)
Representation JP sS=0 1=0 =1 §=-2 s=-3
8 3" N(939) AI116)  Z(1193)  E(1318)
10 3 A(1232) $(1385)  E(1533) 2(1672)
1 i A(1405)
: A(1520)
8 3 N(1535) A(1670)  3(1750)
v N(1700) A(1870)
3 N(1520) AC1690)  E(1670)  E(1820)?
v M1700) (1940)?
3 N(1670) A(1830)  2(1765)
10 5 A(1650)
3 A(1670)
8 3" M(1810) A(1860)
8 3" N(1688) AQ815)  (1915)  E(2030)?
10 %: A(1910)
L
i A(1890)
3 A(1950) (2030
8 4 N(1470) 2(1660)
10 3" A(1690)

Source: S. Gasiorowicz and J. L. Rosner. Am. J. Phys. 49, 954 (1981).

konium—*quarkelium,” you might call it, since the nearest atomic analog would
be helium. At present, though, it is hard enough to make a baryon with one
heavy quark, never mind three, and I won’t speculate here about the heavy quark
baryon spectrum. On the other hand, the array of observed Jight quark baryons
is immense (see Table 5.4). Baryons are harder to analyze than mesons, for
several reasons. In the first place, a baryon is a three-body system. There’s not
just one orbital angular momentum to consider, but two (see Fig. 5.13). We'll
concentrate on the ground state, for which / = [’ = 0. In that case the angular
momentum of the baryon comes entirely from the combined spins of the three
quarks. Now, the quarks carry spin 3, so each can occupy either of two states:
“spin up” (1), or “spin down” (1). Thus we have eight possible states for the
three quarks: (111), (111), (1L1), (T4), (L11), (111), (UiT), and (L11). But these are not

Figure 5.13 Orbital angular momenta for
a three-body system. L is the angular mo-
mentum of 1 and 2 about their center of
mass (A); L' is the angular momentum of
this combination and 3 about the center
of mass of all three (B).
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the most convenient configurations to work with, because they are not eigenstates
of the total angular momentum. As we found in Example 4.2, the quark spins
can combine to give a total of 3 or 1, and the latter can be achieved in two

distinct ways. Specifically
33\ —
133) = (1)

13 4) = (1ML + 101 + LT)/V3

in 3
- =W mbuyyz [ PRI®) (5.101)
31 = U
1y = (L= 1/V2 _
1 I_zziz - EH _ lTL;VE } spin 3 (¥12) (5.102)
15y = 11 = 1yV2
1 Iji;iz = lETl _ lT;jﬁ } sl)in % (¢23) (5103)
2 2

The spin-3 combinations are completely symmetric, in the sense that interchang-
ing any two particles leaves the state untouched. The spin-; combinations are
partially antisymmetric: interchange of two particles switches the sign. The first
set is antisymmetric in particles 1 and 2 (hence the subscript); the second is
antisymmetric in 2 and 3. We could also, of course, construct a pair of states
antisymmetric in 1 and 3:

13 Dy =1L = unyV2
13 =155 = (T — Uny/V2

However, these are not independent of the other two; as you can check for
yourself,

} spin 3 (¥13) (3.104)

L]

| Sz =] M2t | D (5.105)

In the language of group theory, the direct product of three fundamental (two-
dimensional) representations of SU(2) decomposes into the direct sum of a four-
dimensional representation and two two-dimensional representations:*

202®2=4®202 (5.106)

A second respect in which baryons are more complicated than mesons has
to do with the Pauli exclusion principle. In its original formulation the Pauli
principle stated that no two electrons can occupy the same quantum state. It
was designed to explain why all the electrons in an atom don’t simply cascade
down to the ground state (¥,4) (there wouldn’t be much left of chemistry if they
did): they cannot, because the ground state can only accommodate two of them—
one spin up, one spin down. Once those positions are occupied, the next electrons
are stuck in the first excited state, n = 2, . . . , and so on. In this form the Pauli

* If the representations are labeled by spin, instead of dimensionality, equation (5.106) reads
1 ®1® ] =3®}® 4. Incidentally, it is also possible to construct a spin-4 combination that is
symmetric in particles 1 and 2: | > =1 D13+ ). Some authors prefer to use | drzand | ), instead

of | >12 and | >23-
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principle seems a little ad hoc, but it is actually based on something far deeper:
If two particles are absolutely identical, then the wave function should treat them
on an equal footing. If someone secretly interchanges them, the physical state
should not be altered. You might conclude from this that y(1, 2) = ¥(2, 1), but
that’s a little zoo strong. Physical quantities are determined by the square of the
wave function, so all we can say for sure is that ¥(1, 2) = +¥(2, 1): the wave
function must either be even—symmetric—or odd—antisymmetric—under the
interchange of two identical particles.* But which is it, even or odd? Nonrela-
tivistic quantum-mechanics offers no answer; there are simply two classes of
particles—bosons, for which the wave function is even, and fermions, for which
it is odd. It is an empirical fact that all particles of integer spin are bosons,
whereas those of 1-integer spin are fermions. One of the major achievements of
quantum field theory was the rigorous proof of this connection between “spin
and statistics.”

Bosons (integer spin) = symmetric wave function: Y(1, 2) = ¥(2, 1)
Fermions (}-integer spin) = antisymmetric wave function: ¥(1, 2) = —{(2, 1)

Suppose that we have two particles, one in state ¥, and the other in state
¥;s. If the particles are distinct (one a muon and one an electron, say) then it
makes sense to ask which is in state ¥, and which in state 5. The wave function
for the system is

W1, 2) = v 1)¥(2)
if particle 1 is in , and 2 is in ¥, or

W1, 2) = Y(1u(2)

if it’s the other way around. But if the two particles are indistinguishable, we
cannot say which is in which state. If the particles are identical bosons, the wave
function is the symmetric combination

W1, 2) = (/V2)ul IW(2) + Ve 1¥e(2)) (5.107)

and if they are identical fermions, the wave function 1s the a
bination

=
=
7 2]
!
=
[
o=
-
o=

UL, 2) = VWL W2) — Y(1V(2) (5.108)

In particular, if you try to put two fermions (electrons, say) into the same state
(Y. = ¥s) you get zero; it can’t be done. That’s the original Pauli exclusion
principle; but we see now that it is not an ad hoc assumption, but rather a
consequence of a structural requirement on the wave functions of identical par-
ticles. Notice, by the way, that the Pauli principle does not apply to bosons; you
can put as many pions into the same state as you like. Nor is there any symmetry
requirement for distinguishable particles; that’s why we didn’t have to worry
about it when we were constructing meson wave functions (since one constituent

* From |(1, 2)I* = (2, 1)I? it follows only that y(1, 2) = e™(2, 1). However, applying the
interchange twice brings us back to where we started, so e%® = 1, and hence e’ = +1.
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1s a quark and the other an antiguark, they’re always distinguishable). But in
the case of the baryons we’re putting three guarks together, and this time we
must take the antisymmetrization requirement into account,

Now, the wave function of a baryon consists of several pieces; there is the
spatial part, describing the locations of the three quarks; there is the spin part,
representing their spins; there is a flavor component, indicating what combination
of , d, and s is involved; and there is a color term, specifying the colors of the
quarks:

¥ = Y(space) Y(spin) Y(flavor) ¥(color) (5.109)

It 1s the whole works that must be antisymmetric under the interchange of any
two quarks.* We do not know the functional form of the spatial ground-state
wave function, but it is surely symmetric; since / = [/’ = 0, there is no angular
dependence at all. The spin state can either be completely symmetric (j = 3) or
of mixed symmetry (j = 1). As for flavor, there are 3* = 27 possibilities: wuw,
uud, udu, udd, . . ., sss, which we reshuffle into symmetric, antisymmetric, and
mixed combinations; they form irreducible representations of SU(3), just as the
analogous spin combinations form representations of SU(2). These are conve-
niently displayed in eightfold-way patterns:

ddd (ddu + dud + udd)/\/3  (vud +udu + duu)//3 vy
. -

{uds + usd + dus + dsu + sud + sdu)/\/6

{dds + dsd + sdd)/\/3 {wus + usu + suu)//3

(dss + sds + ssd)/\/3 (uss + sus +ssu)/\ /3

558

Y. Completely symmetric states

* Notice that a subtle extension of the notion of “identical particle” has implicitly been made
here, for we are treating all quarks, regardless of color or even flavor, as different states of a single
particle.
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®
{uds — usd + dsu — dus + sud —sdu)/\/6

¥ 5 : Completely antisymmetric state

(ud — du)din/Z (ud — du)ul/2Z
[2{ud —du}s + (us —su)d — (ds —sd)u]/A/12
™
(ds —sd)dN2 . {us —su)ul2Z
{{us—suld + (ds—sd)ul/2
(ds ~sd)sIN2Z (us —su)si2

¥4, Antisymmetric in 1 and 2

dlud —du)NZ vivd —du)N2

[2s{ud —duy + d{us —su)—ulds —sd}1 /12

dlds —sd)\/2 ¢ ulus —su)/2
®

\ {cus—su) +ulds~sd)]/2 /

slds —sd)A/2 stus —suliNZ

y»3: Antisymmetric in 2 and 3

Thus the combination of three light quark flavors yields a decuplet, a singlet,
and two octets; in the language of group theory, the direct product of three
fundamental representations of SU(3) decomposes according to the rule
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303®3=1008G08® 1 (5.110)

Incidentally, we can also construct an octet which is antisymmetric in 1 and 3,
but this is not independent ({13 = 12 + ¥»3); we have already used up the 27
states available in making the four representations 10, 8, 8, and 1.

(udd — ddu)i\/2Z (vud —duu /2

[2(usd — dsu) + uds — sdu — dus + sud]/\/12

.
(dds ~ sdd)/\/2 (vus — suu )N/Z
'y

luds —sdu + dus —sud]/2

(dss —ssd)/\/2 {uss — ssu)\/2

V13 : Antisymmetric in 1 and 3

Finally, there is the question of color. In Chapter 1, I stated a general rule
that all naturally occurring particles are colorless; if a meson contains a red
quark, it must also contain an antired quark, and every baryon must harbor one
quark of each color. Actually, this is a naive formulation of a deeper law:

EVERY NATURALLY OCCURRING
PARTICLE IS A COLOR SINGLET

The three colors generate a color SU(3) symmetry, just as the three light quark
Sfavors generate flavor SU(3). (The former is, however, an exact symmetry—
quarks of different colors all weigh the same—whereas the latter is only approx-
imate—quarks of different flavor carry different mass.) By putting together three
colors, we obtain a color decuplet, two color octets, and a color singlet (simply
make the flavor — color transcription ¥ — red, d — green, s — blue, in the
diagrams above). But nature chooses the singlet, and so for baryons the color

state 1s always

W(color) = (rgb — rbg + gbr — grb + brg — bgr)/\/g (5.111)

Because the color wave function is the same for all baryons, we generally
do not bother to include it explicitly. However, it is absolutely crucial to remember
that y(color) is antisymmetric, for this means the rest of the wave function must
be symmetric. In particular, in the ground state [with y(space) symmetric] the
product of Y(spin) and y(flavor) has to be completely symmetric. Suppose we
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start with the symmetric spin configuration; this must go with the symmetric
flavor state, and we obtain the spin-3 baryon decuplet:

Y(baryon decuplet) = y,(spin) y;(flavor) (5.112)

EXAMPIE 5.1
Write down the wave function for the A*, in the spin state m; = —4 (never

mind the space and color parts).

Solution.

|AY: 3 =4 = [(uud + udu + duu)/\@][(llT + {1l +1 ll)/\/g]
= [w(L)uV)d(1) + wLHu@)d(l) + wuMul)dl)
+ w(VHdVu®) + u(dMu(L)+ w(Md(l)ul)
+ d(Du(Vu() + d)u(Mu(l) + dMu()u(l)]/3
For instance, if you could pull such a particle apart, the probability is 5
that the first quark would be a & with spin up, and 3 that it would be a
with spin down.

The baryon octet is a little trickier, for here we must put together states of
mixed symmetry to make a completely symmetric combination. Notice first that
the product of two antisymmetric functions is itself symmetric. Thus Vi12(spin)
X y1,(flavor) is symmetric in 1 and 2, for we pick up two minus signs when
| « 2. Likewise, yy3(spin)-yos(flavor) is symmetric in 2 and 3, and
¥13(spin) « ¥ a(flavor) is symmetric in 1 and 3. If we now add these, the result
will clearly be symmetric in all three (for the normalization factor, see Prob-

lem 5.26):

Y(baryon octet) = (\5/3)[¢12(spin) v 1»(flavor)
+ Y3(spin) ¥as(flavor) + ¢ys(spin) Yis(flavor)]  (5.113)

EXAMPLE 5.2
Write down the spin/flavor wave function for a proton with spin up.

Solution.
Ip: 145 = {311 — UM udu — duw) + (11 — T (uud — udu)

+ 111 — U (uud — duw)} ? = {uud(211l — 1T — l11)

1
+ udu211t — 1T — T10) + dun(2417 — T = 1)} —=
( ) ( )} W2

2 1
== -— !
W (u(Mu(Md(l) s (u(Mu(L)d(1))

L (u(Ly(Md(1)) + permutations.

312
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If nothing else, I hope you will have gathered from this exercise that the
construction of baryon wave functions is a nontrivial business, in the quark
model. Apart altogether from the spatial wave function, there are three spins to
juggle, as well as three flavors and three colors, and it all has to be put together
in a way that is consistent with the Pauli principle. Perhaps also you will forgive
me for deferring the explanation of how three quarks can generate the baryon
octet (the decuplet, remember, we got by naive quark counting back in Chapter
1). The essential point is that the corners of the decuplet contain three identical
quarks (uuu, ddd, and sss), they necessarily form a symmetric flavor state, and
hence must go with the symmetric spin state (j = 3). With rwo identical quarks
(uud, say) there are three arrangements (vud, udu, duu); you can make a sym-
metric linear combination, which goes into the decuplet, and two of mixed
symmetry, which belong to SU(3) octets. Finally, with all three different, uds,
there are six possibilities—the completely symmetric linear combination com-
pletes the decuplet, the completely antisymmetric combination makes an SU(3)
singlet, and the remaining four go into the two octets. Notice again the essential
(if hidden) role of color in all this. Without it we would be looking for antisym-
metric spin/flavor wave functions; spin 3 (symmetric) would have to go with the
flavor singlet (antisymmetric). It is possible to make a spin-4 octet without color
(see Problem 5.28), but in place of the decuplet we would have just one spin-3
baryon. It was to avoid that disaster, without sacrificing the Pauli principle, that
color was introduced in the first place.?

5.10 BARYON MASSES AND MAGNETIC MOMENTS

As an application of the baryon spin/flavor wave functions, we now calculate
the magnetic dipole moments of the particles in the octet.* In the absence of
orbital motion, the net magnetic moment of a baryon is simply the vector sum
of the moments of the three constituent quarks:

B=py + gy + o (5.114)

It depends on the quark flavors (because the three flavors carry different magnetic
moments) and on the spin configuration (because that determines the relative
orientations of the three dipoles). As I mentioned earlier (eq. (5.45)), the magnetic
dipole moment of a spin- point particle of charge g and mass m ist

u=-2g (5.45)

* No decuplet moments have been measured, so I won’t bother with them. As for the mesons,
the pseudoscalars have no spin, and hence have zero magnetic moment. The vector mesons do have
magnetic moments, but as far as | know they have not been measured.

1 This ignores radiative corrections, which should be larger for quarks than for electrons, but
still small relative to the total magnetic moment.
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Its magnitude, then, is

p= (5.115)
imc
More precisely, this is the value of u. in the spin-up state, for which S, = f/2;
if the charge is negative, so too is u—this reminds us that the magnetic moment
points opposite to the spin. It is customary to refer to u, rather than u itself, as
“the magnetic moment” of the particle. For the quarks, we have

2 eh | eh 1 eh

_= - _Z , = —=————  (5.116
32mc’ Hd 32mx # 3 2mg ( )

™

The magnetic moment of baryon B, then, is

3
un = (Bl + s + waklBT) = 3 S (BUWSIBY  (.117)

=1

EXAMPLE 5.3
Calculate the magnetic moment of the proton.

Solution. The wave function was found in Example 5.2. The first term is

2
W [i(Mu(Nd(1)]

Now (1151, + u2Ss, + M3S3z)|u(T)u(T)d(1)>

h h
= [uu PR Md(_ %)][u(T)u(T)d(l))

so this term contributes an amount

2, 3

(i) R S MO S DuUDAD = 3, —

3V2) 2 5

Similarly, the second term (#(T)u(1)d(1)) gives &g, as does the third.* We
could continue in this way to evaluate all nine terms, but the rest are
simply permutations, in which d occupies position 2 or position 1. The
result, then, is

by = 313Quy — pa) + Topa + Tekd = 3(4u — Ka)

In this way we can calculate all the octet magnetic moments in terms of
iy, g, and pg (Problem 5.29). The results are listed in the second column of
Table 5.5. To get numbers, we need to know the quark magnetic moments
(5.116). Using the baryon constituent quark masses in Table 4.4, we obtain the

* Note that everything is normalized, so that for instance {u(H)|u(})) = 1, and the states are
orthogonal {u(})| u(4)) = 0.
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TABLE 5.5 MAGNETIC DIPOLE MOMENTS OF OCTET BARYONS

Baryon Moment Prediction Experiment
p ($otw — g 2.79 2.793
n ($a — (D ~1.86 ~1.913
A s ~0.58 -0.61
T+ ($tt — G 2.68 2.33 +0.13
30 BNatw + 1) — (Buss 0.82
z- $ata — Gt ~1.05 —1.41 +0.25
= s — Beta ~1.40 —1.253 + 0.014
o s — (3pa —0.47 —0.69 +0.04

The numerical values are given as multiples of the nuclear magneton, eh f2mgye = 3.152
X 107'* MeV/gauss,

Source: S. Gasiorowicz and J. L. Rosner, Am. J. Phys. 49, 954 (1981).

figures in the third column of Table 5.5. The comparison with experiment is
reasonably good, considering the uncertainties in the quark masses and anom-
alous magnetic moments. Somewhat better predictions are obtained if we take
ratios. In particular, to the extent that m, = my,, we have

Mo _ _2 (5.118)

Hp 3

which compares well with the experimental value, 0.68497945 + 0.00000058.

Finally, we come to the problem of baryon masses. The situation is the
same as for the mesons: If flavor SU(3) were a perfect symmetry, all the octet
baryons would weigh the same. But they don’t. We attribute this in the first
instance to the fact that the s quark is more massive than # and &. But that can’t
be the whole story, or the A would carry the same mass as the =’s and the A’s
would match the proton. Evidently there is a significant spin-spin (“hyperfine’)
contribution, which, as before, we take to be proportional to the dot product of
the spins and inversely proportional to the product of the masses. The only
difference is that this time there are three pairs of spins to contend with:

S-S 8§,¢S; S;-S
1 2 + 1 3 + 2 3
mn; mpms mMshrs

M(baryon) = m, + m, + m; + A’[ ] (5.119)

Here 4’ [like 4 in equation (5.99)] is a constant, which we adjust to obtain the
optimal fit to the data.
The spin products are easiest when the three quark masses are equal, for

JP=(Si+8;+8:)2 =81+ 53+ 53+ 2S,+S, + ;- S; + S:+S3)  (5.120)

and hence

A2 9
. . + . = - ] ' + — 4
S‘ Sz + S] S3 Sz S3 2 [](] 1) 4] (5121)
_ { 3h2 forj = 5(decuplet)}

—3n%  forj = Yoctet)
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Thus the nucleon (neutron or proton) mass is

3 h?
My = 3mu—Z—A’ (5.122)
the A is
2
My =3m, + E h—zA’ (5.123)
4 m,
and the Q™ 1s
3 h?
=3m;+-—A4 (5.124)
4 m?

Indeed, in the case of the decuplet the spins are all “parallel” (every pair combines
to make spin 1) so

(S; +S,)> =51+ 5%+ 28,:S,=2h% (5.125)
(and the same for | and 3, or 2 and 3). Hence for the decuplet
h2
Si°S=8,:8:3=8,-8; = 7 (5.126)
[which is consistent, notice, with eq. (5.121)], and therefore
h? 1 2
Mse =2m, + my + — A’(—- + ) (5.127)
4 m: mm,
while
2 1
Mz =my, + 2m; + -h—A'( 2 + —2) (5.128)
4 mm, Mg

The = and A can be done by noting that the up and down quarks combine to
make isospin | and 0, respectively, and in order for the spin/flavor wave function
to be symmetric under the interchange of u and d, the spins must therefore

~n et a trtal A e
combine to a total of 1 and 0, respectively. For the 2’s, then

hZ
(S, + Sd)z = Sa‘f‘ S‘21+ 2S,°S,;= 2h2, so that S, - Sy = 7 (5.129)
whereas for the A
(S, +S,)°* =0, sothat S, S; = —3A2 (5.130)
Using these results together with equation (5.121), we find
Ms = 2m, + m, +A'|:S“'Sd+ (S:°8S; +5,-8; +8,-8; — Su'Sd):l
m, My myni
2 4
_Zmu+ms+h_Ar(d_ ) (5.131)
m:  mm;
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TABLE 5.6 BARYON OCTET AND
DECUPLET MASSES (MeV/c?)

Baryon Calculated Observed
N 939 939
A 1116 1114
z 1179 1193
= 1327 1318
A 1239 1232
z* 1381 1384
g 1529 1533
Q 1682 1672
M, =2m,+ m 3ﬁ2A’ (5.132)
A u 5 4 m2 .

I’ll let you figure out the mass of the Z’s (Problem 5.32):

M:=2m;,+m +h—2A'(—1—— 4 ) (5.133)
: $ “ 4 T \m?E mym, '

Using the constituent quark masses in Table 4.4, and picking 4’ = (2m,/h)*-
50 MeV/c?, we obtain an excellent fit to the experimental data (Table 5.6).
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PROBLEMS
5.1. (a) The deuteron’s mass is 1875.6 MeV/c2. What is its binding energy? Is this a

5.2.

5.3.

54.

5.5.

5.6.

5.7.

5.8.

th
\»

5.10.

5.11.
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relativistic system?

(b) If you take the up- and down-quark masses to be those given in Table 4.4,
(“effective mass in mesons”), what is the binding energy of a pion? Is this a
relativistic system?

Derive equations (5.16), (5.17), and (5.18) from equation (5.8), using equations
(5.14) and (5.15).

Show that the spherical harmonics are either even or odd under the parity trans-
formation, depending on whether / is even or odd. That is

P: Y70, ¢) — (—1YYT'(6, ¢)

Using equations (5.21) and (5.22), find Y3, Y3, and ¥}. Check your resuits against
Table 5.1.

Show that putting equation (5.25) into equation (5.24) leads to the Bohr energies,
equation (5.26). {Hint: The basic idea is to solve equation (5.24) by a power series,
and demand that the result be normalizable. But if you have never been through
this derivation before, you had better refer to a quantum text before proceeding.
See, for example, Merzbacher (ref. 1), Chap. 10, Sects. 5 and 6.]

Use equation (5.28) to obtain the ground-state wave function ¥ 00. Check that it
satisfies the Schrédinger equation (5.8), with the appropriate energy, and that it is
properly normalized. {Answer: Y10 = (1/V7a®)e )

Work out all of the hydrogen wave functions for # = 2, using equation (5.28). (How
many are there?)

Suppose you are interested in some dynamical quantity, Q(r, p)—for instance,
kinetic energy (p*/2m), potential energy (¥(r)), or angular momentum (r X p). If
you measure (J on an ensemble of particles all in the same state ¥, you will not in
general get reproducible results; quantum mechanics can only tell you the probability
of obtaining a given answer. In particular, the average (or “expectation’) value of
Q is given by the formula

r /

B\
(Q) = J W“Q(r, - V}xp d’x

(@) Compute {r), {r?), {r*), {r"?) in the ground state of hydrogen. [Use the wave
function from Probiem 5.6.]

(b) Find the expectation values of the kinetic and potential energies in the ground
state of hydrogen. Is their sum what you would expect?

Fdg | o

i ovdees o o

arting with the relativistic correction
(5.42) and the spin-orbit coupling (5.51).

Find the energy splitting between the j = 3 and j = } levels for n = 2 (see Fig. 5.2),
in electron volts. How does this compare with the spacing between the n = 2 and
n = 1 Bohr energies?

Estimate the Lamb shift energy gap between the 25, ,; and 2P,,, levels in hydrogen,
using equations (5.53) and (5.54). What is the frequency of the photon emitted in
such a transition? [The experimental value is 1057 MHz.]
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5.12. Suppose A and B are two fixed vectors. Show that the expectation value of

5.13.
5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

Q=[3A-7)B-F) - (A-B)]

is zero in any spherically symmetrical state. [Hint: First convince yourself that {Q)
must be proportional to (A - B):

(@) = a(A-B)

where «, the proportionality constant, is independent of A and B. To evaluate «,
take the case where A and B are parallel, and choose the z axis to lie along this
direction. Then

a={(3cos’d - 1))

Now perform the ¢ integral. [Notice that the argument is not affected if an arbitrary
function of r is thrown into the expectation value. In particular, the expectation
value of the first term in equation (5.59) must vanish for an electron in the S state.]

Derive equation (5.61). [Hint: First show, using (5.30), that L}_,(0) = n(n!).]

If you include the fine structure, Lamb shift, and hyperfine splitting, how many
different n = 2 energy levels are there altogether in hydrogen? Find the hyperfine
splitting between the 25, and 2P, levels, and compare the Lamb shift (Prob-
lem 5.11).

Analyze the splitting of the n = 3 Bohr level in positronium. How many different

levels are there, and what are their relative energies? Construct the level diagram,
analogous to Figure 5.7,

The cross section for et + e~ — 3+, in the triplet spin configuration, is
16 ( h? )
6 =— — 9’
9 (m Jer m*cv

Find the lifetime of positronium in the 135, state. [The experimental answer is 1.45
X 1077 sec.]

Suppose particle 4 has charge e,, and particle B has charge e,. Assume A4 is much
heavier than B. As we shall see in Chapter 7, the cross section for the electromagnetic
process A + A — B+ Bis

_lﬁileaeb\zg

ag
3 \me?) v

Calculate the decay rate for “muonic muonium” u*u~ in its ground state (a) to vy

+yand(bjtoe" + ¢

Just as positronium, in the triplet configuration, decays to three photons (Problem
5.16), the ¥ meson (charmonium in the triplet configuration) decays to three gluons.
(The gluons subsequently turn into various combinations of hadrons.) Indeed, the
cross section for ¢ + ¢ — 3g is the same as for et + ¢ — 34, only with @ —
2ol (the 3 is a so-called “color factor,” which you’ll learn how to calculate in
Chapter 9). Use this, together with the formulas in Problems 5.16 and 5.17, and
equation (5.82), to determine the “branching ratios”

I'(y — hadrons):T'(y — e* e ):T(y — u*p’)
Compare the experimental results.

Would you consider the ¢(s5) meson bound or quasi-bound?
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5.20.

5.21.

5.22.

5.23.

5.24.

5.25.
5.26.

5.27.

L
N
=]

5.29.

5.30.

5.31.
5.32.

5/BOUND STATES

On dimensional grounds, show that the energy levels of a purely linear potential.
V(r) = Fyr, must be of the form

Jrrr B2\ 173

rolfl) \
Enz(lo) a,
m

where a, is a dimensionless numerical factor.

Use the numerical results on Table 5.2 to “predict” the masses of the four lightest
¥’s and T1’s; compare the experimental results (Fig. 5.10). What value of F, gives
the best fit to the level spacings? Why aren’t the calculated masses in better agreement
with the experiments?

On the basis of equation (5.99), using the values of m,, my, m,, and A given in the
text, calculate all the meson masses in Table 5.3. [Hint: For the 7, ¢, and w, first
find the mass for pure uiz, pure dd, and pure s5. Think of the », for instance, as
being ¢ui, §dd, and s8] Also apply the formula to the #, and note the disastrous
result. [For commentary on the " mass problem, see C. Quigg, Gauge Theories of
the Strong, Weak, and Electromagnetic Interactions (New York: Benjamin, 1983).
p. 252.]

In the text we used equation (5.99) to calculate the masses of light quark pseudo-
scalar and vector mesons. But the same formula can be applied to heavy quark
systems involving charm and beauty quarks.

(a) Calculate the masses of the pseudoscalar mesons #.(cc), D(cit), F(c5), and the
corresponding vector mesons y(cc), D*(cir), and F*(cs). Compare the experi-
mental values, from the Particle Data Booklet.

(b) Do the same for the “beautiful” mesons bi, b5, bc, and bb. [At present only
the pseudoscalar B(biu) and the vector T(bb) have been detected experi-
mentally.]

Construct the eight states ¢, in Section 5.9. [Hint: The six outer ones are easy—
the quark content is determined by Q and S, and all you have to do is antisymmetrize
in 1 and 2. To get the two states in the center, remember that the one in the “Z®”
position forms an isotriplet with the “=*” and “2~”; the “A” may then be con-
structed by orthogonalizing with respect to “=%” and y,.]

Find the color wave function for mesons, analogous to equation (5.111).

Check that the baryon octet spin/flavor wave function (5.113) is correctly nor-
malized. Remember that 5 is not independent of ¥, and y»;.

Construct the spin-flavor wave functions, as in Example 5.2, for =* with spin up
and A with spin down.

. Construct a totally antisymmetric spin/flavor baryon octet. [In this configuration

we do not need color to antisymmetrize the wave function. However, an antisym-
metric decuplet cannot be constructed.] (See Halzen and Martin, ref, 24, Exercise
2.18))

(a) Derive the expressions in the second column of Table 5.5.
(b) From these results, calculate the numbers in the third column of Table 5.5.

Calculate the ratio u,/u, in the configuration you found for Problem 5.28. Notice
that u, is negative in this case (!). Is your resuit consistent with experiment? (Here,
then, is a second strike against the quark model without color, the first strike being
its failure to account for the decuplet.)

Show that u,, = —u, = u,. (See Halzen and Martin, ref. 24, Exercise 2.19).
Use equation (5.119) to determine the mass of the =.



In this chapter we begin the quantitative formulation of elementary particle
dynamics, which amounts, in practice, to the calculation of decay rates (T)
and scattering cross sections (¢). The procedure involves two distinct parts:
(1) evaluation of the relevant Feynman diagrams to determine the “amplitude”
(M) for the process in question, and (2) insertion of M into Fermi's “Golden
Rule” to compute T or o, as the case may be. To avoid distracting algebraic
complications, I introduce here a simplified model. Realistic theories—QED,
QCD, and GWS—are developed in succeeding chapters. If you like, Chapter
6 can be read immediately after Chapter 3. Study it with scrupulous care, or
what follows will be unintelligible.

6.1 LIFETIMES AND CROSS SECTIONS

As I mentioned in the Introduction, we have three experimental probes of ele-
mentary particle interactions: bound states, decays, and scattering. Nonrelativistic
quantum mechanics (in Schroédinger’s formulation) 1s particularly well adapted
to handle bound states, which is why we used it, as far as possible, in Chapter
5. By contrast, the relativistic theory (in Feynman’s formulation) is especially
well suited to describe decays and scattering. In this chapter I'll introduce the
basic ideas and strategies of the Feynman “calculus”; in subsequent chapters we
will use it to develop the theories of strong, electromagnetic, and weak inter-
actions.

To begin with, we must decide what physical quantities we would like to
calculate. In the case of decays, the item of greatest interest is the /ifetime of the
particle in question. What precisely do we mean by the lifetime of, say, the
muon? We have in mind, of course, a muon at rest; a moving muon lasts longer

189
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(from our perspective) because of time dilation. But even stationary muons don’t
all last the same amount of time, for there is an intrinsically random element
in the decay process. We cannot hope to calculate the lifetime of any particular
muon,; rather, what we are after is the average (or “mean”) lifetime, 7, of the
muons in any large sample. Now, elementary particles have no memories, so
the probability of a given muon decaying in the next microsecond is independent
of how long ago that muon was created. (It’s quite different in biological systems:
An 80-year-old man is much more likely to die in the next year than is a 20-
year-old, and his body shows the signs of eight decades of wear and tear. But all
muons are identical, regardless of when they were produced; from an actuarial
point of view they’re all on an equal footing.) The critical parameter, then, is
the decay rate, T, the probability per unit time that any given muon will disin-
tegrate. If we had a large collection of muons, say, N(?), at time ¢, then NT dt of
them would decay in the next instant dr. This would, of course, decrease the
number remaining;

dN = —T'N dt 6.1)
It follows that
M) = N0)e ™ (6.2)

Evidently, the number of particles left decreases exponentially with time. As you
can check for yourself (Problem 6.1), the mean lifetime is simply the reciprocal
of the decay rate:
- l (6.3)
T T .
Actually, most particles can decay by several different routes. The =+, for
instance, usually decays to u* + »,, but sometimes one goes to ¢* + »,; occa-
sionally, a =+ decays to ™ + », + v, and they have even been known to go to
¢* + v, + 7° In such circumstances the total decay rate is the sum of the individual
decay rates:

Mot = 2 T (6.4)
i=1
and the lifetime of the particle is the reciprocal of 'y
7 = /T (6.5)
In addition to 7, we want to calculate the various branching ratios, that is, the

fraction of all particles of the given type that decay by each mode. Branchmg
ratios are determined by the decay rates:

Branching ratio for ith decay mode = T';/T (6.6)

For decays, then, the essential problem is to calculate the decay rate T, for each
mode; from there it is an easy matter to obtain the lifetime and branching ratios.

How about scattering? What quantity should the experimentalist measure
and the theorist calculate? If we were talking about an archer aiming at a “bull’s-
eye,” the parameter of interest would be the size of the target, or more precisely
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the cross-sectional area it presents to a stream of incoming arrows. In a crude
sense, the same goes for elementary particle scattering: If you fire a stream of
electrons into a tank of hydrogen (which is essentially a collection of protons)
the parameter of interest is the size of the proton—the cross-sectional area o it
presents to the incident beam. The situation is more complicated than in archery,
however, for several reasons. First of all the target is “soft”; it’s nota simple case
of “hit-or-miss,” but rather “the closer you come the greater the deflection.”
Nevertheless, it is still possible to define an “effective” cross section; I'll show
you how in the next paragraph. Second, the cross section depends on the nature
of the “arrow” as well as the structure of the “target.” Electrons scatter off hy-
drogen more sharply than neutrinos and less so than pions, because different
interactions are involved. It depends, too, on the outgoing particles; if the energy
is high enough we can have not only elastic scattering (¢ + p — ¢ + p), but a
variety of inelastic processes, suchase+p—e+p+y,ore +p+ 70, or even,

in principle, v, + A. Each one of these has its own (*“‘exclusive”) scattenng Cross
section, ¢, (for process i). In some experiments, however, the final products are
not examined, and we are interested only in the total (“inclusive”) cross section.

Otot = 2 g (67)

Finally, each cross section typically depends on the velocity of the incident particle.
At the most naive level we might expect the cross section to be proportional to
the amount of time the incident particle spends in the vicinity of the target,
which is to say that ¢ should be inversely proportional to v. But this behavior is
dramatically altered in the neighborhood of a “resonance”—a special energy at
which the particles involved “like” to interact, forming a short-lived semibound
state before breaking apart. Such “bumps” in the graph of ¢ versus v (or, as it
is more commonly plotted, ¢ versus E) are in fact the principal means by which
short-lived particles are discovered (see Fig. 4.6). So, unlike the archer’s target,
there’s a lot of physics in an elementary particle cross section.

Let’s go back, now, to the question of what we mean by a ““cross section”

(19
when the target is “soft.” Suppose a particle (maybe an electron) comes along,

encounters some kind of potential (perhaps the Coulomb potential of a stationary
proton), and scatters off at an angle 6. This scattering angle is a function of the
impact parameter b, the distance by which the incident particle would have
missed the scattering center, had it continued on its original trajectory (Fig. 6.1).
Ordinarily, the smaller the impact parameter, the larger the deflection, but the
actual functional form of #(b) depends on the particular potential involved.

EXAMPLE 6.1 Hard-Sphere Scattering
Suppose the particle bounces elastically off a sphere of radius R. From
Figure 6.2, we have

b = R sin q, 2a+0==x
Thus sin « = sin(w/2 — 6/2) = cos(6/2)
and hence b= Rcos(/2) or 6=2cos'(b/R)

This is the relation between 8 and b for classical hard-sphere scattering.
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Figure 6.1 Scattering from a fixed po-
- - - - —e—-——-— tential: 8 is the scattering angle, b is the
Scattering center impact parameter.

If the particle comes in with an impact parameter between b and b + db,
it will emerge with a scattering angle between # and 8 + df. More generally, if
it passes through an infinitesimal area dos, it will scatter into a corresponding
solid angle dQ (Fig. 6.3). Naturally, the larger we make do, the larger dQ will be.
The proportionality factor is called the differential scattering cross section, D:

do = D(6)dQ (6.8)

In principle, D might depend on the azimuthal angle ¢; however, most potentials
of interest are spherically symmetrical, in which case the differential cross section
depends only on 4 (or, if you prefer, on b). By the way, the notation, D, is my
own; most people call it simply do/dS2, and in the rest of the book I'll revert to
the standard terminology. The name “differential cross section” is poorly chosen;
it’s not a differential at all, in the mathematical sense (the words would apply
more naturally to do than to do/dQ).
Now, from Figure 6.3 we see that

do = |b db d¢|, dQ = |sin 0 df d¢| (6.9)
(Areas and solid angles are intrinsically positive, hence the absolute value signs.)
Accordingly,
do b (db
D) =—-= |- (—-—)I (6.10)

Figure 6.2 Hard-sphere scattering.
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Figure 6.3 Particle incident in area do scatters into solid angle d{.

EXAMPLE 6.2
In the case of hard-sphere scattering, Example 6.1, we find
@ = — R sin(g)
df 2 2
and hence

Rb sin(8/2) _ R? cos(6/2) sin(8/2) _ R
2 sin 4 2 sin 0 4

D(6) =

Finally, the total cross section is the integral of do over all solid angles:

v = fda=f1)(e)dﬂ (6.11)

EXAMPLE 6.3
For hard-sphere scattering

o'—f‘---dﬂ—‘irR2

which is, of course, the total cross section the sphere presents to an incoming
beam: Any particles within this area will scatter, any outside will pass by
unaffected.

As Example 6.3 indicates, the formalism developed here is consistent with our
naive sense of the term “‘cross section,” in the case of a “hard” target; its virtue

A S TR TS [T PP o5 | Iy A 4+ b~ In r‘hoa

is that it d.ppueb as well to “soft targeis, which do not have sharp P COgCs.

EXAMPLE 6.4 Rutherford Scattering
A particle of charge g, scatters off a stationary particle of charge ¢,. In
classical mechanics the formula relating the impact parameter to the scat-
tering angle is'

al/p)

b=
2E ©

cot(6/2)
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where E is the initial kinetic energy of the incident charge. The differential
cross section is therefore

’ o \ 2
_ q142
Do) = (4E sin? (a/z))

In this case the total cross section is actually infinite*
2
4192
= 2 —_—
. ,r( L E)

Suppose now, that we have a beam of incoming particles, with uniform
fuminosity L (L is the number of particles passing down the line per unit time,
per unit area). Then dN = L do is the number of particles per unit time passing
through area do, and hence also the number per unit time scattered into solid
angle dQ:

.3 1 . _
j(; §H14_W2)51n6d6_00

dN = L do = LD(8)dQ
It follows that

= = D) = —— (6.12)

This is frequently a more convenient way to think of the differential cross section:
It is the number of particles per unit time scattered into solid angle dQ2, divided
by dQ and by the luminosity. (Or, as accelerator physicists like to put it, “the
event rate is the cross section times the luminosity”.)t

6.2 THE GOLDEN RULE

In Section 6.1 I introduced the basic physical quantities we need to calculate:
decay rates and scattering cross sections. In either case there are two ingredients
in the recipe: (1) the amplitude (M) for the process and (2) the phase space
available.i The amplitude contains all the dynamical information; we calculate
it by evaluating the relevant Feynman diagrams, using the “Feynman rules”
appropriate to the interaction in question. The phase space factor contains only
kinematical information; it depends on the masses, energies, and momenta of
the participants, and reflects the fact that a given process is more likely to occur

* This is related to the fact that the Coulomb potential has infinite range (see footnote on

p. 17). ) o

1 In this discussion I have assumed that the target itself is stationary, and that the incident
particle is simply deflected as it passes through the scattering potential. My purpose was to introduce
the essential ideas in the simplest possible context. But in Section 6.2 the formalism is completely
general; it includes the recoil of the target, and allows for a change in the identity of the participants
during the scattering process (in the reaction =~ + p* — K* + Z7, for example, d9 might represent
the solid angle into which the K™ scatters).

i The amplitude is also called the matrix element; the phase space is sometimes called the
density of final states.
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the more “room to maneuver” there is in the final state. For example, the decay
of a heavy particle into many light secondaries involves a large phase space
factor, for there are many different ways to apportion the available energy. By
contrast, the decay of the neutron {(n — p + e + ¥.), in which there is almost no
extra mass to spare, is tightly constrained, and the phase space factor is
very small.*

The transition rate for a given process is determined by the amplitude and
the phase space according to Fermi’s “Golden Rule™”:

. 2
transition rate = % || X (phase space) (6.13)

A derivation of the Golden Rule in the nonrelativistic context will be found in
any quantum mechanics text?; for the relativistic version one must consult a
book on quantum field theory.> We shall not go into that here; for our purposes
it will suffice to quote the quantitative formulation of the Golden Rule in the
two cases of interest:

Golden Rule for Decays. Suppose particle 1 decays into several other
particles 2, 3,4, ..., n

1—2+3+4+---+n (6.14)

The decay rate is given by the formulat

- (G Gms) ()
ar = || 2hm, L\@#)2E;/)\(27)*2E; (27)2E,

X 2m)* 8" (py—p2—Dps * 0 — D) (6.15)

where p; = (E;/c, p;) is the four-momentum of the ith particle (which carries
mass m;, so that E? — p?c? = m?c*).1 The delta function§ enforces conservation
of energy and momentum,; it is zero unless p; = p» + p3 + « -+ + p,. The
decaying particle is presumed to be at rest: p; = (mc, 0). S is a product of
statistical factors: 1/j! for each group of j identical particles in the final state.

Equation (6.15) determines the differential rate for a decay in which the three-
momentum of particle 2 lies in the range d>p, about the value p,, that of particle
3 lies in the range d>p; about ps, and so on. Ordinarily, we are not interested in
the individual momenta of the decay products, and so we integrate over all

* For a more extreme case, consider the (kinematically forbidden) decay @~ — E~ + K°. Since
the final products weigh more than the , there is no phase space available at all, and the decay rate
1S ZET0.

+ The formula /looks simpler if you collect together the various factors of ¢, 2, and so on,
but its structure is clearer when they are grouped as shown.

1 Notice that this makes E; a function of p;: E; = cYmic? + pf; in fact, as far as equation
(6.15) is concerned, E; should be regarded as shorthand for this expression.

§ Those unfamiliar with the Dirac delta function should study Appendix A before proceeding.
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outgoing momenta to get the total decay rate I' for mode in question (6.14). In
particular, if there are only two particles in the final state

S (e[ mpP s o
3% p1 — P2 — p3)d’py d°ps (6.16)

-

" " am \ax) 2J EE,

In general, the amplitude .M/ is a function of p, and p;, and it cannot be taken
outside the integral. Nevertheless, for a two-body decay we can carry out the
integration explicitly, without knowing the functional form of M, as the following
two examples show. Because the general case (Example 6.6) involves some cum-
bersome algebra, we shall first consider the special case in which the decay prod-
ucts are both massless (Example 6.5).

EXAMPLE 6.5
A particle of mass m decays into two massless secondaries (for instance,
7° — v + v). If the amplitude for the process is #L(p,, p;), find the de-
cay rate.

Solution. First, rewrite the delta function, using the fact that E, = mc?
andp, = 0:

E, E
0P —pr—p3) = 5(mc - 72 — 73)53(—1’2 ~ P3) (6.17)

Since m, = m; = 0, we have E, = |p2lc, E3 = |pslc. Thus

_i(L)zl AL
am\ar] 2 J |p,ilpsl

X 8(me — |pa| — Ips)&*(—p2 — p3)d’p2 d°ps (6.18)

Next, use 63(—p, — ps) to do the p; integral. This simply replaces every p;
by —p,, reflecting the conservation of momentum:

r

T 3
r= 2047 hm J |p,|? 8(mce — 2|p))d°p; (6.19)

----- & 121

At this stage |M|? is a function of p, alone; indeed, since it has to be a
scalar, it can only depend on |p,|.* Going to spherical coordinates,

d*p; = |p2l* dIp,lsin 6 d6 do (6.20)

and performing the angular integration, [ sin 6 df d¢ = 4x, we have

S o
0= [l stme = 2yl (621)
8whm Jo

* If the particles carry spin, then |.#|* might depend also on (p;+S;) and (S;-S;). However,
since experiments rarely measure the spin orientation, we almost always work with the spin-averaged
amplitude. In that case, as in the case of spin 0, the only vector in sight is p,, and the only scalar
variable is p3.
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Now [see eq. (A.9)]

some — 20pd) = 5 {10 - ) (622)

-7

and we conclude that

S 2

I'= 167hm M

(6.23)
where M is evaluated at the momenta dictated by the conservation laws,
to wit: p; = —p, and |p,| = mc/2.*

EXAMPLE 6.6 Two-Body Decay
Consider now the general case of a two-body decay, in which the outgoing
particles carry masses m, and m;. Find the decay rate, assuming M is
given,

Solution. Again, we begin by rewriting the delta function, as in equation
(6.17), and performing the p; integral; but this time E, = cYmic* + p3,
E; = cVmic? + p3, so in place of equation (6.19) we have

S |M |2 8(m,c — Vmdc?® + p} — Vmic? + [)2)
24wy’ hm; Vmie? + p3 Vmi3c? + p?

T =

(6.24)

Asbefore, |1 |2 is now a function only of |p;|, so we can introduce spherical
coordinates and do the angular integration:

S fm |M|? 8(mic — Vmie? + p? — Vmic? + p?)

p? dp 6.25
8rhm, Vmac? + p? Vmic? + p? ( )

r:

where p is shorthand for |p,|. We could use the general formula (A.13) to
reduce the remaining delta function, but it is simpler, and more illumi-
nating, to make a change of variables: Let

E = c(Vmic* + p* + Vm3c? + p?) (6.26)

epresents the total energy of the outgoing particles—hence

r
he ch f letter.) It follows that

Ep

dE = dp 6.27)
Vmidc? + o> Ymic? + p? (
and therefore
I' = S fm M > = 5(m c— —)dE (6.28)
Brhmy Jom+ma)2 : ’

* In the specific case 7° — v + v there are two identical particles in the final state, so S = 3.
Forz*—v+7 8=1.



198 6/THE FEYNMAN CALCULUS

But [eq. (A.9)]
d(mc — Efc) = cO(E — myc?) (6.29)
and we conclude that

_ S]-/n |2P0

r= 8rhmic

(6.30)

provided m; > (m, + mj3); otherwise the delta function spike is outside the
domain of integration and we get I' = 0, recording the fact that a particle
cannot decay into heavier secondaries. Here py is the value of p for which
E = m,c?. Solving equation (6.26), we find (Problem 6.5) that

c
po =7 Vit + mi + mi — 2mimi — 2mimi — 2mim3 (6.31)
1
Remember that p was short for the variable |p,|; po is the particular value
of |p,| that is consistent with conservation of energy, and equation (6.31)
simply reproduces the result we obtained back in Chapter 3 (see Problem
3.16). In more comprehensible notation, then,

S|D|
r=———|M? 6.32
81rhm%c| l (6.32)

where |p| is the magnitude of either outgoing momentum, given in terms
of the three masses by equation (6.31), and M is evaluated at the momenta
required by the conservation laws. Notice that if m, = m; = 0, then [p| =
m;c/2 and we recover equation (6.23).

The final two-body decay formula (6.32) is surprisingly simple and general.
We shall use it frequently in later chapters. Unfortunately, when there are three
or more particles in the final state the integrals cannot be done until we know
the specific functional form of M for the process in question. In such cases (of
which we shall encounter mercifully few) you have to go back to the Golden
Rule, and work it out from scratch.

Golden Rule for Scattering Suppose particles 1 and 2 collide, producing
particles 3,4, ..., n:
1+2—34+4+ -+ +n (6.33)

The cross section is given by the formula

dcT=|./n|2 h25 [( cd3p3 )( Cd3D4 )...( Cd3pn )jl
aV(p1 - 2 — (mmyc?y? L\Q2w)’2E3)\(27)’2E, (27)2E,
XQ2u)Y o*"pi+pr—p3s—Ds v+ — D) (6.34)

where, as before, p; = (E;/c, p;) 1s the four-momentum of particle i (mass m,),
E; = cVmic? + p?, and S is a statistical factor (1/j! for each group of j identical
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P > Py

Before After
Figure 6.4 Two-body scattering in the CM frame.

particles in the final state). Note that the delta function enforces conservation
of energy and momentum.

Equation (6.34) determines the cross section for a process in which the three-
momentum of particle 3 lies in the range d°>p; about the value ps, that of particle
4 falls in the range d>ps about p4, and so on. In a typical situation we study only
the angle at which particle 3 emerges. In that case we integrate over all the other
momenta (P4, Ps, - - - » Pn), and over the magnitude of p3; what’s left gives us
do/dQ, the differential cross section for the scattering of particle 3 into solid
angle df.

EXAMPLE 6.7 Two-Body Scattering in the CM Frame
Consider the process

I1+2—3+4 (6.35)

in the CM frame (Fig. 6.4). If the amplitude is M, calculate the differential
Cross section.

Solution. In the CM frame, p, = —p,, and hence p,-p, = E,E,/c?
+ p3. It follows, after some simple algebra (see Problem 6.7), that

V(p1 - p2)? — (mumac®)? = (E1 + Ey)lpil/c (6.36)
_ hc)z SMPc  dpsdps
Thus do = ( 87) (E. + E)lp| E.E, 6%(p1 + P2 — p3 — pa) (6.37)

As usual, we begin by rewriting the delta function:*
(E\ + E; — E; — E,\

ods .. o N 3/ -
o"(p1 + P — P4} = | }’ (—ps —ps)  (6.38)
c
Next we express the outgoing energies in terms of p; and p, (£, =
M L
cVmic? + p?, and carry out the p, integral (which sends p, — —ps3):

* Observe that p, and p, are fixed vectors (related by our choice of reference frame: p, = —py),
but at this stage p; and p4 are integration variables. It is only affer the p, integration that they are
restricted (p, = —ps), and after the |ps;| integration that they are determined by the scattering
angle 6.

+1 follow the standard (sloppy) notation, in which we use the same symbol, de, before and
after integration over p, (and indeed over |ps| as well, as you’ll see in a moment).
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( ) )2 S|t ¢
do=|—
8x/ (E, + E2)|P||

o M(E: + Ex)je) — Vrdc? + pf — Vmic? + p)

d’ps (6.39)
Vmic? + p3 Vmic? + p3

This time, however, |/#|*> depends on the direction of p; as well as its
magnitude,* so we cannot carry out the angular integration. Writing

d’ps = p? dp dQ (6.40)
(where p is shorthand for |p;| and d@ = sin 8 df d¢), we obtain

2 w
de () S [y
dQ 87/ (E, + E)lpil Jo
o MEs + Ey)/c) Vmic? + p? — Vmic? + p?) 22 dp
Vm%cz + p2 mecz + p2

(6.41)

The integral over p is the same as in equation (6.25), with m, — m, and
m, — ((E, + E,)/c?). Quoting our previous result (6.32), I conclude that

_ci_az(ﬁg)z SME I/
dQ  \8x=/ (E, + E»)* |pi

(6.42)

where |p,| is the magnitude of either outgoing momentum and |p;| is the
magnitude of either incoming momentum,

As in the case of decays, the two-body final state is peculiarly simple,
in the sense that we are able to carry the calculation through to the end
without knowing the explicit functional form of M. We will be using equation
(6.42) frequently in later chapters.

By the way, lifetimes obviously carry the dimensions of time (seconds);
decay rates (I' = 1/7), therefore, are measured in inverse seconds. Cross sections,
have dimensions of area—cm?, or, more conveniently, “barns”:

1 barn = 1072* cm? (6.43)

Differential cross sections, do/dQ, are given in barns per steradian, or stmply

L (steradi ; i i i i i
barns (steradians, like radians, being dimensionless). The amplitude, #, has

units which depend on the number of particles involved: If there are n external
lines (incoming plus outgoing), the dimensions of M are those of momentum
raised to the power 4 — n: ‘

Dimensions of M = (mc)*™" (6.44)

* In general, |#|* depends on all four momenta. However, in this case p, = —p, and ps =
—ps, so it remains a function only of p, and p;, (assuming again that spin does not come into
it). From these vectors we can construct three scalars: p,-p; = |py/% ps-p3 = Ipsl>, and py-ps =
Ip.llpsl cos 6. But p, is fixed, so the only integration variables on which |.#|* can depend are |p|
and 4.



6.3 THE FEYNMAN RULES FOR A TOY THEORY 201

For example, in a three-body process (4 — B + C), M has dimensions of mo-
mentum; in a four-body process (4 — B+ C+ D, or4A + B— C+ D), M is
dimensionless. You can check for yourself that the two Golden Rules then yield
the correct units for I' and 6.

6.3 THE FEYNMAN RULES FOR A TOY THEORY

In Section 6.2 we learned how to calculate decay rates and scattering cross sec-
tions, in terms of the amplitude M for the process in question. Now I'll show
you how to determine M itself, using the “Feynman rules” to evaluate the relevant
diagrams. We could go straight to a “real-life” system, such as quantum elec-
trodynamics, with electrons and photons interacting via the primitive vertex:

e

e
/
This is the original, the most important, and the best understood application of
Feynman’s technique. Unfortunately, it involves diverting complications (due
to the fact that the electron carries spin 5 and the photon carries spin 1) which
have nothing to do with the Feynman calculus as such. In Chapter 7 I'll show
you how to handle particles with spin, but for the moment I don’t want to
confuse the issue, so I'm going to introduce a “toy” theory, which does not
pretend to represent the real world, but will serve to illustrate the method, with
a minimum of extraneous baggage.*
Imagine a world in which there are just three kinds of particles—call them
A, B, and C—with masses m,4, mg, and mc. They all have spin 0, and each is
its own antiparticle. There is one primitive vertex, by which the three particles
interact:

¢

A
e

I shall assume that A is the heaviest of the three, and in fact weighs more than
B and C combined, so that it can decay into B + C. The lowest-order diagram
describing this disintegration is:
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to which there are (small) third-order corrections:
B c 8 c B 4 B c
N N N~ N ey
c B

A A
B c

and even smaller ones of higher order. Our first project will be to calculate the
lifetime of the A, to lowest order. After that, we’ll look at various scattering
processes, suchas A+ 4 — B+ B:

A+B— A+ B:

and so on. We shall determine the cross sections for such events. Our problem
is to find the amplitude M associated with a given Feynman diagram. The ritual
is as follows:*

1

and antanina fnnr,mnm nta
SALINE A ’ 8

Nn!atlon. Lauel fhp 1“c0m11“ AL Ire\’].l.lb AW lllUlllellL“ nl L] p2, -

[ ] Fa A vy WAAN ALAR ALK Lg
Dn (Fig. 6.5). Label the internal momenta ¢, ¢, . . . . Put an arrow on
each line, to keep track of the “positive” direction (arbitrarily assigned,
for the internal lines).*

2. Coupling Constant. For each vertex, write down a factor of
gis called the coupling constant; it specifies the strength of the interaction
between A4, B, and C. In this toy theory g has the dimensions of mo-

mentum; in the “real-world” theories we shall encounter later on the
coupling constant is always dimensionless.

* Since these particles are their own antiparticles, we do not need the arrows here to keep
track of that distinction. In later chapters we shall have to be more careful.
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P ~
4 N
/ \
| |
\ /
AN P 7
s fa Figure 6.5 A typical Feynman diagram,
P } P3  with external lines labeled (internal lines
Pz not shown).
H

3. Propagator. For each internal line, write a factor
_
g} — mjc?
where g; is the four-momentum of the line (¢; = ¢/g;.) and m; is the
mass of the particle the line describes. (Note that g7 # mic?, because a
virtual particle does not lie on its mass shell.)
4. Conservation of Energy and Momentum. For each vertex, write a delta

function of the form
Qm)* 8%k, + ky + ki)

where the k’s are the three four-momenta coming into the vertex (if the
arrow leads outward, then k is minus the four-momentum of that line).
This factor imposes conservation of energy and momentum at each
vertex, since the delta function is zero unless the sum of the incoming
momenta equals the sum of the outgoing momenta.
5. Integration over Internal Momenta. For each internal line, write down
a factor
1

(2m)*

d4q_,'

and integrate over all internal momenta.
6. Cancel the Delta Function. The result will include a delta function

Qn) 6o+ pa+ oo —p)

enforcing overall conservation of energy and momentum. Erase this
factor, and what remains is —i/M.*

* Once you get used to it, steps 4, 5, and 6 can be collapsed into a single rule: “Integrate over
all undetermined internal momenta.” This is how most books do it, right from the start, but I think
the method presented here is clearer, even if it does take a little extra time. By the way, you’ll notice
that every deita function carries a factor of (2x)*, and every four-dimensional volume element carries
a factor of (27)™. Most of these factors eventually cancel out, and you might wonder if they are
really necessary (similar remarks apply to the i’s in the propagators and coupling constants). They
are necessary, and the prescription given here is the most systematic way to keep track of them.
Feynman is supposed to have shouted once in exasperation (at a graduate student who “couidn’t be
bothered with such trivial matters”), “If you can’t get the 4x’s in the right place, you don’t know

P

nothing!



204 6/THE FEYNMAN CALCULUS

Py P3

P4

Figure 6.6 Lowest-order contribution to
A A— B+ C

In the following sections we’ll see how these rules are used to evaluate some
elementary Feynman diagrams in the “ABC theory.”

6.4 LIFETIME OF THE A

The simplest possible diagram, representing the lowest-order contribution to
A — B + C, has no internal lines at all (Fig. 6.6). There is one vertex, at which
we pick up a factor of —ig (rule 2) and a delta function

2m)* 84(py — b2 — p3)
(rule 4), which we promptly discard (rule 6), obtaining —i/#Ml = —ig, or
M= (6.45)
This 1s the amplitude (to lowest order); the decay rate is found by plugging M
into equation (6.32):

2
g’lpl
r-=_&8P°_ 4
8rhmie (6.46)

where |p| (the magnitude of either outgoing momentum) is

c
2m,

Ipl = Vil + mb + md — 2m2imd — 2mim — 2mim (6.47)

The lifetime of the A4, then, is
1 8wrhmic
r  gpl

You should check for yourself that 7 comes out with the correct units.

Il
o~
=)
£
on
pNa—

T

6.5 SCATTERING

The lowest-order contribution to the process 4 + 4 — B + B is shown in Figure
6.7. In this case there are two vertices (hence two factors of —ig), one internal
line, with the propagator
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B B

P Py

7 Figure 6.7 Lowest-order contribution to

c A+ A— B+ B.
P Ps
A A

two delta functions:
Qr)* o%p —ps—¢q) and (2m)* 6(p2 + g — pa)
and one integration;

1

4
@ 41

Rules 1 through 5, then, yield

. |
—i(2m)'g* f prpm— 31 — 3 — @8 (P2 + g — p)d’q

The second delta function serves to pick out the value of everything else at the
point ¢ = ps — D>, SO we have

1
(ps — p2)2 - m

__ig2

=— (27)* 8%(py + P2 — p3 — D4)
cC

As promised, there is one remaining delta function, reflecting overall conservation
of energy and momentum. Erasing it (rule 6), we are left with

2

g

_/n =
(P4 — P2) — mec?

(6.49)

But that’s not the whole story, for there is another diagram of order g7,
obtained by “twisting” the B lines (Fig. 6.8). (You don’t get yet another new
diagram by twisting the A lines; the only choice here i1s whether p; connects to
p1 or to p,). Since this differs from Figure 6.7 only by the interchange ps < py,
there is no need to compute it from scratch; quoting equation (6.49), we

B B
Py Pa

SR £

P Py

Figure 6.8 Second diagram contributing
A A inlowestordertoA +A— B+ B.
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Ry P2
Pa
Before After

Figure 6.9 A4 + A — B + B in the CM frame.

can write down immediately the total amplitude (to order g?) for the process

A+A— B+ B:

g’ g’

(D — D2)* — mgc? (ps — p2)* — mec?
Notice, incidentally, that /1 is a Lorentz-invariant quantity. This is a/ways the
case; it is built into the Feynman rules.

Suppose we are interested in the differential cross section (do/dQ) for this
process, in the CM system (Fig. 6.9). Say, for simplicity, that m, = mz = m and
mc = 0. Then

(Pa— DY —mec> =pi+p5—2p2-pa = —2p%(1 —cos )  (6.51)
(D3 — D —mec* =P+ 3 —2py-py = —2p%(1 + cos )  (6.52)

(where p is the incident momentum of particle 1), and hence
2

_&
p?sin® @

M=

(6.50)

M= — (6.53)

According to equation (6.42), then,

de 1 hcg? )2

— == 54

Q2 (161rEp2 sin? 6 (6.54)
In this case, as for Rutherford scattering (Example 6.4), the total cross section
is infinite.

6.6 HIGHER-ORDER DIAGRAMS

Feynman diagrams; in
the graph:

This diagram has two vertices, so that J is proportional to g2. But there are a
number of diagrams with four vertices which contribute to this process. If the
added line starts on line (1), it could terminate also on line (1):
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or it could terminate on line (2):

B

or on line (3):

or on line (4) or line (5). So there are five diagrams in which the added line
attaches to line (1). There are five also, of course, in which it attaches to line (2),
but we have already counted one of these (the one joining lines (1) and (2)), so
there are four new diagrams. Likewise, three for line (3), two for line (4), and
one for line (5). All told, then, there are

5+4+3+2+1=15

fourth-order diagrams for this process, and another 15 for the “twisted” version.
(Disconnected diagrams, such as

/A AN

don’t count.)

. .
T am rertainly not onine tn avaliata
A4 WWill WA/ Lullll] LAIVIL 5\’1116 LW W YClALIGL LW 1L

think about two-loop diagrams), but I would like to take a closer look at one of
them—the one in which line (5) joins onto itself:

B B
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Applying Feynman Rules 1 through 5, we obtain
f 8oy — @1 — P3)5 (Q1 — gy — 43)5 (@2 + q3 — 6]4)5 ((14 + .Dz Da)
(a7 — mécgl — mic*Xa3 — muc®Xgi — mic?)

X d*q, d*q, d*qs d*q, (6.55)

Integration over g,, using the first delta function, replaces g, by (p; ~ p3); in-
tegration over ¢4, using the last delta function, replaces g4 by (p4s — p2):

4

g
[(p1 — P3)* — mec?)(pa — p2)* — mgc?]
f 61 — P — @ — @)84 (@ + q3 D4 t Pz)
(qz mic) g3 — mic?)
Here the first delta function replaces ¢; by p, — p3 — ¢, so the second delta
function becomes

g2 d*q;  (6.56)

8%p1 + Py — Py — D4

which, by rule 6, we erase, leaving

M= l( § )4 : f 1 d*
(D1 — p3F — mEcPJ (01 — 13 — @) — macAl@® — mic) © 7

(6.57)

(I drop the subscript on g; at this point.)

You can try calculating this integral, if you’ve got the energy, but I'll tell
you right now you’re going to hit a snag. For the four-dimensional volume
element could be written d*g = q3 dg d¥ (where d¥ stands for the angular part)
(just as in two-dimensional polar coordinates the element of area is r dr df and
in three-dimensional spherical coordinates the volume element is r* dr sin § df
do). At large g the integrand is essentially just 1/g*, so the g integral has the
form

e 1

J ?ﬁ%m=mmw=w (6.58)

The integral is logarithmically divergent at large g. This disaster, in one form or
another, held up the development of quantum electrodynamics for nearly two
decades, until, through the combined efforts of many great physicists—from
Dirac, Pauli, Kramers, Weisskopf, and Bethe through Tomonaga, Schwinger,
and Feynman—systematic methods were developed for “sweeping the infinities
under the rug.” The first step is to regularize the integral, using a suitable cutoff
procedure that renders it finite without spoiling other desirable features (such as
Lorentz invariance). In the case of equation (6.57) this can be accomplished by
introducing a factor

—M?*c?

m (6.59)
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under the integral sign. The cutoff mass M is assumed to be very large, and will
be taken to infinity at the end of the calculation (note that the “fudge factor”
(6.59) goes to 1 as M — o0).* The integral can now be calculated® and separated
into two parts: a finite term, independent of M, and a term involving (in this
case) the logarithm of M, which blows up as M — 0.

At this point a miraculous thing happens: all the divergent, M-dependent
terms appear in the final answer in the form of additions to the masses and the
coupling constant. If we take this seriously, it means that the physical masses
and couplings are not the m’s and g’s that appeared in the original Feynman
rules, but rather the “renormalized” ones, containing these extra factors:

mphysmal m + 5m gphysical =& + 6g (660)

The fact that ém and 6g are infinite (in the limit M — c0) is disturbing, but not
catastrophic, for we never measure them anyway; all we ever see in the laboratory
are the physical values, and these are (obviously) finite (evidently the unmea-
surable “bare” masses and couplings, 7 and g, contain compensating infinities).
As a practical matter, we take account of the infinities by using the physical
values of m and g in the Feynman rules, and then systematically ignoring the
divergent contributions from higher-order diagrams.

Meanwhile, there remain the finite (M-independent) contributions from
the loop diagrams. They, too, lead to modifications in m and g (perfectly cal-
culable ones, in this case)—which, however, are functions of the four-momentum
of the line in which the loop is inserted (p; — p; in the example). This means
that the effective masses and coupling constants actually depend on the energies
of the particles involved; we call them “running” masses and “running” coupling
constants. The dependence is typically rather slight, at low energies, and can
ordinarily be ignored, but it does have observable consequences, in the form of
the Lamb shift (in QED) and asymptotic freedom (in QCD).%

The procedure I have sketched in the last three paragraphs is called renor-

* No one would deny that this procedure is artificial. Still, it can be argued that expression
16.59) merely reflects our ignorance of the high-energy (short distance) behavior of quantum field

) rirvava AVAIVR WS Ukl afsiviGiiue Wi AV LiapaaTieane S5 RSNy Rl el RS

theory. Perhaps the Feynman propagators are not qulte nght in this régime, and M is simply a crude
way of accounting for the unknown modification. (This would be the case, for example, if the “particles”
have substructure that becomes relevant at extremely close range.) Dirac once remarked:

It’s just a stop-gap procedure. There must be some fundamental change in our ideas, probably

a change just as fundamental as the passage from Bohr’s orbit theory to quantum mechamcs

When you get a number turning out to be infinite which ought to be finite, you should admit
that there is something wrong with your equations, and not hope that you can get a good
theory just by doctoring up that number. [From P. Buckley and F. D. Peat, A Question of
Physics (Toronto: University of Toronto Press, 1979), page 39.]

1 In case it is some comfort, I should point out that essentially the same thing occurs in
classical electrodynamics: the electrostatic energy of a point charge is infinite, and makes an infinite
contribution (via £ = mc?) to the particle’s mass. Perhaps this means that there are no true point
charges, in classical electrodynamics; perhaps that’s what it means in quantum field theory, too. In
neither case, however, do we know how to avoid the point particle as a theoretical construct.

T A physical interpretation of the running coupling constant in QED and QCD was suggested
in Chapter 2, Section 2.3. A nice explanation of mass renormalization is given by P. Nelson in
American Scientist, 73, 66 (19835): (footnote continues on p. 210)
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malization. If all the infinities arising from higher-order diagrams can be accom-
modated in this way, we say that the theory is renormalizable. ABC theory and
quantum electrodynamics are renormalizable. In the early seventies 't Hooft
showed that all gauge theories, including chromodynamics and the electroweak
theory of Glashow, Weinberg, and Salam, are renormalizable. This was a pro-
foundly important discovery, because, beyond lowest-order calculations, a non-
renormalizable theory yields answers that are cutoff-dependent and, therefore,
really, quite meaningless.
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According to renormalization theory, not only the strengths of the various interactions but
the masses of the participating particles appear to vary on differing length scales. To get a feel
for this seemingly paradoxical statement, imagine firing a cannon underwater. Even neglecting
friction, the trajectory will be very different from the corresponding one on land, since the
cannonball must now drag with it a considerable amount of water, modifying its apparent,
or “effective,” mass. We can experimentally measure the cannonball’s effective mass by shaking
it to and fro at a rate , computing the mass from F = ma. (This is how astronauts “weigh”
themselves in space.) Having found the effective mass, we can now replace the difficult problem
of underwater ballistics by a simplified approximation: we ignore the water altogether, but in
Newton’s equations we simply replace the true cannonball mass by the effective mass. The
complicated details of the interaction with the medium are thus reduced to determining one
effective parameter.

A key feature of this approach is that the effective mass so computed depends on w.
since as w approaches zero, for example, the water has no effect whatever. In other words, the
presence of a medium can introduce a scale-dependent effective mass. We say that the effective
mass is “renormalized” by the medium. In quantum physics, every particle moves through a
“medium” consisting of the quantum fluctuations of all particles present in the theory. We
again take into account this medium by ignoring it but changing the values of our parameters
to scale-dependent “effective” values.
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6.1. Derive equation (6.3). [Hins: What fraction of the original sample decays between

6.2.

6.3.

6.4.

6.5.
6.6.

6.7.

6.8.

6.9.

6.10.

t and f + dt? What, then, is the probability of any given particle decaying between
tand ¢ + dt? Take it from there.]

Nuclear physicists traditionally work with “half-life” (¢,,,) instead of mean life (7);
t12 1s the time it takes for half the members of a large sample to decay. Show that
for exponential decay [eq. (6.2)]

§

11/2 =7In2

(a) Suppose you started out with a million muons (at rest); how many would still
be around 2.2 X 107° sec later? (b) What is the probability of a =~ lasting more
than 1 sec?

A nonrelativistic particle of mass m scatters from a fixed repulsive potential,
V(r) = k/r?, where k is a constant.

(a) Find the scattering angle, 6, as a function of the impact parameter, b.

(b) Determine the differential cross section de/dQ.

(¢) Find the total cross section.

[References: Goldstein (ref. 1), p. 108, eq. (3-97), and Becker, Introduction to Theo-
retical Mechanics (New York: McGraw-Hill, 1954), p. 231, Example 10-3.]
Derive equation (6.31), using definition (6.26).

As an application of Example 6.5, consider the decay of #° — v + v. Of course,
the #° is a composite object (ui and dd), and so equation (6.23) does not really
apply. But let’s pretend that the #° is a true elementary particle, and see how close
we come. Unfortunately, we don’t know the amplitude M; however, it must have
the dimensions of mass times velocity [eq. (6.44)], and there is only one mass and
one velocity available. Moreover, the emission of each photon introduces a factor
of Ve (the fine structure constant) into J#, as we shall see in Chapter 7, so the
amplitude must be proportional to «. On this basis, estimate the lifetime of the #°.
Compare the experimental value. [Evidently, the decay of the #° is a much more
complicated process than this crude model suggests. See C. Quigg, Gauge Theories
of the Strong, Weak, and Electromagnetic Interactions, Reading, MA: Benjamin/
Cummings, 1983, eq. (1.2.25).]

(a) Derive equation (6.36) for scattering of particles 1 and 2 in the CM,
(b) Obtain the corresponding formula for the lab frame (particle 2 at rest).

[Answer: V(Pl 02) — (mymyc?) = mylplc]

Consider the case of elastic scattering, 4 + B — A + B, in the lab frame (B initially
at rest) assuming the target is so heavy (mpc? > E,) that its recoil is negligible. Use
equation (6.34) to determine the differential scattering cross section.

[Answer: (da/dQ) = (h/8wmpc)’| M)

Consider the collision 1 + 2 — 3 + 4 in the lab frame (2 at rest), with particles 3
and 4 massless. Obtain the formula for the differential cross section.

[ Answer- do _ ( h )2 SIM 2Ip;| ]
“dQ  \8w/) mulp|(E, + mayc? — |pylc cos 6)

(a) Analyze the problem of elastic scattering (13 = m,, m, = m,) in the lab frame
(particle 2 at rest). Derive the formula for the differential cross section.
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6.11.

6.12,

6.13.

6.14.

6.15.

6/THE FEYNMAN CALCULUS

[ do ( h ) p3SIM 2 ]
Answer; — = | —
dQ 8 m2|P1|“P3|(E1 + mzcz) - |P1|E3 COs 9'

(b) If the incident particle is massless (72, = 0), show that the result in part (a)

simplifies to
2
(ﬂ) = _hE3 ) |2
dQ 8mrmacE

(a) Is A — B + B a possible process in the ABC theory?

(b) Suppose a diagram has n, external A lines, ng external B lines, and n¢ external
C lines. Develop a simple criterion for determining whether it is an allowed
reaction.

(¢) Assuming A is heavy enough, what are the next most likely decay modes, after
A — B + C? Draw a Feynman diagram for each decay.

(a) Draw all the lowest-order diagrams for A + 4 — A + A. (There are six of them.)

(b) Find the amplitude for this process, in lowest order, assuming mp = mc = 0.
Leave your answer in the form of an integral over one remaining four-
momentum, .

Calculate do/dQ for A + A — B + B, in the CM frame, assuming mp = mc = 0.
Find the total cross section, o.

Find do/dQ and o for 4 + A — B + B in the lab frame. (Let E be the energy, and
p the momentum, of the incident 4. Assume 7z = mc = 0.) Determine the non-
relativistic and ultrarelativistic limits of your formula.

(a) Determine the lowest-order amplitude for 4 + B — A + B. [Note: There are
two diagrams.]

(b) Find the differential cross section for this process in the CM frame, assuming
m4 = mg = m, mc = 0. Express your answer in terms of the incident energy.
E, and the scattering angle, 8.

(c) Find da/dQ for this process in the lab frame, assuming B is much heavier than
A, and remains stationary. A is incident with energy E. [Hint: See Problem
(6.8). Assume mjz > my4, mc, and E/c?.]

(d) In case (c), find the total cross section, o.



In this chapter I introduce the Dirac equation, state the Feynman rules for
quantum electrodynamics, develop some useful calculational tools, and derive
some of the classic QED results. The treatment leans heavily on material
from Chapters 2, 3, and 6, as well as on the spin-§ formalism in Chapter 4.
In turn, Chapter 7 is the indispensable foundation for everything that follows
(however, you may want to skip Example 7.8 and Section 7.9, together with
the related passages in Chapters 8 and 9).

7.1 THE DIRAC EQUATION

Although the “ABC” model in Chapter 6 is a perfectly legitimate quantum field
theory, it does not describe the real world, because the particles 4, B, and C
have spin 0, whereas quarks and leptons carry spin 3, and mediators carry spin
1. The inclusion of spin can be algebraically cumbersome; that’s why I decided
to introduce the Feynman calculus in the context of a “toy” theory free of such
distractions. In nonrelativistic quantum mechanics particles are described by the
Schrédinger equation; in relativistic quantum mechanics particles of spin 0 are
described by the Klein-Gordon equation, particles of spin 3 by the Dirac equation,
and particles of spin | by the Proca equation. Once the Feynman rules have
been established, however, the underlying field equation fades into the back-
ground—that’s how we got through Chapter 6 without ever mentioning the
Klein-Gordon equation. But for spin 3 the very notation of the Feynman rules
presupposes some familiarity with the Dirac equation. So for the next three
sections we shall study the Dirac theory in its own right.

In Chapter 5 I “derived” the Schrodinger equation by starting with the

classical energy-momentum relation:
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2

2 L yv-E (7.1)
2m

applying the quantum prescription

h d
— =V, E—ih — 7.2
P75 o (7.2)
and letting the resulting operator act on the “wave function,” y:
h? _, , O . .
o VY + VYV = [h o (Schrodinger equation) (7.3)

The Klein—-Gordon equation can be obtained in exactly the same way, beginning
with the relativistic energy-momentum relation, EZ — p?c? = m?c*, or (better)

ptp, — m*c* =0 (7.4)
(I'll leave out the potential energy, from now on; we’ll stick to free particles).
Surprisingly, the quantum prescription (7.2) requires no relativistic modification;
in four-vector notation, it reads

p.— ih 8, (7.5)
d
Here* 4, = pwn (7.6)
which is to say
1o 0 0 0
dy = —— 0, = — 0, = —, 03 = — 7.7
" car ' oax’ 27 ay P oz (7.7)

Putting (7.5) into (7.4), and letting the derivatives act on a wave function ¢, we
obtain

—h2 8o —micy =0 (7.8)
I & mcY’ . :
or s 6_t¢ + Vi = (?) ¢ (Klein-Gordon equation) (7.9)

Schridinger apparently discovered this equation even before the nonrel-
ativistic one that bears his name; it was eventually rejected on the ground that
(for reasons we need not go into) it was incompatible with the statistical inter-
pretation of y [which says that |y|? is the probability of finding the particle at
the point (x, ¥, z)]. The source of the difficulty was traced to the fact that the
Klein-Gordon equation is second order in ¢.T So Dirac set out to find an equation
consistent with the relativistic energy-momentum formula, and yet first order

in time. Ironically, in 1934 Pauli and Weisskopf showed that the statistical in-

* The gradient with respect to a contravariant position-time four-vector x* is itself a covariant
four-vector, hence the placement of the index. Written out in full, equation (7.5) says (E/c, —p) —

1
ih(; % , V) . Of course, 3* = 8/dx, (See Problem 7.1.)

+ Notice that the Schridinger equation (7.3) is first order in ¢,
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terpretation itself is flawed in relativistic quantum theory,* and restored the
Klein—-Gordon equation to its rightful place, while keeping the Dirac equation
for particles of spin 3.

Dirac’s basic strategy was to “factor’” the energy-momentum relation (7.4).
This would be easy if we had only p° (that is, if p were zero):

(p")? — m*c? = (p° + mc)p® — mc) = 0 (7.10)
We then obtain two first-order equations:
P —me)=0 or (" +mc)=0 (7.11)

either one of which guarantees that p*p, — m?c? = 0. But it’s a different matter

when the other three components of p* are included; in that case we are looking
for something of the form

(p*p, — MPc?) = (B*p. + mcXy py — mc) (7.12)

where 8 and 4 are eight coefficients to be determined.t Multiplying out the
nght-hand side, we have

B v p.pr — me(B* — ¥ )p, — m?c?

We don’t want any terms linear in p,, so we must choose 3% = +*; to finish the
yob, we need to find coefficients v* such that

P*p, = Y'Y'p.D>
which is to say
(0% — (P — (1D = (P°)* = YD + (WHHP') + (VPP
+ (VY + (v + Y'Y
+ (Vv + ¥*YOpor: + (YOY? + ¥ YO)pops
+ (Y'Y + Y + (Y'Y + ¥3Ypips
+ (Y + ¥Y’¥Hmps (7.13)

You see the problem: we could pick ¥° = 1 and v! = 4% = 4* = i, but there
doesn’t seem to be any way to get rid of the “cross-terms™. At this point Dirac

had a brilliant inspiration: what if the v’s are matrices, instead of numbers? Since
matrices don’t commute, we just might be able to find a set such that

P T R N I N
Yy =1, &y =wy=wrr=—-1
Yy + ¥'y* =0, foru # v (7.14)
Or, more succincily,
{v*, v} = 28" (7.15)

* The essential point is that a relativistic theory must account for pair production and anni-
hilation, and hence the number of particles is not a conserved quantity.

+ In case the notation confuses you, I'll write equation (7.12) out “long-hand™:

P — ('Y — (P — (P — me?
= (8°° — B'p' = 8°7* — B°P + mo)y'P’ — ¥'p' — ¥'P’ — ¥'P* — mo)
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where g* is the Minkowski metric [eq. (3.13)], and curly brackets denote the
anticommutator:

{A, B} = AB + BA (7.16
You might try fiddling with this problem for yourself. It turns out that it can be
done, although the smallest matrices that work are 4 X 4. There are a number
of essentially equivalent sets of “gamma matrices™; we’ll use the standard “Bjor-
ken and Drell” convention:’

0=1 0) i=(0 0’)

where ¢’ (i = 1, 2, 3) is the indicated Pauli matrix [eq. (4.26)], 1 denotes the
2 X 2 unit matrix, and 0 is the 2 X 2 matrix of zeroes.*
As a 4 X 4 matrix equation, then, the relativistic energy-momentum relation
does factor:
(p*p, — m*c?) = (¥'pu + me)(y'py — mc) = 0 (7.18)
We obtain the Dirac equation, now, by peeling off one term (it doesn’t really
matter which one, but this is the conventional choice—see Problem 7.10):
Y*p, — mc =0 (7.19)

Now we make the usual substitution p, — i 9, [eq. (7.5)] and let the result act
on the wave function -

ihy*oy —mcy =0 (Dirac equation) (7.20)
Note that ¢ is now a four-element column matrix:
Vi
v=| " (7.21)
¥3
Va
We call it a “bi-spinor,” or “Dirac spinor.” (Although it carries four components,

this object is not a four-vector. In Section 7.3 I'll show you how it does transform
when you change inertial systems; it’s not going to be an ordinary Lorentz trans-
formation.)

7.2 SOLUTIONS TO THE DIRAC EQUATION

Let’s now look for simple solutions to the Dirac equation. Suppose first that
is independent of position:

* When the context allows no room for ambiguity, I'll use 1 and 0 this way for 2 X 2 or
4 X 4 matrices; also, a unit matrix of the appropriate dimension is implied, when necessary, as on
the right-hand side of equation (7.15). Incidentally, since o is not the spatial part of a four-vector,
we do not distinguish upper and lower indices: ¢' = ;.
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w_w_ 022

In view of equation (7.5), this describes a state with zero momentum (p = 0).
The Dirac equation (7.20) reduces to

ih

oY -
- 0% Ey mey =0 (7.23)
1 0\ /Y, /01 2
or ( )( Val ) = —iﬁc— (¢A) (7.24)
0 —1/\dyp/0t h \yp
where Yy = ("") (7.25)
2
carries the upper two components, and
¥s
¥p = ( ) (7.26)
"\
carries the lower two. Thus
2 _(m_C"‘) _ s _ __(mcz)
o - A\ Th o - A\ Jve (7.27)
and the solutions are
Va) = €My, (0),  Pu(l) = €My p(0) (7.28)
Referring to equation (5.10) we recognize the factor
g Euh (7.29)

as the characteristic time dependence of a quantum state with energy E. For a
particle at rest, E = mc?, so ¥, is exactly what we should have expected, in the
case p = 0. But what about ¥ 3? It ostensibly represents a state with negative
energy (E = —mc?). This is the famous disaster I mentioned back in Chapter 1,
which Dirac at first tried to avoid by postulating an unseen infinite “sea” of
negative energy particles, which fill up all those unwanted states.* Instead, we
now interpret the “negative energy” solutions as representing antiparticles with
positive energy. Thus ¥, describes electrons (for example), whereas 5 describes
positrons. Each is a two-component spinor, just right for a system of spin 1. In
conclusion then, the Dirac equation with p = 0 admits four independent solutions
(ignoring normalization factors, for the moment):

* You might ask why we don’t simply assume that ' is always zero; call the negative energy
solutions “physically unacceptable” and forget about them. Unfortunately, this can’t be done. In a
quantum system we need a complete set of states, and the positive energy states by themselves are
not complete. In the Schrodinger equation the sign of i is purely conventional. Had we made the
other choice, then e’F/* would replace (7.29) as the characteristic time dependence for a stationary
state of energy E. In relativistic quantum theory both signs are forced on us, and this, when properly
interpreted, implies the existence of antiparticles.
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(1) — ,—imc2/h) 0 (2) — —imc2/h) 1

\o/ \o/

0 0
SO — grimetiny (1) Y = grimey 8 (7.30)
0 l

describing, respectively, an electron with spin up, an electron with spin down,
a positron with spin up, and a positron with spin down.
We look next for plane-wave solutions, of the form

Y(r, 1) = ae METPIY(E, p) (7.31)
or, in tidier notation
Y(x) = ae M Py( p) (7.32)
(Here a is a normalization constant, irrelevant to our present purpose, but nec-
essary later to keep the units consistent.) We’re hoping to find a bispinor u(p)
such that Y(x) satisfies the Dirac equation. (At this stage p = (E/c, p) is simply
a set of four arbitrary parameters, but since they turn out to represent energy
and momentum it seems simplest to assign them the appropriate letters right
from the start.) Because the x dependence is confined to the exponent
i
h

Putting this into the Dirac equation (7.20), we get

a = — — p,ae” WPy (7.33)

or y*p, — moyu =0 (7.34)

This is known as the “momentum space Dirac equation”. Notice that it is purely
algebraic, with no derivatives. If u satisfies equation (7.34), then ¢ (7.32) satisfies
the Dirac equation (7.20).

Now
0.0 E{1 0) (0 o\ [(E/c —p-o)
by e = 2 — = 7.35
Yp. =70’ —v-p C(O _1) p(_a 0) (p.a _E/) (7.35)
/(E \ N\ /N
k——mc —p-o Uy
Thus (v*p, — mou = ¢ E
p*o (—?—mc) Upg
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where, as before, the subscript 4 denotes the upper two components, and B
stands for the lower two. In order to satisfy equation (7.34), then, we must have

¢ c
g =2 5@ o)ug,  Up= ET ol (Pro)uy (7.36)

Substituting the second of these into the first gives

c?

Uy = B2 — e (p*o)u, (7.37)
But
(0 l)+ (0 —i)+ (1 0)
*0 = Dy . z
P97l o) TP\ o) TPl
z x_j
=( p: (p py)) (7.38)
(px + ipy) —D:
SO

2 . . . .
» [ Pz (px—ip)(px + D)) pApx— ipy) — pADx — lpy)) 5
L ] — = 7.39
(p-2) (pz(px +ip)) — pApx + ipy)  (px+ ip)Mpx — ipy) + D2 P (7.39)

where 1 is the 2 X 2 unit matnix (written in explicitly, just this once).
Thus

2
P C
2.4 U4 (7.40)

Uy = —5———
E? — m?c

and hence*
E? — m?c* = p*c? (7.41)

That is, in order to satisfy the Dirac equation, E and p [in eq. (7.31)] must obey

WIARAWRE WAS RS ] RMALW ASARA AW WA WRRALAVI LIy £s KRAING P LEii WAfe Y 7 of 1 J) 114

the usual relativistic energy-momentum relation. That’s hardly surprising, but
it is interesting to see how the Dirac equation enforces this requirement. As an
equation for E, (7.41) admits two solutions:

E = +Vm?c* + p’c? (7.42)

-

The positive root is associated with particie states, and the negative root with
antiparticle states.

Returning to equation (7.36), and using (7.38), it is a simple matter to
construct four independent solutions to the Dirac equation (ignoring normal-

ization factors for a moment):

* Equation (7.40) would also allow #4 = 0 as a solution; however, the same argument, starting
with equation (7.36) but inserting the first into the second, yields equation (7.40) with w5 in place of
u,. Thus unless u, and ug are both zero (in which case we have no solution at all) equation (7.41)
must hold.
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(2) Pick u, = ((1)) ,  then ug = %m& (p: 0)(?) E 1 mc? ( Ipy)
(3) Pick ug = ((1)) , then u, £ — me? (p-a)((l)) E— mcz ( flpy)
(4) Pick ug = ((1)) , then u, = e (p- a)((l)) E—m 02 (px zpy)

(7.43)

For (1) and (2) we must use the plus sign in equation (7.42), otherwise ug blows
up as p — 0; these are evidently particle solutions. For (3) and (4) we are obliged
to use the minus sign; these are antiparticle states. It is convenient to normalize
these spinors in such a way that*

utu = 2|Ef/c (7.44)

where the dagger signifies the transpose conjugate (or “Hermitian conjugate”):

(44
u={ 7 |=ut = (@*gey*o"
Y
)
so that
ulu = |af* + B + |y]* + |8 (7.43)
Thus the four solutions are:

[ o) [0

a0 =Nl _clp) . u@=nN| @) |
E + mc? E + mc?
Y S Al )
c(px + ‘Py)/ c{—p2) /
E + mc E + mc?

(with E = Vmi?c* + pc?)

* Actually, there are at least three different conventions in the literature: u'u = 2|E|/c (Halzen
and Martin), u'u = |E|/mc? (Bjorken and Drell), u'u = 1 (Bogoliubov and Shirkov). In this
one instance I depart from Bjorken and Drell, whose choice introduces spurious difficulties when
m— 0,
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c(p.) c(px — ipy)
E — mc? E — mc?
Py I san )\ - )
(3) — lx T ‘Py} (4) _ Cy Pzl
u N E — mc? ’ u N E — mc? ’
1 0
0 1

(with E = =Vm?c* + p’c?) ( (7.46)
and the normalization constant is (see Problem 7.3)
N = V(E| + mc¥)/c (7.47)

You might guess that #(" describes an electron with spin up, #® an electron
with spin down, and so on, but this is not quite the case. For Dirac particles the
spin matrices [generalizing (4.21)] are

h g O
= — ith 2 = 7.4
S > =z, with (O a) (7.48)

and it’s easy to check that ¥V, for instance, is not an eigenstate of =,. However,
if we orient the z axis so that it points along the direction of motion (in which
case p, = p, = 0) then ™, 4@, u®, and u® are eigenspinors of S;; u" and u®
are spin up, and #® and u™ are spin down* (Problem 7.6).

I said earlier that £ and p [in eq. (7.31)] are mathematical parameters
which correspond physically to energy and momentum, and this is quite true
for the electron states, u” and u#®. However, the E in #® and 4 cannot represent
positron energy; all free particles, positrons and electrons alike, carry positive
energy. The “negative-energy’ solutions must be reinterpreted as positive energy
antiparticle states. To express these solutions in terms of the physical energy and
momentum of the positron, we flip the signs of E and p:

y(r, 1) = ae"™ E P y(—E, —p) [for solutions (3) and (4)] (7.49)

s to the Dirac equation; I have simply

Mind you, these are the sam e old soli

a¥is - = JAS ey RRA AN L3 2L R L |

_]_
adopted a different sign conventlon fort parameters—one that better conforms
to their physical interpretation.} It is customary to use the letter v for positron
states, expressed in terms of the physical energy and momentum:}

* As a matter of fact, it is impossible to construct spinors that satisfy equation (7.34) and are,
at the same time, eigenstates of S, (except in the special case p pzz‘) The reason is that S by itself
is not a conserved quaﬁtuy, umy the total angular momemum, L + S, is conserved here (see Problem
7.8). It is possible to construct eigenstates of helicity, T - p (there’s no orbifal angular momentum
about the direction of motion), but these are rather cumbersome (see Problem 7.7), and in practice
it is easier to work with the spinors (7.46), even though their physical interpretation is not so clean.

All that really matters is that we have a complete set of solutions.

1 If it bothers you to change notation in “midstream™ like this, go back to equation (7.32)
and don’t call it p* at all—call it k* (or something). Then, at the end, identify X° = E/c, k = p for
solutions (1) and (2), k® = —E/c, k = —p for solutions (3) and (4).

i It is conventional to associate vV with ¥, and v® with —u®. In the special case p, =
p, = 0, then, vV is spin down and v is spin up. This seems silly at first, but there is a reason for it:
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c(px — zpy)
E + mc?
_c(=p)

vXE, p) = uN-E -9 =N 1,2

c(p2)
E + mc?
c(px + ip)
E+mc?* |
1
0

(with E = Vm2c* + pc?) (7.50)

From now on I will never mention #® and u; the solutions we shall use
are 4", u"? (representing the two spin states of an electron with energy E and
momentum p), and vV, v@ (representing the two spin states of a positron with
energy E and momentum p). Notice that whereas the u’s satisfy the momentum
space Dirac equation (7.34) in the form

(v*p, —mcu =20 (7.34)

v®(E, p) = —uN-E, —p) = —N

the v’s obey the equation with the sign of p, reversed:
(v*p, + mcp =0 (7.51)

Incidentally, plane waves are, of course, rather special solutions to the Dirac
equation. They are the ones of interest to us, however, because they describe
particles with specified energies and momenta, and in a typical experiment these
are the parameters we control and measure.

7.3 BILINEAR COVARIANTS

I mentioned in Section 7.1 that the components of a Dirac spinor do not trans-
form as a four-vector, when you go from one inertial system to another. How,
then, do they transform? I shall not work it out here, but merely quote the re-
sult:? If we go to a system moving with speed v in the x direction, the transfor-
mation rule is

Yo =5 (7.52)

The charge conjugation operator takes an electron with spin up into a positron with spin down, so
this way u‘", v are “particle-antiparticle pairs,” as are #®, v® (see Problem 7.9).
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where S is the following 4 X 4 matrix:

(7.53)
with

a.==Vi(y = 1) (7.54)
and vy = 1/ Vl_—v—zlcz, as usual.

Suppose we want to construct a scalar quantity out of a spinor . It would
be reasonable to try the expression '

Y1

U = (UNSY jﬁ = P+ a2+ sl + W (2.55)

Vs

Unfortunately, this is #ot a scalar, as you can check by applying the preceding
transformation rule:*

WY = @O = ¢ISTSy # Yy (7.56)
In fact (see Problem 7.11):
1 - E a)
StS=82=+« v ¢ # 1 (7.57)
-
. c

Of course, the sum of the squares of the elements of a four-vector is not invariant
either; we need minus signs for the spatial components [eq. (3.12)]. With a little
trial-and-error you will discover that in the case of spinors we need minus signs
for the third and fourth components. Just as we introduced covariant four-vectors
to keep track of the signs in Chapter 3, we now introduce the adjoint spinor:

g=yhy0 =@ty -yt -y (7.58)
I claim that the quantity
g =P = WP+ Yal® — [Wal® — [l (7.59)
is a relativistic invariant. For STy%S = 4° (Problem 7.11), and hence
W) = @O = ¢ISTYOSY = ¥y = W (7.60)

In Chapter 4 we learned to distinguish scalars and pseudoscalars, according
to their behavior under the parity transformation, P: (x, y, z2) — (—x, =y, —z).
Pseudoscalars change sign; scalars do not. It is natural to ask whether Y4 is the

* Note that the transpose of a product is the product of the transposes in reverse order:
(IE?)ij = (AB); = Ay By = ﬁik/ikj = (EA~ )i
The same goes for the Hermitian conjugate:

(AB)* = gt4t
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former type, or the latter. First, we need to know how Dirac spinors transform
under P. Again, I won’t derive it, but simply quote the result:?

vy =2 (7.61)
It follows that
WY = @Y% =IO = vy =y (7.62)

so (Yy) is invariant under P; it’s a “true” scalar. But we can also make a pseudo-
scalar out of ¥

Yy (7.63)

where

0 1

v =iy’y'yiy} = ( ) (7.64)
1 0

I'll et you check that it is Lorentz-invariant (Problem 7.12). As for its behavior

under parity
YY) = @YY Y = ¥ Y = YOy (7.65)
(I used the fact that (v°)? = 1 in the last step.) Now, the 4° is on the “wrong

side” of the ¥, but we can “‘pull it through” by noting that it anticommutes

w1th 7 7 and 7 [eq (7.15)] and commutes (of course) with itself (y3y° =

= Y = 0 v = 0 A% = ™), s0

7’y = iV = G YY) = %
By the same token, 4> anticommutes with all the other ¥ matrices:

. ¥}=0 (7.66)
At any rate
WYY = =¥y = =Y (7.67)

SO it’s a pseudoscalar.
All told, there are 16 products of the form 1[/*1[/ (taking one component

BINAA G L1111 ¥, Wi \LtaiAlll

from ¢* and one from ), since / and j run from 1 to 4. These 16 products can
be added together in various linear combinations to construct quantities with
distinct transformation behavior, as follows:

(1) Yy = scalar (one component)
J (2) ¥¥°¢ = pseudoscalar (one component) 1
(3) ¥y*y = vector (four components) (7.68)
L(“) ¥y 75\1/ pseudovector (four components)
(5) o™y = antisymmetric tensor (six components)
where o = é (Y*y* — y'v*) (7.69)

This gives 16 terms, s0 it’s all we can hope to make, in this way. You cannot,
for example, construct a symmetric tensor bilinear in y* and ¢, and if you’re
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looking for a vector, Y4*y is the only candidate.* (Another way to think of it is
this: 1, v°, ¥*, v*4°, and ¢* constitute a “basis” for the space of all 4 X 4
matrices; any 4 X 4 matrix can be written as a linear combination of these 16.
In particular, if you ever encounter a product of five ¥ matrices, say, you may
be sure that it can be reduced down to a product of no more than two.) Pause
a moment to admire the notation in (7.68). The tensorial character of the bilinear
covariants, and even their behavior under parity, is indicated at a glance: yy*y
looks like a four-vector, and it is a four-vector. But v* by itself is certainly not
a four-vector; it’s a collection of four fixed matrices (7.17); they don’t change
when you go to a different inertial system—it’s y that changes.

7.4 THE PHOTON

In classical electrodynamics the electric and magnetic fields (E and B) set
up by a charge density p and a current density J are determined by Maxwell’s
equations:t

(1) V-E =4dnp (i) V-B=0

7.70)
. 1 3B . 1OE 4r (
(ii) VXE+CBI_O iv) VXB cat_cJ

In relativistic notation, E and B together form an antisymmetric second-rank
tensor, the “field strength tensor,” F**:

0 —-E. —E, —FE,
E.,. 0 -B, B,
Ey BZ O _Bx

E, B, B, 0

(that is, FO! = E,, F'*> = —B,, etc.), while p and J constitute a four-vector:

o= (7.71)

JE= (7.72

{cp, J) (1.72)

The inhomogeneous Maxwell equations [(1) and (1v)] can now be written more
neatly (Problem 7.18)

3, Fw = 4—:- J* (1.73)

* Notice that Y% = y'O% = Y1y, so ¢y is actually the zeroth component of a four-vector.
That’s why the normalization convention (7.44), which no doubt looked peculiar at the time, is
actually very sensible. By normalizing u'u to the zeroth component of the four-vector p*, we obtain
a relativistically ‘‘natural”” convention (see Problem 7.14). By the way, as in nonrelativistic quantum
mechanics, y*¢ has the dimensions of (volume)™, so the constant a in equation (7.31) carries the
units mc(h=?).

T This section presupposes some familiarity with classical electrodynamics; it is designed to
make the description of photons in quantum electrodynamics more plausible, but if you don’t un-
derstand it, skip directly to Section 7.5. As always, I use Gaussian cgs units.
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From the antisymmetry of F** (that is: F* = —F*") it follows (Problem 7.18)
that J* is divergenceless:

3 J* =0 (7.74)
FC’ A \l.l‘l’,

Or, in three-vector notation, V- J = —dp/dt, this is the “continuity equation,”
expressing local conservation of charge (Problem 7.19).

As for the homogeneous Maxwell equations, (iii) is equivalent to the state-
ment that B can be written as the curl of a vector potential, A:

B=V XA (7.75)
With this, (ii) becomes
1
VX(E+—(—9~H)=O (7.76)
c 0

which is equivalent to the statement that E + (1/¢)(0A/dt) can be written as the
gradient of a scalar potential, V-
1 0A

=-VV—-— 7.77
c dt ( )

In relativistic notation, equations (7.75) and (7.77) become

F* = ¢*4" — o°A* (7.78)
where A* = (V, A) (7.79)

In terms of this four-vector potential, the inhomogeneous Maxwell equations
(7.73) read:

4
34" — (3, 4% = 7” J* (7.80)

In classical electrodynamics the fields are the physical entities; the potentials
are simply useful mathematical constructs. The virtue of the potential formulation
is that it automatically takes care of the homogeneous Maxwell equations; given
nnnnnnnn IR e 7 TTY " WP | Y FAallac: sevrsvvadia 7 tne bt 17
Cquallullb \ I.rf J} aliuvl \ f.f I} \11} aiiv \lll} IULLIUYY lllllllC\.lJal-Cly, I.I.U lLlal-lCl vwilial r
and A may be. This leaves us only the inhomogeneous equation (7.80) to worry
about. The defect of the potential formulation is that }”and A are not uniquely
determined. Indeed, it is clear from eguation (7.78) that new potentials

A=A, + I\ (7.81)

(where X is any function of position and time) would do just as well, since
FA4" — &’4* = 3*4” — 3"4*. Such a change of potentials, which has no effect on
the fields, is called a gauge transformation. We can exploit this gauge freedom
to impose an extra constraint on the potential:*

9, 4" =0 (7.82)

This is called the Lorentz condition; with it Maxwell’s equations (7.80) simplify
still further:
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04" = f‘c—w J* (7.83)

1 22
Here O =939, = - F i V?; it is called the d’dlembertian operator.
c
Even the Lorentz condition, however, does not uniquely specify A*. Further
gauge transformations are possible, without disturbing equation (7.82), provided
that the gauge function X satisfies the wave equation:

A =0 (7.84)

Unfortunately, there is no clean way to eliminate the residual ambiguity in 4,
and one can either (1) live with the indeterminacy, which means carrying along
spurious degrees of freedom, or (2) impose an additional constraint, which spoils
the manifest Lorentz covariance of the theory. Both approaches have been used
in formulating quantum electrodynamics; we shall follow the latter course. In
empty space, where J* = (, we pick (see Problem 7.20)

A’=0 (7.85)
The Lorentz condition then reads
V-A=90 (7.86)

This choice (the Coulomb gauge) is attractively simple, but by selecting one
component (4°%) for special treatment, it ties us down to a particular inertial
system (either that, or it obliges us to perform a gauge transformation in con-
junction with every Lorentz transformation, in order to restore the Coulomb
gauge condition). In practice, this is very seldom a problem, but it is aesthetically
displeasing.

In quantum electrodynamics 4* becomes the wave function of the photon.
The free photon satisfies equation (7.83) with J* = 0

04* =0 (7.87)

which we recognize in this context as the Klein-Gordon equation (7.9) for a
massless particle. As in the case of the Dirac equation, we look for plane-wave
solutions with momentum p = (E/c, p):

B = go—/hp X p
A¥x) = ae (p) (7.88)

Here ¢ is the polarization vector—it characterizes the spin of the photon—and
a is a normalization factor. Substituting equation (7.88) into equation (7.87),
we obtain a constraint on p*:

p'p, =0, so that E = |p|c (7.89)

which is as it should be for a massless particle.
Meanwhile, ¢ has four components, but they are not all independent. The
Lorentz condition (7.82) requires that

P, =0 (7.90)
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Moreover, in the Coulomb gauge we have
e =0, ep=0 (7.91)

which is to say that the polarization three-vector (e) is perpendicular to the di-
rection of propagation; we say that a free photon is transversely polarized. For
this reason the Coulomb gauge is also known as the rransverse gauge. Now, there
are two linearly independent three-vectors that are perpendicular to p; for ex-
ample, if p points in the z direction, we might choose

6(1) = (19 05 O)a €2) = (Oa 19 0) (7'92)

Thus instead of four independent solutions for a given momentum (too many,
for a particle of spin 1), we are left with only two. That looks like too few:
shouldn’t the photon have three spin states? The answer is no. a massive particle
of spin s admits 2s + 1 different spin orientations, but a massless particle has
only two, regardless of its spin (except for s = 0, which has only one). Along its
direction of motion it can only have m, = +s or m, = —s, its helicity, in other
words, can only be +1 or —1.*

7.5 THE FEYNMAN RULES FOR QUANTUM
ELECTRODYNAMICS

In Section 7.2 we found that free electrons and positrons of momentum
p = (E/c, p), with E = Vm?c* + p*c?, are represented by the wave functions?

Electrons Positrons
UUX) = ae MP 3 p) Y(x) = aelimP xS p) (7.93)

where s = 1, 2 for the two spin states. The spinors 1 and v satisfy the mo-
menitum space Dirac equations:

(v, —madu =20 (v'p, + mcyv =0 (7.94)
and their adjoints, u = u'y®, v = v1y?, satisfy
w(y'p, — mc) =0 v(y*p, + mc) =0
They are orthogonal,
7@ = g M@ =0 (7.95)

* Photon states with m, = +1 correspond to right- and left-circular polarization; the respective
polarization vectors are e, = F(¢; * iey)/ V2. Notice that it is by specifying a particular gauge that we
eliminate the nonphysical (m; = 0) solution. If we were to follow a “covariant” approach, in which
we avoid imposing the Coulomb gauge condition, longitudinal free photons would be present in the
theory. But these “‘ghosts” decouple from everything clse, and they do not affect the final resuits.

+ To make this section as self-contained as possible for easier reference, and aiso to emphasize
the similarities and differences in the theories of electrons, positrons, and photons, I begin with a
summary of the essential results from earlier sections. For the sake of argument I speak of “electrons”
and “positrons,” but they could as well be u~ and u*, or 7~ and r*, or (with the appropriate electric
charges) quarks and antiquarks—in short, any point charges of spin {.
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normalized,
uu = 2me vy = —2mc (7.96)
and complete, 1n the sense that

S w99 = (vp, + mo) 3 o5 = (vp, — m)

=12 s=12 (7.97)
(see Problem 7.22). A convenient explicit set (247, u®, vV, v®) is given in
equations (7.46) and (7.50). Ordinarily, we shall be averaging over electron and
positron spins, and in that case it doesn’t matter that these are not pure spin up
and spin down; all we really need is completeness. For the occasional problem
in which the spins are specified, we must, of course, use the spinors appropriate
to the case at hand.

Meanwhile, a free photon of momentum p = (E/c, p), with E = |plc, is
represented by the wave function

Photons
AH(x) = ae PP Xk, (7.98)

where s = |, 2 for the two spin states (or “polarizations”) of the photon. The
polarization vectors ef;, satisfy the momentum space Loreniz condition:

e’p,=0 (7.99)
They are orthogonal, in the sense that
eEu =0 (7.100)
and normalized
e, = 1 (7.101)
In the Coulomb gauge
=0, ep=0 (7.102)
and the polarization three-vectors obey the completeness relation (Problem 7.23)
212 (es)i{€y); = 055 — Bibj (7.103)
s=1,

A convenient explicit pair (¢, €2)) is given in equation (7.92).
To calculate the amplitude, M, associated with a particular Feynman dia-
gram, proceed as follows:

1. Notation. Label the incoming and outgoing four-momenta p,, p,, . . .,
P», and the corresponding spins sy, §2, . . ., S, label the internal four-
momenta ¢, ¢,, . .. . Assign arrows to the lines as follows: the arrows
on external fermion lines indicate whether it is an electron or a positron;
arrows on internal fermion lines are assigned so that the “direction of
the flow” through the diagram is preserved (i.e., every vertex must have
one arrow entering and one arrow leaving). The arrows on external
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Pa. 4 .05{5 Pe . Sg
Pra S -
< AN

\\\ //
/ \ Figure 7.1 A typical QED diagram, with

external lines labeled. (Internal lines not
Prefi s,  P3:%3 shown.)

photon lines point “forward”; for internal photon lines the choice is
arbitrary. (See Fig. 7.1.)
2. External Lines. External lines contribute factors as follows:

Incoming ( " ): u
Outgoing ( " ): i
Incoming ( & ): D
Outgoing ( & ): v
Incoming ( ¢ ): ¢
Outgoing ( o' ): &*

Electrons: {

Positrons: {

Photons: {

3. Vertex Factors. Each vertex contributes a factor
igeY"
The dimensionless coupling constant g, is related to the charge of the

positron: g, = eV4r/hc = Vdmra*
4. Propagators. Each internal line contributes a factor as follows:

iv*q, + mc)

Electrons and positrons: ——
q Fréi o
_lg v
Photons: q;

5. Conservation of Energy and Momentum. For each vertex, write a delta
function of the form

(211’)4 54(’(1 + kz + k3)

* In Heaviside-Lorentz units, with 2 and ¢ set equal to 1, g, is the charge of the positron,
and hence is written “e” in most texts, In this book I use Gaussian units, and keep all factors of A
and ¢. The easiest way to avoid trouble over units is to express all resuits in terms of the universal
dimensionless quantity «. In writing the Feynman rules for QED I assume we are dealing with
electrons and positrons. In general, the QED coupling constant is —gV4x/Ac, where g is the charge
of the particie (as opposed to the antiparticle). For electrons, g = —e, but for “up” quarks, say,

q=ie
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where the k’s are the three four-momenta coming into the vertex (if an
arrow leads outward, then k is minus the four-momentum of that line,
except for external positrons*). This factor enforces conservation of
energy and momentum at the vertex.

6. Integrate Over Internal Momenta. For each internal momentum g, write
a factor

d*q
(27)*

and integrate.
7. Cancel the Delta Function. The result will include a factor

2m)** pr + p+ + -+ —py)

corresponding to overall energy-momentum conservation. Cancel this
factor, and what remains is —i/M.

As before, the procedure is to write down all diagrams contributing to the process
in question (up to the desired order), calculate the amplitude (.#) for each one,
and add them up to get the toral amplitude, which is then inserted into the
appropriate formula for the cross section or the lifetime, as the case may be.
There’s just one new twist, here: the antisymmetrization of fermion wave func-
tions requires that we insert a minus sign in combining amplitudes that differ
only in the interchange of two identical external fermions. It doesn’t matter
which diagram you associate the minus sign with, since the total will be squared
eventually anyway; but there must be a relative minus sign between them.

8. Antisymmetrization. Include a minus sign between diagrams that differ
only in the interchange of two incoming (or outgoing) electrons (or
positrons), or of an incoming electron with an outgoing positron (or
vice versa).

The handling of fermion loops will be discussed in the final section of this chapter.

7.6 EXAMPLES

. . . . .
We are now in a nosition to renraduce manv af the ~ o ralanlatinng in Aian
YWe ar 1 a C]tl ia tv I T uce many Uf tll\« ulaSSI\.a Uﬁlpﬂxﬁduus in quau'

Lea% 2aYY i @ opaSa

giving you a catalog of the most important processes (see Table 7.1). The simplest

* The problem here is that the arrows are being asked to do double duty: they establish the
convention for the sign of momentum, and in the case of external fermion lines, they tell you whether
it is a particle or an antiparticle (for internal lines we need not distinguish). The latter role takes
precedence, so for external positrons the “positive” direction for momentum is opposite to the direction
of the arrow,



TABLE 7.1 CATALOG OF BASIC QUANTUM ELECTRODYNAMIC PROCESSES

Second-order processes

Elastic

Electron-muon scattering (e + u > e + y)
(Mott scattering {M > m) = Rutherford scattering {v <))

Electron-electron scattering (e +e >e~ +e7)
{(Mdller scattering)

Electron-positron scattering (e~ +e* >e +et)
{Bhabha scattering)

Inelastic

Pair annihilation (e~ +e* >y +v)

r%\ Pair production {y + vy >e~ +e*)

Compton scattering (v +e~ >y +e7)

LI

7

Most important third-order process

\é\AAM Q, = Anomalous magnetic moment of electron
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/21 5 Pa, S:\ Figure 7.2 Electron-muon scattering.

case is electron-muon scattering, for here only one diagram contributes in sec-
ond order.*

EXAMPLE 7.1 Electron-Muon Scattering
In applying the Feynman rules, we proceed “backward” along each fermion
line (Fig. 7.2):

_ jgnv

7 (@49 pa)igey (o))

o [ 1@ pigeryupo)

X 8%(p1 — ps — Q0% (P2 + a — pa)d’q

Notice that the space-time indices on the photon propagator contract with
those of the vertex factors at either end of the photon line. Carrying out
the (trivial) ¢ integration, and dropping the overall delta function, we find

2
M= — _g;z' [ Yy uP(pOIECN payy, u2(p2)]  (7.104)
(p1 — p3)
In spite of its complicated appearance, with four spinors and eight y ma-
trices, this is just a number, which you can work out once the spins are
specified (see Problem 7.24).

EXAMPLE 7.2 Electron-Electron Scattering
In this case there is a second diagram, in which the electron that emerges
with momentum p; and spin s3 comes from the p,, s, electron, instead of
the p,, s, electron (Fig. 7.3). We can obtain this amplitude from equation
(7.104) simply by the replacement ps, s3 <> pa, S4. According to rule 8, the
two diagrams are to be subtracted, so the total amplitude is

2
(pl—iepgji [a(3)y (DI 4)y . u(2)]
’ Gf% L@y uDIEGYy.u(2)] (7.105)

M=~

* [t doesn’t have to be an e and a u, of course. Any spin-1 point charges would do (e and 7,
for instance, or u and 7, or electron and quark, etc.), as long as you put in the correct masses and
charges. As a matter of fact, most books use electron-profon scattering as the canonical example, but
that is actually a rather inappropriate choice, since the proton is a composite structure, not a point
particle. Still, to the extent that the internal structure of the proton can be ignored, it is not a bad
approximation (it is rather like treating the sun as a point mass in the theory of the solar system). In
the regime where the “muon” is much heavier than the “electron,” we have Mott scattering; if,
moreover, the “electron” is nonrelativistic, it reduces to Rutherford scattering, and actually reproduces
exactly the same formula for the cross section as Rutherford obtained using classical mechanics.
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T2 “Tancted’ diagram £

e e Figﬂl‘% 1.3 iwisted” diagram for elec-
/(p, .5 Py, sz\\ tron-electron scattering.

EXAMPLE 7.3 Electron-Positron Scattering
Again, there are two diagrams.* The first is similar to the electron-muon
diagram (Fig. 7.4):

@ [ tacigaryun)
X [BQ)igey WS (p1 — 3 — @)6*(p2 + g — pa)d’q

Notice that “proceeding backwards” along an antiparticle line means
working forward in time; the order is always adjoint spinor/gamma matrix/
spinor. The amplitude for this diagram is thus

2

g - -
My = — ——— [3)y"u(][B2Yy,v(4)] (7.106)
(p1 — p3)
The other diagram represents virtual annihilation of the electron and pos-
itron, followed by pair production (Fig. 7.5):
e —ig,,
en [ L3N o] —

X [0Q2)igy )16 a — ps — pa)o*(py + pr — q)d’q

The amplitude for this diagram is therefore

2
M, = - G{Tﬂz [A3)y o [E )y, )] (7.107)

Figure 7.4 Electron-positron scattering.

7 p1131 ,02,5‘2 N

* The fact that there are rwo diagrams for electron-electron and electron-positron scattering,
but only one for electron-muon scattering, would appear offhand to be inconsistent with the classical
limit. After all, Coulomb’s Law says that the force of attraction or repulsion between two particles
depends only on their charges, not on whether they happen to be identicat (or antiparticles of one
another). In the nonrelativistic limit, then, we should get the same answer whether we use the electron-
muon formula or the electron-electron formula. The amplitudes, to be sure, are not the same, but
the cross-section formula (6.34) carries a factor of S, which is 1 for electron-electron scattering and
1 for electron-muon scattering, [For electron-positron scattering, S = 1, but the second amplitude
(7.107) is smaller than the first (7.106) by a factor (v/c)?, so that in the nonrelativistic limit only M,
contributes.]
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Figure 7.5 Second diagram contributing
to electron-positron scattering.

Now, do we add these diagrams, or subtract them? Interchanging the in-
coming positron and the outgoing electron in the second diagram (Fig.
7.5), and then redrawing it in a more customary configuration

we recover the first diagram (Fig. 7.4). According to rule 8, then, we need
a minus sign:

2
g—"mz [#3) v u(DB2Yy,v(4)]

M=
(p —

87 i are
+ o1+ ooy [y v(D][v2)y, ()] (7.108)

EXAMPLE 74 Compton Scattering
For an example involving the electron propagator and photon polarization,
consider the case of Compton scattering, v + ¢ — v + e. Again there are
two diagrams, but they do not differ by the interchange of fermions, and

the amplitudes add. The first diagram (Fig. 7.6) yields

@ [ a@ waxiger) D gt |

X e(3)* 8%p1 — ps — Q8%(p2 + g — pa)d’q

Notice that the space-time index on each photon polarization vector is
contracted with the index of the v matrix at the vertex where the photon
was created or absorbed. Notice also how the electron propagator fits in
as we work our way backward along the fermion line. I have introduced
here the convenient shorthand “g-slash’;
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Figure 7.6 Compton scattering,

/1(91.31 leszLLZ,)

o= a“'y# (7109)

Evidently, the amplitude associated with this diagram is*

2
My = (p, — pj.f — 202 [ 4) e 2) 2 — 73 + mO)g(3)*u(1)]  (7.110)
1
Meanwhile, the second diagram (Fig. 7.7) yields
g

2= o ¥ po) = 1P [UeBY(p1 + 22 + mOd2u(1)]  (7.111)

and the total amplitude is M = M, + M,.

7.7 CASIMIR’S TRICK AND THE TRACE THEOREMS

In some experiments the incoming and outgoing electron (or positron) spins are
specified, and the photon polarizations are given. If so, the next thing to do is
insert the appropriate spinors and polarization vectors into the expression for
M, and compute |M|*, the quantity we actually need to determine cross sections
and lifetimes. More often, however, we are not interested in the spins. A typical
experiment starts out with a beam of particles whose spin orientations are random,
and simply counts the number of particles scattered in a given direction. In this
case the relevant cross section is the average over all initial spin configurations,
I, and the sum over all final spin configurations, £, In principle, we could compute
| M(i — f)I? for every possible combination, and then do the summing and av-
eraging;

{|M|*) = average over initial spins, sum over final spins,

of [M(i — f)? (7.112)
Ry Ao
q
Pyi sy P2.52  Figure 7.7 Second diagram for Compton
scattering.

* Here and below, ¢* means v*(e¥); the y matrix is 7ot conjugated.
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In practice, it is much easier to compute (|#|?) directly, without ever evaluating
the individual amplitudes.
Consider, for instance, the electron-muon scattering amplitude (7.104).
Squaring, we have
4

M = ?g__eﬁ [yl DAYy a3y w(HI*[w(4yy w(2)]*  (7.113)
1 3

(I use » for the second space-time index, to avoid confusion.) A glance at the

first and third terms (or the second and fourth) reveals that we must handle

quantities of the general form

G = [Wa)T b))l @)T 2 D)]* (7.114)

where (a) and (b) stand for the appropriate spins and momenta, and I';, and I,
are two 4 X 4 matrices. All the other processes described in Section 7.6—Moller,
Bhabha, and Compton scattering, as well as pair production and annihilation—
lead to expressions with similar structure. To begin with, we evaluate the complex
conjugate (which is the same as the Hermitian conjugate, since the quantity in
brackets is a 1 X 1 “matrix’’):

[ @)Tu)}* = [1a)'y"Tou(b)]" = w(b)' Ty u(a) (7.115)

Now, v = 4% and (v°)* = 1, so
@) 2ud)]* = ub) v y°Tiy’ula) = @b)Tru(a) (7.116)
where* I, = ~°T34° (7.117)
Thus G = [ a)T . b)[i(b)Tu(a)] (7.118)

We are ready now to sum over the spin orientations of particle (b). Using
the completeness relation (7.97), we have

S G- a(a)r.{ > u“ﬁ(pb)ﬁ“b’(pb)}fzu(a)

b spins 55=1,2
= W)l (Z + mpe) ) = wa)Qu(a) (7.119)
where Q is a temporary shorthand for the 4 X 4 matrix
Q =Ty + myo)T (7.120)
Navt wa dAa tha cama far nartinla ()
ANwALy YW LU LIV 2alllv 1V pJAl bivi \u}

2 Z G = Z ﬁ(sa)(pa)Qu(sa)(pa)
s =12

a spins b spins

Or, writing out the matrix multiplication explicitly ( and j are summed from 1
to 4):

S @A p)Quut N pa) = Qij{ 2 u“")(Pa)ﬁ(sa)(Pa)}ﬁ

5,=1,2 5,=1,2
= Qij(ﬁra + mac)ji = Tr(Q(% + mac)) (7121)

* Observe that the overbar now serves two different functions. On a spinor it denotes the
adjoint: § = y'¥° [eq. (7.58)]; on a 4 X 4 matrix it defines a new matrix: T = Ty’



238 7/QUANTUM ELECTRODYNAMICS

where 7r denotes the trace of the matrix (the sum of its diagonal elements):
Tr(d)= 2, A (7.122)

Conclusion:

2 [HaT u®HaTub]* = TriTug, + m)To#y + mee)]  (7.123)

all spins

This may not look like much of a simplification, but notice that there are no
spinors left; once we do the summation over spins, it all reduces to matrix mul-
tiplication and taking the trace. For want of a better name, I call equation (7.123)
“Casimir’s trick,” since Casimir was apparently the first one to use it.” If either
u (in 7.123) is replaced by a v, the corresponding mass on the right-hand side
switches sign (see Problem 7.26).

EXAMPLE 7.5
In the case of electron-muon scattering (7.113), T, = 4%, and hence
T2 = v%"'y% = 4* (Problem 7.27). Applying Casimir’s trick twice, we find

() =

—)z Tr[v*(p1 + meyy'(73 + mo)]

X Trly (2 + Mcyy (¥, + Mc)) (7.124)

where m is the mass of the electron and A is the mass of the muon. The
factor of ; is included because we want the average over the initial spins;

“since there are two particles, each with two allowed spin orientations, the
average is a quarter of the sum.

Casimir’s trick reduces everything down to a problem of calculating the
trace of some complicated product of vy matrices. This algebra is facilitated by
a number of theorems, which I collect together below (I'll leave the proofs to
you—see Problems 7.29 through 7.32). First of all, I should mention three facts
about traces in general: if 4 and B are any two matrices, and « is any number

1. Tr(4+ B) = Tr(4) + Tr(B)
2. Tr(ad) = aTr(A)
3, Tr(4AB) = Tr(BA)

It follows from number 3 that Tr(4BC) = Tr{(CAB) = Tr(BCA), but this
is not equal, in general, to the trace of the matrices taken in the other order:
Tr(ACB) = Tr(BAC) = Tr(CBA). In this way you can “peel” matrices off the
back end of a product and move them around to the front, but you must

preserve the ordering. It is useful to note that

4, g,.g8" =4

and to recall the fundamental anticommutation relation for the v matrices (to-
gether with an associated rule for “slash” products):

5. A%y 4 gyt = 2 5. ab'+ba=2a-b
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From these there follows a sequence of “contraction theorems”:

6. v =4

7. ,\',#,},V,\',# = —2-\’/" 7’i Y K‘Vﬂ = —‘2”

8. v vy =4g? 8. ’yﬂtﬂf'y“ =4q+b

9. VY'YV = =29y My 9. v abeyt = —2cbd

And finally, there is a set of “trace theorems™:

10. The trace of the product of an odd number of gamma matrices is zero

1. Tr(l) =
12, Tr(y*y ) = 4g* 12", Triab) = 4a-b
13. Tr(y*y'v*y°) 13. Tr{abed) = 4a-bc-d
= 4(g*g™ — g"g" + g*'g™) —~qa-cb-d+a-db-c)

Since v° = iv%y!y%+ is the product of an even number of 'y matrices, it follows
from rule 10 that Tr(v’vy*) = Tr(v*y*y’y") = 0. When v’ is multiplied by an
even number of v’s, we find

14. Tr(v) =0
15. Tr(¥’v*y") =0 15, Tr(x’ab) =0
16.  Tr(¥’y*y'y*y°) = 4ie™” 16'. Tr(v’abed) = 4ie”"*a,b,c\d,
where
—1, if urhe is an even permutation of 0123,
¢ = 1 +1, if Ao is an odd permutation,
0, if any two indices are the same.*
EXAMPLE 7.6

Evaluate the traces in electron-muon scattering [eq. (7.124)].

Triv“(p1 + meyy' (g5 + mo)]
= Tr(v*#1v'ps) + md Tr(v*01v") + Tr(v*y'#3)] + (mcY¥ Tr(v*y")

Solution. According to rule 10, the terms in square brackets are zero. The

lact tarmm 129
last term can be evaluated using rule 12, and the first by rule 13:

Tr(v*#1v'?s) = (DN P Tr(v*Y " Y")
= (pON(D3) g g — g¥g™" + g*°g™)
= dpips — &*(p1+ p3) + piPY)
Thus Tr(v*(p + meyy (s + me))
= 4[p4ps + pipi + g°((me) — (p1+p3))]  (7.125)

* By “even permutation” I mean an even number of interchanges of two indices. Thus
PN = — e = e = o and so on. Putting it differently, ¢ is antisymmetric in every pair of
superscripts. It might seem strange that €%'?* is minus 1; why not make it plus 1? It’s purely conventional,
of course. Evidently, whoever established the definition wanted €523 to be plus 1, and from that it
follows that %2> = —1, since three spatial indices are raised. By the way, if you are used to working
with the three-dimensional Levi-Civita symbol e; (see Problem 4.19), be warned that although an
even permutation on fhree indices corresponds to preservation of cyclic order (¢;; = € = €;), this
is not the case for four indices: ¢ = —¢*™* = 7 = —e™,
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The second trace (in 7.124) is the same, withm — M, 1 — 2,3 — 4, and
the Greek indices lowered. So

o4

(MP = L)‘, [pips + papi + g*((mc)* — (p1+p3))]

X [p2,Ps, + Da, D2, + 8u((MC)* — (P2 Pa)]

8ge
= ﬁ [(p1* p2)(D3* pa) + (P1* PaX(P2+ P3)

— (D1 D3XMcY — (D2 pa)(me)? + 2(mMc?)Y] (7.126)

7.8 CROSS SECTIONS AND LIFETIMES

We are now back on familiar “turf.” Having calculated |/#|* (or, where appro-
priate, <|.M|2)), we simply plug it into the relevant cross-section formula from
Chapter 6: equation (6.34), in the general case; equation (6.42), for two-body
scattering in the CM; or one of the equations from Problems (6.8), (6.9), or
(6.10), in the lab frame.

EXAMPLE 7.7 Mott and Rutherford Scattering
An electron (mass 1) scatters off a much heavier “muon” (mass M > m).
Assuming that the recoil of M can be neglected, find the differential scat-
tering cross section in the lab frame (A at rest).

Solution. According to Problem (6.8), the cross section is given by

Z_; N (8 Mc) <|Jn|2>

Because the target is stationary, we have (see Fig. 7.8):

p.=(-€,p;\, P2 = (Mc, 0), p3=(§,pa), Ps = (Mc, 0)
\¢c "/ \¢ )

where E is the incident (and scattered) electron energy, p; is the incident
momentum, and p, is the scattered momentum (their magnitudes are equal,
Ip:l = |ps| = |pl, and the angle between them is 6: p, - ps = p* cos ). So

(pr— P =—(P— PV =—-Pi~pP5+2p' M

5 . 0
= —2p*(1 — cos §) = —4p° sin’ 5

E.p, Figure 7.8 Electron scattering from a
Before After heavy target.
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2

., 0
(Pl‘P3)=‘c‘5—Px'Ps=D2+mc — p? cos 0 = m?c? + 2p* sin” =

2

(p2+ps) = (Mc)’
Putting this into equation (7.126), we have

2 2 )
) = (i) (m? +weots) a2

and therefore (recalling that g, = V4ra)

do ah ™ . ., ,8
Eﬁz 202 i (0/2) (mc)” + p” cos 3 (7.128)

This is the Mott formula. It gives, to good approximation, the differential
cross section for electron-proton scattering. If the incident electron is non-
relativistic, so that p? < (mc)?, equation (7.128) reduces to the Rutherford
formula (compare Example 6.4):

do e? 2
aQ (2mu2 sin? (0/2)) (7.129)

What about decays? Actually, there is no such thing, in pure QED, for if
a single fermion goes in, that same fermion must eventually come out; a fermion
line cannot simply terminate within a diagram, nor is there any mechanism in
QED for converting one fermion (say, a muon) into another (such as an electron).
To be sure, there exist electromagnetic decays of composite particles, for example,
7° — v + v; but the electromagnetic component in this process is nothing but
quark-antiquark pair annihilation, g + g — v + v. It is really a scattering event,
in which the two colliding particles happen to be in a bound state. The cleanest
example of such a process is the decay of positronium: ¢* + e~ — v + v, which
we consider in the following example. We’ll do the analysis in the positronium
rest frame (which is to say, in the CM frame of the electron-positron pair). They
are typically moving rather slowly; indeed, for purposes of calculating the am-
plitude we shall assume they are at rest. On the other hand, this is one of those
cases in which we cannot average over initial spins, because the composite system

. .
e s am o oo D e s

is either in the singlet configuration—spins antiparallel—or in the triplet con-
figuration—spins parallel—and the formula for the cross section (and hence the
lifetime) is quite different in the two cases.*

EXAMPLE 7.8 Pair Annihilation
Compute the amplitude, M, for &' + ¢ — v + -y, assuming the electron
and positron are at rest, and in the singlet spin configuration.

* Asa matter of fact, you can do this particular problem by Casimir’s trick, because of a rather
special circumstance: the singlet state can only decay to an even number of photons (predominantly
two) and the triplet to an odd number (usually three). So in calculating the matrix element for
e* + e~ — v + v, we are qutomatically selecting out the singlet configuration even if the triplet was
included in the sum over spins.



242

7/QUANTUM ELECTRODYNAMICS

Solution. Two diagrams contribute, as shown in Figure 7.9. The amplitudes
are (for simplicity I'll suppress the complex conjugate signs on the €’s):

My = i DDA — 5+ mOgul)  (1.130)
2
My = s DA — 2+ mOfad) (13D
and they add

With the initial particles at rest, the photons come out “back to back,”
and we may as well choose the z axis to coincide with the photon line;
then

p1 = me(l, 0,0, 0), p2 = mce(1, 0, 0, 0),
px = me(1, 0,0, 1), pa = mc(l1, 0,0, —1) (7.133)
and hence

(P = P — m’c? = (p1 — pa)’ — mPc® = —2mc)*  (7.134)

The amplitudes simplify somewhat if we exploit rule 5 from Section 7.7:

Pts=—g 0+ 2Apice)

But ; has only spatial components (in the Coulomb gauge), whereas p, 1s
purely temporal, so p; * €3 = 0, and hence

D3 = — €30 (7.135)
Similarly D3y = —£303+ 2Dy €3)
but (p3+ €3) = 0 by virtue of the Lorentz condition (7.90), so

L = — o
L343 343

Therefore (7, — p5 + mo)esu(l) = g3(=p + 75 + mo)u(1)

o~
]
(S
L3
=)
S

But (p, — mo)u(1) = 0, because u(1) satisfies the Dirac equation (7.34), so

(71 — 23 + mo)esu(l) = g375u(1) (7.137)

1 2
Figure 7.9 Two contributions to pair annihilation.
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By the same token

(P — Zs + mo)esu(l) = gapau(l) (7.138)
Putting all this together, we find
2
M= — =2 5O s + fre 1) (7.139)
2(mc)

Now 75 = mc(y® — %), . Pa= me(y° + v?)

so the expression in square brackets can be written as

mcl(eaes + £07° — (ears — £3£4)7°] (7.140)
But £ =—cry = —(_foe “(;e) (7.141)
and therefore
0 o€ 0 o€y
£2rs = (—a-e3 0 )(_0"64 0 )
_ _((0'63)(0'64) 0 ) (7.142)
0 (0 €3)(0-eq)
In Chapter 4 (Problem 4.20) we encountered the useful theorem
(c-a)o-b)y=a-b+is-(aXDh) (7.143)
It follows that
(Fafs + ¢36s) = —2e3 ¢4 (7.144)
(which we could have obtained directly from rule 5'), and
(¢a¢3 — ¢3¢a) = 2i(e3 X €)= (7.145)

where Z = (8 2) , as before. Accordingly

F4

M= (;iec  9)es ey + dles X )+ By lull) (7.146)

So far, I have said nothing about the spins of the electron and positron.
Remember that we are interested in the singlet state:

(1L = 11y/V2

Symbeolically
-/nsinglet = (Mg, — M)/ VE (7.147)
M, is obtained from equation (7.146) with “spin up” for the electron
1

u(1) = V2me (7.148)

0
0
0
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and “spin down” for the positron

9(2) = V2me(0010) (7.149)
Using these spinors, we find
2 °u(1) =0 (7.150)
D)=y (1) = —2mc? (7.151)
So My = —2ig¥es X €4); (7.152)
Meanwhile, for M;; we have
0
w(1) = V2me (1) O B(@2) = —V2me(0001)  (7.153)
0

from which it follows that
My = 2ig¥es X e), = — M, (7.154)

Thus the amplitude for annihilation of a stationary e'e” pair into two
photons, which emerge in the directions * Z, is

Mngiee = —2V2 ig¥(es X ), (7.155)

(I note in passing that since M, = —M;, the triplet configuration
Tl + lT)/VE gives zero, confirming our earlier observation that the two-
photon decay is forbidden in that case.)

Finally, we must put in the appropriate photon polarization vectors.
Recall that for “spin up” (m, = +1) we have

e = — (1/V2)(1, i, 0) (7.156)
whereas for “spin down™ (m, = —1)
e = (1/Y2)1, —i, 0) (7.157)

If the photon is traveling in the +z direction, these correspond to right-
and left-circular polarization, respectively. Since the z component of the
total angular momentum must be zero, the photon spins must be oppositely
aligned: 7! or I1. In the first case we have

(1) & = = (1V2)(L, i, 0), & = (1/V2)1, —i, 0),
so that €3 X €4 = ik (7.158)
In the second case 3 and 4 are interchanged, so that
(11): &3 X & = —ik (7.159)

Evidently, we need the antisymmetric combination, (Tl — lT)/\E, which
should come as no surprise: this corresponds to a total spin of zero, just
as it did when we combined two particles of spin 1. Again, the amplitude
is (M, — M)/ V2, only this time the arrows refer to photon polarization.
Finally, then:
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Mingier = —485 (7.160)

(I have restored the complex conjugation of the polarization vectors, sup-
pressed until now; this simply reverses the signs in (7.158) and (7.159).)

That was a lot of work, for a rather modest looking answer. What can we
do with it? In the first place, we can calculate the total cross section for electron-
positron annihilation. In the CM frame, the differential cross section is [see eq.

(6.42)] { )
do =( he ) LIPS (7.161)
d@  \8x(E, + E2)/ Ipil
Here
E, = E;, = mc?, Ipd = mc (7.162)
and, since the collision is nonrelativistic
Ipil = mv (7.163)

where v is the incident electron (or positron) speed. (We used v = 0 in calculating
JM, but obviously we cannot do so here. Is there an inconsistency in this? Not
really. Think of it this way: M (and also E,, E;, |p/|, and |p;|) could be expanded
in powers of v/c. What we have done is to calculate the leading term in each
expansion.) Putting all this together, we find

do 1 (ha\’
— === 7.164
daQ cv ( m ) ( )
Since there is no angular dependence, the total cross section is 4 times this:®
4 2
=47 (f‘.i“.) (7.165)
cw\m

Finally, we would like to determine the lifetime of positronium, in the
singlet state. This is clearly related to the cross section for pair annihilation
(7.165), but what is the precise connection? Well, going back to equation (6.12)

do 1 dN (6.12)
Q@ L dQ '
we see that the total number of scattering events per unit time is equal to the
luminosity times the total cross section:
N=Lo (7.166)

If p is the number of incident particles per unit volume, and if they are traveling
at speed v, then the luminosity (Fig. 7.10) is

L=pv (7.167)

For a single “atom,” the electron density is [¢(0)|>, and N represents the probability
of a disintegration, per unit time—which is to say, the decay rate. Thus

I' = valy(0)I* (7.168)
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@.:. %’ .“.' ‘ool v Figure 7.10 The number of particles in
..

L ] L ] [ ] . . . . .
o ote $o e the cylinder is pAv dt, so the luminosity
e @ [N ) 4 - [ [P N
= — J (number per unit area per unit time)
vdt Is pv.

Equations (7.1635) and (7.168) are the formulas we used in Chapter 5 to determine
the lifetime of positronium, 7 = 1/T [see eq. (5.84)]:

r= 4”( ) HO)P (7.169)
C

7.9 RENORMALIZATION

In Section 7.6 we considered “electron-muon” scattering, described in lowest
order by the diagram

Pz Py

P Po

and by the corresponding amplitude

(7.170)

M = —g (i ps)y
with g=p1— D3 (7.171)

There are a number of fourth-order corrections, of which perhaps the most
interesting is the “vacuum polarization” diagram

P3 P4
k—q

/ aq \I/ q \
P P2

Here the virtual photon momentarily splits into an electron-positron pair, leading

(as we saw qualitatively in Chapter 2) to a modification in the effective charge

of the electron. My purpose now is to indicate how this works out quantitatively.
The amplitude for this diagram is (Problem 7.38)

ge .\, d*k Trlv + moyylg — £ + mo)]
4 [u(pii)’y u(pl)]{ (27[')4 (kz _ mZCZ)((q _ k)Z . mZCZ)

M=

}[ﬁ(m)v”u(pz)]
(7.172)
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Its inclusion amounts to a modification of the photon propagator:

2 2 q4 v

q q
where [comparing (7.170) and (7.172)]:

d*k Tr[vy.k + moyy g — % + mo)]
= —p2 L
e =780 ) oy 62— micNg - kp - miey T

Unfortunately, this integral is divergent. Na'l'vely, it should go like

2
k|® dlk| |_k_|:{ = | |kldk = |k, as |k| — o (7.175)
Kl

(That is, it should be “quadratically divergent.”) In actual fact, because of can-
cellations in the algebra, it only goes like In|k{ (it is “logarithmically divergent™).
But never mind—either way, it blows up. We encountered a similar problem in
Chapter 6; it seems to be characteristic of closed-loop diagrams in the Feynman
calculus. Once again, the strategy will be to absorb the infinities into “renor-
malized”’ masses and coupling constants.

The integral (7.174) carries two space-time indices; once we have integrated
over k, the only four-vector left is ¢*, so I,, must have the general form g,{ )
+ g,4.( ), where the parentheses contain some functions of g°>. We write it
thus:’

L, = —ig.q*l(g® + q.9,7(q% (7.176)
The second term contributes nothing to J#, since the g, contracts with v* in
equation (7.172), giving
[ p2)gu(p)] = Wp:3)(p1 — p3)u(p))
while, from equation (7.94)

piu(p) = me, u( p3) s = H(ps)mc

[u( p3)gi(p1)] = 0 (7.177)

So we’ll forget about the second term in equation (7.176). As for the first term,
appropriate massaging of the integral (7.174) reduces it to the form (Prob-
lem 7.39)

2(00 1 /[ 2

Ur “_6f (1 = 2) In{ 1 - 7 z(l—z))dz} (7.178)
0 .

m X m2C 2

o
(=]

1272

Kg®) =

The first integral clearly isolates the logarithmic divergence. To handle it, we
temporarily impose a cutoff M (not to be confused with the mass of the muon),
which we shall send to infinity at the end of the calculation:
oo M2 d M2
& ZonE (7.179)
m X m X m
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The second integral

1
fix)=6 Jf z(1 — 2) In(1 + xz(1 — z))dz (7.180)
0
is perfectly finite. It’s irritating that it has to be left in this form; the integral just
can’t be reduced to elementary functions. It is easy enough, however, to evaluate
numerically (Fig. 7.11), and the limiting expressions for large and small x are
simple:

_ [x/5 (x < 1)}
f(x)={lnx s 1) (7.181)
At any rate
»_ & M? =
w- SR GH o

Notice that g* is negative, here. If the incident electron’s three-momentum in
the CM is p, and the scattering angle is 8, then (Problem 7.40)
2 220
g° = —4p° sin > (7.183)

Thus —g?/m?c? ~ v?*/c?, and the limiting cases in equation (7.181) correspond
to nonrelativistic and ultrarelativistic scattering, respectively.

The amplitude for electron-muon scattering, including vacuum polariza-
tion, 1S therefore

M = —gZ{i p3)y"u(py)] o {1 - liz [ln(ﬂi;) -/ ( *2022)}}

q° m m’c
X [ pa)y’u(p»)] (7.184)

Now comes the critical step, in which we ‘““sop up” the infinity (contained for
the moment in the cutoff A7) by introducing the “renormalized” coupling con-

stant

- gy

gt . (M?
gr= g \/1 - o ln(mz) (7.185)

Rewriting (7.184) in terms of gr, we have

g gr =4
M = =gl psyyu(p1)] =5 {1 + 5.2/ (mzcz)}[ﬁ(m)v”u(pz)] (7.186)

pE
A7(x) /
/l
,/ ,/" Figure 7.11 Graph of f(x) [eq. (7.180)].
/z’ Solid line is the numerical result; dashed
.7 line below is In x [which approximates
,)ﬁ »  f(x) at large x]; straight line above is x/5

/ * [which approximates f(x) at small x].



7.9 RENORMALIZATION 249

[Equation (7.184) is only valid to order g anyway, so it doesn’t matter whether
we use g, or gg within the curly brackets.] There are two important things to
notice about this result:

1. The infinities are gone: there is no M in equation (7.186). All reference
to the cutoff has been absorbed into the coupling constant. To be sure, everything
1s now written in terms of gg, instead of g.. But that’s all to the good: gg, not
&., 1s what we actually measure in the laboratory (in Heaviside-Lorentz units it
1s the charge of the electron—or muon—and we determine it experimentally as
the coefficient of attraction or repulsion between two such particles). If, in our
theoretical analysis, we look only at “tree level” (lowest-order) diagrams, we are
led to suppose that the physical charge is the same as the “bare” coupling constant,
g.. But as soon as we include higher-order effects we find that it is really gz, not
&, that corresponds to the measured electric charge. Does this mean that our
earlier results are all wrong? No. What it means is that by naively interpreting
g. as the physical electric charge we were unwittingly taking into account the
divergent part of the higher-order diagrams.

2. There remains the finite correction term, and here the important thing
to notice is that it depends on g>. We can absorb this, too, into the coupling
constant, but the “constant™ is now a function of ¢% we call it a “running”
coupling constant:

2 2
gr(q?) = gr(0) \/ gle( lf( ) (7.187)
or, in terms of the fine structure “constant” (g, = Vdra):
-l ()
a(g) = a(O){l t3 = f -y (7.188)

The effective charge of the electron (and the muon), then, depends on the mo-
mentum transferred in the collision. Higher momentum transfer means closer
approach, so another way of saying it is that the effective charge of each particle
depends on how far apart they are. Thisisa consequenoe of vacuum polarization,

x l“‘lhl‘\ i s nwne I\ﬂhl‘\ I‘ﬂﬂﬁn “] l\ A‘I“ p l “f\'ﬂ ==y

Wiicin D\—ACCI]D CLavill \.AICI.J.BC \AA™ llUW uavc au CAP].H.AL .lUl uuua 1l thl. de,
in Chapter 2, a purely qualitative description. How come Millikan and Ruth-
erford, or even Coulomb, never noticed this effect? If the electron’s charge is not
a constant, why doesn’t this foul up everything from electronics to chemistry?
The answer is that the variation is extremely slight, in nonrelativistic situations.
Even in a head-on collision at 15c, the correction term in equation (7.188) is
only about 6 X 107® (Problem 7.41). For most purposes, therefore, a(0) = 13-
will do just fine. Nevertheless, the second term in (7.188) makes a detectable
contribution to the Lamb shift, for example.®? Moreover, we shall encounter the
same problem in quantum chromodynamics, where (because of quark confine-
ment) the short-distance, relativistic régime is the case of interest.

We have concentrated on one particular fourth-order process (vacuum
polarization), but there are, of course, several others. There are the “ladder-
diagrams™”:
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A

These are finite and present no particular problems. But there are also three
divergent graphs:

=l P

(and of course three more in which the extra virtual photon couples to the
muon). The first two renormalize the electron’s mass; the third modifies its
magnetic moment. In addition, all three, considered separately, contribute to
the renormalization of the electron’s charge. Luckily, the latter contributions
cancel one another, so that equation (7.185) remains valid. (I say “luckily,” for
these corrections depend on the mass of the particle to which the virtual photon
line attaches, and if they did not cancel we would have a different renormalization
for the muon than for the electron. The Ward identity (the official name for this
cancellation) guarantees that renormalization preserves the equality of electric
charges, irrespective of the mass of the carrier).* And then, there are even higher-
order diagrams, such as

>V\ON\OV< ’ >AO@©<,
rd N /s N

These introduce further terms in equation (7.188), of order o?, o, and so on,
but we shall not pursue the matter here, for the essential ideas are now on
the table.
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PROBLEMS 251

3. Bjorken and Drell (ref. 1), Sect. 2.3. Actually, the sign in equation (7.61) is pure
convention; that is, ¥’ = —y°% would do just as well.
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of Photons and Electrons, 2d Ed. (New York: Springer-Verlag, 1975), Sect. 12-6, or
J. J. Sakurai, Advanced Quantum Mechanics (Reading, MA: Addison-Wesley, 1967),
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7. My notation follows that of F. Halzen and A. D. Martin, Quarks and Leptons, (New
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reader to these texts, or to Sakurai (ref. 6), for further discussion.

8. See, for example, Halzen and Martin (ref. 7) Sect. 7.3.

PROBLEMS

7.1. Show that d¢/dx* is a covariant four-vector (¢ is a scalar function of X, ¥ z

and 7). [Hint: First determine [from (3.7)] how covariant four-vectors transform;
then use d¢/dx* = (3¢/3x")dx"/3x*) to find out how d¢/dx* transforms.]

7.2. Show that equation (7.17) satisfies equation (7.15).
7.3. Derive equation (7.47), using equations (7.44) and (7.46).
7.4. Show that " and u® [eq. (7.46)] are orthogonal, in the sense that #"y@ = 0,

Likewise, show that #* and u* are orthogonal. Are %" and ¥ orthogonal?

7.5. Show that for ‘" and u® [eq. (7.46)] the lower components (1) are smaller than

the upper ones (u,4), in the nonrelativistic limit, by a factor v/c. [This observation
simplifies matters, when we are doing nonrelativistic approximations; we think of
U4 as the “big” components and u; as the “little” components. (For #*® and 4
the roles are reversed.) In the relativistic limit, by contrast, #, and up are comparable
in size.]

7.6. If the z axis points along the direction of motion, show that equation (7.46) reduces

to

, VIE + mcd/c \
0

ul = E= medye | and so on

AN v /

Confirm that these are eigenspinors of .S,, and find the eigenvalues.

1.7. Construct the normalized spinors 4™ and u representing an electron of mo-

mentum p with helicity = 1. [That is, find the «’s that satisfy equation (7.34),
with positive E, and are eigenspinors of the helicity operator (- ) with eigen-
values + 1.]

Uy
ion: 't =
Solution: u N +clpl ) ,
(E + mc?) ™
;= f E+ C2
where uA=(p |‘p) d N'= (Bt mc)
px+ip, 2[ple(lpl £ p2)
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7.8.

7.9.

7.10.

7.11.

7.12.
7.13.

7.14.

:-l
[
un

7.16.

. Snow that vy w is a four-vector, oy conirmng il

7/QUANTUM ELECTRODYNAMICS

[The purpose of this problem is to demonstrate that particles described by the Dirac
equation carry “intrinsic” angular momentum (S) in addition to their orbital angular

mormmentum \u}, u(.d.th\.l Uf whxuh is se cnnomfnlv nnncpr\!Pr‘ n]ﬂ'\nnuh 1‘hPlr sum IV It

should be attempted only if you are reasonably familiar w1th quantum mechanics.]

(a) Construct the Hamiltonian, H, for the Dirac equation. [Hint: Solve equation
(7.19) for p°c. Solution: H = c¥%v-p + mc), where p = (2/i)V is the mo-
mentum operator.]

(b) Find the commutator of H with the orbital angular momentum L =r X p.
[Solution: [H, L] = —ihcy%(vy X p)]
Since [H, L] is not zero, L by itself is not conserved. Evidently there is some
other form of angular momentum lurking here. Introduce the “spin angular
momentum,” S, defined by equation (7.48).

(¢) Find the commutator of / with the spin angular momentum, S = (%/2)Z.
[Solution: [H, S] = ihcy%(y X p)]
It follows that the total angular momentum, J = L + S, is conserved.

(d) Show that every bispinor is an eigenstate of S?, with eigenvalue A’s(s + 1).
and find 5. What, then, is the spin of a particle described by the Dirac equation?

The charge conjugation operator (C) takes a Dirac spinor ¢ into the *“‘charge-con-
jugate” spinor Y., given by

Yo = i'Yz\b*
[See Halzen and Martin, ref. 7, Sect. 5.4.] Find the charge-conjugates of u‘" and

u® and compare them with v and v®.

In going from equation (7.18) to (7.19), we (arbitrarily) chose to work with the
factor containing the minus sign. How would Section 7.2 be changed if we were to
replace (7.19) by ¥*p, + mc = 0?

(a) Starting from equation (7.53), calculate S'S, and confirm equation (7.57).
(b) Show that St°S = 4°.

Show that ¢y [eq. (7.63)] is invariant under equation (7.52).

Show that the adjoint spinors "? and 7' satisfy the equations

wy'p, —me)=0, O(¥p.t+me)=0

[Hint: Take the transpose conjugate of equations (7.34) and (7.51); multiply from
the right by 4°, and show that (v*)'y° = v%y*]

Show that the normalization condition (7.44), expressed in terms of the adjoint
spinors, becomes

tu = —vv = 2mc
Ql that Fa je o fAanr.vantnar hy on firmin

according to the Lorentz transformation rule (3.7). Check that it transforms asa
(polar) vector under parity (that is, the “time” component is invariant, whereas the
“spatial” components change sign).

Show that the spinor representing an electron at rest [eq. (7.30)] is an eigenstate of
the parity operator, P. What is its intrinsic parity? How about the positron? What
if you changed the sign convention in equation (7.61) (see ref. 3)? [Notice that
whereas the absolute parity of a spin-4 particle is in a sense arbitrary, the fact that
particles and antiparticles carry opposite parity is not arbitrary.]
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7.17. (a) Express y*y* as a linear combination of 1, ¥°, v*, ¥*v°, and ¢*.
(b) Construct the matrices ¢'%, ¢'*, and ¢’ [eq. (7.69)], and relate them to =', =2,
and 23 [eq. (7.48)].
7.18. (a) Derive equations (7.70, i and iv) from equation (7.73).
(b) Prove equation (7.74), from equation (7.73).

7.19. Show that the continuity equation (7.74) enforces conservation of charge. {If you
don’t see how to do this, look in any electrodynamics textbook.]

7.20. Show that we are always free to pick 4% = 0, in free space [eq. (7.85)]. [That is,
given a potential 4* which does not satisfy this constraint, find a gauge function A,
consistent with equation (7.84), such that 4, in equation (7.81), is zero.)

7.21. Suppose we apply a gauge transformation (7.81) to the plane-wave potential (7.88),
using as the gauge function

N = ihkae UM

where « is an arbitrary constant and p is the photon four-momentum.

(a) Show that this A satisfies equation (7.84).

(b) Show that this gauge transformation has the effect of modifying ¢*: ¢ —
¢* + «p*. [In particular, if we choose x = —¢°/p® we obtain the Coulomb gauge
polarization vector (7.91).]

This observation leads to a beautifully simple test for the gauge invariance of
QED results: the answer must be unchanged if you replace ¢ by ¢ + «p*.

7.22. Using «'”, u® (7.46) and vV, v'? (7.50), prove the completeness relations (7.97).
[Note that the matrix multiplication is “backwards’: uizisa 4 X 4 matrix, defined
by (ua)ij = uiaj-]

7.23. Using ¢, and ¢ (7.92), confirm the completeness relation (7.103),

7.24. Evaluate the amplitude for electron-muon scattering (7.104) in the CM system,
assuming the e and u approach one another along the z axis, repel, and return back
along the z axis. Assume the initial and final particles all have helicity +1. [Answer:
M= —2g3]

7.25. Determine the total amplitude [the analog to equation (7.104), or (7.105), or (7.108),
or (7.110) plus (7.111)] for pair annihilation, e* + ¢~ — v + .

=~
[
)

. Work out the analog to Casimir’s trick (7.123) for antiparticles

2 [B(@T w(dD(@Tv(b)]*

all spins

and for the “mixed” cases

2 [#(@T w(O){E@Tvb)]*, 2 [D(@Tud)D(@T ub)]*

all spins aii spins

7.27. (a) Show that vy"'y% = 4* forv =0, 1, 2, or 3.
(b) If I is any product of y matrices (I' = y,v,- - - v.) show that T [eq. (7.117)] is
the same product in reverse order, T' = .+ + « y,v,.
7.28. Apply Casimir’s trick to obtain an expression analogous to equation (7.124) for
Compton scattering. Note that there are four terms here:

M= M, + [Mol> + M, MY + MEM,
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7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

7.36.

7.37.

7/QUANTUM ELECTRODYNAMICS

(a) Prove trace theorems 1, 2, and 3, in Section 7.7.
(b) Prove equation 4.
{(¢) Using the anticommutation relation 5, prove 5,

(a) Use the anticommutation relation 5 to prove the contraction theorems 6, 7, 8,

and 9.
(b) From 7, prove 7'; from 8, prove 8, from 9, prove 9.

(a) Confirm the trace theorems 10, 11, 12, and 13.
(b) From 12, prove 12, from 13, prove 13",

(a) Prove theorems 14, 15, and 16.
(b) From 15, prove 15 from 16, prove 16".

(a) Show that €%\, = —667. (Summation over u, », A implied.)

(b) Show that e*¢,.4, = —2(8) 67 — &7 &3).

(¢) Find the analogous formula for ¢ ..

(d) Find the analogous formula for "¢, 4, .
[Here & is the Kronecker delta: 1 if u = v, 0 otherwise. It could be written in
terms of the mixed (co/contravariant} metric tensor: 8% = g*, = g,”.]

Starting with equation (7.105), determine the spin-averaged amplitude, {analogous
to equation (7.126)] for electron-electron scattering. Assume we’re working at high
energies, so that the mass of the electron can be ignored (i.e., set m = 0). [Hint:
You can read {|#,]*) and {|M,f*} from equation (7.126). For (M, M) use the
same strategy as Casimir’s trick to get

—~ge
4(p; — p3)(pr — Pa)’

(MM = Tr(Y"BY BaY 1Yo 15)

Then exploit the contraction theorems to evaluate the trace. Notice that for massless
particles the conservation of momentum (p, + p; = p; + p,s) implies that p, - p, =
D3'Pa;, D17 D3 = P2°Da, and py - ps = Py ps3.]

2g¢
Answer: {{M|* = D)+ (pop)t + p-p)4:|
[ < > (» 'Ps)Z(Pl 'P4)2 [(21-p2) (Pi-p3) (P1-Pa)]
(a) Starting with equation (7.126), find the spin-averaged amplitude for electron-
muon scattering in the CM frame, in the high-energy regime (m, M — 0).
(b) Find the CM differential cross section for electron-muon scattering at high
energy. Let E be the electron energy and 8 the scattering angle.

(hc\ g% (1 + cos® 6/2\]
\8«} 2E2\ sin* /2

(a) Using the result of Problem (7.34), determine the spin-averaged amplitude for
electron-electron scattering in the CM in the high-energy regime (m — 0).

(b) Find the CAM differential cross section for electron-electron scattering at high

energy.
do  (hcy gt ( 4 2]
4 4o _ [he I —
[ rwer: g (8«) 22\ " sin? 3)

Compare the answers to Problems 7.35 and 7.36. (See footnote page 234).

[A nswer:

Starting with equation (7.155), calculate [ |>, and use equation (7.103) to sum
over photon polarizations. Check that the answer is consistent with equation (7.160),
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7.38.

7.39.

7.40.
7.41.

and explain why this method gives the correct answer. [Note that we are now
summing over all photon polarizations, whereas in fact the photons must be in the
singlet configuration.]

Derive equation (7.172). For this we need one last Feynman rule: For a closed
fermion loop include a factor —1 and take the trace.

Derive equation (7.178). [Hint: Use the integral theorems in Appendix E of Sakurai
(ref. 6).]

Derive equation (7.183).

Evaluate the correction term in eq. (}7. 188) for the case of a head-on collision in
the CM; assume the electron is traveling at 4c.

Problems 42-44 pertain to the following model:

7.42.

7.43.

What if the photon, instead of being a massless vector (spin 1) particle, were a
massive scalar (spin 0) particle? Specifically, suppose the QED vertex factor were
igel
(where 1 is the 4 X 4 unit matrix), and the “photon” propagator were
—i
g* = (myef’

There is no photon polarization vector now, and hence no factor for external photon
lines. Apart from this, the Feynman rules for QED are unchanged.

Assuming it is heavy enough, this “photon™ can decay.
(a) Calculate the decay rate for y — ¢* + ¢".
(b) If m, = 300 MeV/c?, find the lifetime of the “photon,” in seconds.

(a) Find the amplitude, M/, for electron-muon scattering, in this theory.

(b) Calculate the spin-averaged quantity, {|M{*.

(¢} Determine the differential cross section for electron-muon scattering in the CM
frame. Assume the energy is high enough so that the electron and muon masses
can be neglected: m,, m, — 0. Express your answer in terms of the incident
electron energy, E and the scattering angle, 6.

(d) From your result in (c), calculate the total cross section, assuming the “photon”
is extremely heavy, m,c? > E.

(e) Going back to (b), consider now the case of /ow-energy scattering from an
extremely heavy “muon™: |p.|/c € m, < m, < m,. Find the differential cross
section in the /ab frame (muon at rest), assuming the muon does not recoil
appreciably. Compare the Rutherford formula (Example 7.7), and calculate
the total cross section.

(a) Find the amplitude, JK, for pair annihilation, e* + ¢~ — v + %), in this theory.

(b) Determine (| |*), assuming the energy is high enough that we can ignore both
the electron and the “photon” mass (m,, m, — 0).

(c) Evaluate your result, in (b}, in the CM system. Express your answer in terms
of the incident electron energy, E, and the scattering angle, 8.

(d) Find the differential cross section for pair annihilation, in the CA system, still
assuming m, = m, = 0. Is the total cross section finite?






Chapter 8

S?..
‘?

Because the electromagnetic interactions of electrons are well understood,
they serve as useful probes of the structure of mesons and baryons. In this
chapter we investigate the two most important examples: production of hadrons
in e*e” scattering, and “deep inelastic scattering” of electrons and protons.
Both were crucial in establishing the color/flavor model of quarks. This ma-
terial will not be used in subsequent chapters, but the first two sections, at
least, should be studied with care.

8.1 ELECTRON-QUARK INTERACTIONS

Everything I said in Chapter 7 about the electrodynamics of electrons and muons
applies just as well to quarks (using, of course, the appropriate charge: Ze or
— 3e). However, the experimental situation is complicated by the fact that the
quarks themselves never see the light of day, and we are obliged to infer from
the observed behavior of mesons and baryons what their constituents are up to.
In this chapter we shall consider two important examples: the production of
hadrons in electron-positron scattering, for which the underlying electromagnetic
process is

257
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and high-energy electron-proton scattering (“‘deep inelastic scattering™), for which
the basic diagram is

In the former case the quark-antiquark pair subsequently “hadronizes,” pro-
ducing the mesons and baryons we actually observe; in the latter case the quark
is accompanied by “spectator” quarks to make up the proton. However, that
part of the problem is chromodynamics, not electrodynamics; for the moment,
we are concerned only with the electrodynamic part of the process.

8.2 HADRON PRODUCTION IN e'e” SCATTERING

Electrons and positrons do not participate in the strong interactions; at present
energies, the only way an e*e” collision can produce strongly interacting particles
is through a virtual photon: ¢ + ¢ — v — g + 4 — hadrons. (By 1987 the
Linear Collider at SLAC should be operating at energies high enough to produce
virtual Z%s copiously; the dominant mechanism will then be the weak interaction:
et + e~ — Z°® — g + § — hadrons.) For a brief moment the quarks fly apart as
free particles, but when they reach a separation distance of around 107 m (the
diameter of a hadron), their (strong) interaction is so great that new quark-
antiquark pairs are produced—this time mainly from gluons:

WYY

These quarks and antiquarks, literally dozens of them, in a typical modern ex-
periment, join together in myriad combinations to make the mesons and baryons
that are actually recorded at the detector. In all the debris there is one unmis-
takable footprint left behind by the original quark-antiquark pair: the hadrons
emerge in two back-to-back “jets,” one along the direction of the primordial
quark, the other marking the direction of the antiquark (Fig. 8.1). [Occasionally
one sees a three-jet event (Fig. 8.2), indicating that a gluon carrying a substantial
fraction of the total energy was emitted in conjuntion with the original g4 pro-
duction:



Figure 8.1 A typical two-jet event. (Courtesy J. Dorfan, SLAC.)

/X
WY
)

Figure 8.2 A three-jet event. (Courtesy J. Dorfan, SLAC.)
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Indeed, the observation of three-jet events is generally regarded as our most
direct evidence for the existence of gluons.]

Now, the first stage in this process (¢t + e~ — v — ¢ + g) is ordinary
QED; the calculation is exactly the same as for e* + e~ —y — u* + p™:

Ps P4
q
P P
The amplitude is
QgZ
= ———— [D(p Y u(p)I[#(p3)Y,.0(Pa)] (8.1)
(p1 + p2)
where O is the quark charge, in units of e (3, for u, ¢, and ¢; —§ for d, 5, and b).
Exploiting Casimir’s trick, we obtain
S oAaDN 1 r Qg% -|2 [ 2 STV \
M =— | —————= | Triy*(# + meyy'(p2: — mo)]
< / 4 |_(p1 + p2)2_| 1Y (& Yy (g2 N
X Triv"(#a — Mo)y'(#3 + Mo)] (8.2)

where m is the mass of the electron and M is that of the quark. (See Problem
8.1.) Invoking the trace theorems of Chapter 7, we can reduce this to

N _ og: T
(my =8 O+ o [(p1 - P3)X(p2+Da) + (D1 PaX( D2 D3)

+ (MO ps* pa) + (MY (py + p2) + 2(mc)(Mc)*) (8.3)
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Or, in terms of the incident (CA{) electron energy E and the angle 6§ between
the incoming electron and the outgoing quark:
me\r (M

=i+ ) +(°F)

LT (e

The differential scattering cross section is given by equation (6.42); integrating
over 6 and ¢, we obtain the total cross section (Problem 8.2):

2 (hea\ . /1 — (McYE)? 1 {Mc?\? 1 (mc?\?
T8 Ve 3 (F) [3(F) ] e
3 \E I — (mc/E) 2E 2VE
Notice the threshold at E = Mc?; for energies less than this the square root
is imaginary, reflecting the fact that the process is kinematically forbidden when

there is not enough energy to create the g pair. If we are substantially above
threshold (E > Mc? » mc?), equation (8.5) simplifies considerably:*

2
o= g (h%C“) (8.6)

As we crank up the beam energy, we encounter a succession of such thresholds—
first the muon and the light quarks, later (at about 1500 MeV) the charm quark,
the tau (at 1784 MeV), the bottom quark (4700 MeV) and eventually (one hopes)
the top quark. There is a beautiful way to display this structure: suppose we
examine the ratio of the rate of hadron production to that for muon pairs:

o(e*e” — hadrons)

alete” — ptp")
Since the numerator includes all the quark-antiquark events,t equation (8.6)
gives

R(E)=3 X Qf (8.8)

in which the sum is over all quark flavors with thresholds below E. Notice the
3 in front—it records the fact that there are three colors for each flavor. We
anticipate a ‘“‘staircase” graph for R(F), then, ascending one step at each new

* This approximation is actually better than it looks, because of a lucky algebraic cancellation:
expanding the radical, V1 — (Mc*/EY’ [1 + $(Mc*/EY] =1 — }(Mc¥E)*. .., so the error is of order
(Mc?/E)*, not (Mc*/E). As for the electron mass terms, these are smaller to begin with, though there
is a second-order correction; however, these terms cancel exactly in the calculation of R
[eq. (8.7)].

T The 7 lepton decays predominantly into hadrons, and this should add something (less than
1) to R, above 1784 MeV. This presumably explains why the experimental numbers are somewhat
higher than the “u + d + 5 + ¢” line in Figure 8.3. The fact that the (unanticipated) r threshold
comes so soon after the ¢ led to some confusion at first, and the theory seemed to be in trouble, but
the discovery of the 7, and the flatness of the graph above the T restored confidence in this simple
picture.
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quark threshold, with the height of the rise determined by the quark’s charge.
At low energy where only the u, d, and s quarks contribute, we expect

R=3[G%+ (-2 +(-¥1=2 (8.9)
Between the ¢ threshold and the b threshold we should have
R=2+33 =% (8.10)
and above the b
R=9+3-1 =4 @11

The experimental results are shown in Figure 8.3. (The top quark should
produce a jump to R = 5; evidently its mass exceeds 18 GeV/c?, since no such
rise is apparent in these data.) The agreement between theory and experiment
is pretty good, especially at high energy. But you may well ask why it is not
perfect. Apart from the approximation in going from equation (8.5) to equation
(8.6) (which artificially sharpens the corners at each threshold), and the neglect
of the tau (which leads to an underestimate in the region above 1784 GeV), we
have made a fundamental oversimplification in assuming that we could treat
the process as a sequence of two independent operations: ete” — qq (QED)
followed by g7 — hadrons (QCD). In point of fact, the quarks produced in the
first step are not free particles, obeying the Dirac equation; rather, they are virtual
particles, on their way to a second interaction. This is particularly critical when
the energy is right for formation of a bound state (¢ = 55, ¢ = ¢¢, T = bb); in
the vicinity of such a “resonance” the interaction of the two quarks can scarcely
be ignored. Hence the sharp spikes in the graph, which typically occur just below
each threshold. In the broad plateau regions, however, the flatness of the graph
is an indication that our naive picture is not too bad. Like the jet structure, this
is a manifestation of asymptotic freedom, and not surprisingly it works better
at high energies.

But, really, all this is quibbling anyway, for the importance of Figure 8.3
lies not in what the small discrepancies whisper, but in what the overall agreement
shouts: the factor of 3 in equation (8.8) clearly belongs there. Without it the
theory would be wildly off (look at the dashed line in Figure 8.3)—and not just
as isolated resonances, but across-the-board. That 3, remember, counts the num-
ber of colors. Here, then, is compelling experimental evidence for the color
hypothesis—a hypothesis that was introduced originally for esoteric theoretical
reasons but is now, of course, an indispensable ingredient in the whole story of
strong interactions.

8.3 ELASTIC ELECTRON-PROTON SCATTERING

We now turn to electron-proton scattering, our best probe of the internal structure
of the proton. If the proton were a simple point charge, obeying the Dirac equa-
tion, we could just copy our analysis of electron-muon scattering, with M now
the mass of the proton. The lowest-order Feynman diagram would be
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P3 Py

Electron Proton

and the (spin-averaged) amplitude would be [eq. (7.124)]
4

e .
<|Jn|2> = ? LglectronLuv proton (812)
where g = p, — p; and [eq. (7.125)]
Lecieon = 2{P4D5 + Pip4 + g*[(mc)y* — (p1-py)]} (8.13)

(and a similar expression for L¥q.n, only with m — M and 1, 3 — 2, 4). We
used these results in Example 7.7 to derive the Mott and Rutherford scattering
formulas.

But the proton is #of a simple point charge, and so, long before the advent
of the quark model, a more flexible formalism was introduced for describing
electron-proton scattering. We might represent the process, in lowest-order QED,
by a diagram like this:

Pa Pa

Py P2

where the blob on the right serves to remind us that we don’t really know how
the (virtual) photon interacts with the proton. (We do assume, however, that
the scattering is elastic: e + p — e + p; we shall consider inelastic processes,
e+ p— e + X, in the next section.) Now, the essential point is that the electron
vertex and the ph{)!{)?’i p,rgnﬂaﬂfnr are 14nchgngedi and therefore, since < |Jn|2>

s lAlul KLY allul L

neatly factors [eq. (8.12)],
g4
<!Jn|2> = E:' Lg;cctronK#u proton (814)

where K, is an unknown quantity describing the photon-proton vertex.

Well . . . not completely unknown, for this much we can say: it is certainly
a second-rank tensor, and the only variables that it can possibly depend on are
D2, Da, and g. Since ¢ = ps — D2, these three are not independent, and we are
free to use any two of them; the customary choice is ¢ and p» (I'tt drop the
subscript from here on: p = p, is the initial proton momentum). Now, there
aren’t many tensors that can be constructed out of just two four-vectors; the
most general possible form is

K, K5

-~ gq" +
(Mc)? (Mo)

(Mc)

Moton = —K1g*" + p'r + s (p*q" + P'q*) (8.15)
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where the K; are (unknown) functions of the only scalar variable in the problem
¢ [Notice that p* = (Mc)? is a constant, and ¢- p = —g?/2]. The factors (Mc)™
have been pulled out, in defining K>, K, and Ks, just so all the K’s will have
the same dimensions.* In principle, we could add an antisymmetric combination
(p*q” — p'q"), but since L** is symmetric (8.13), such a term would contribute
nothing to (l.M.IZ). Now, these four functions are not independent; it can be
shown (Problem 8.4) that

g K" =1 (8.16)

i

from which it follows (Problem 8.5) that

(MC)
q’

K, =

1
Kl + 4K2 and K5 = EKz (817)

Thus X* can be expressed in terms of just two (unknown) functions, Ki(g®) and
Kx(g?):

$1] v qﬂq” K 1 v 1 v
proton — Kl(#g“ + qz ) + (Mz)z (p.u + 5 q#)(p + 5 q ) (818)

A fundamental problem for any theory of proton structure is to determine
these two functions. They are easy enough to measure experimentally, for they
are directly related to the electron-proton elastic scattering cross section. Ac-
cording to equations (8.13) and (8.18), (Problem 8.7)

- . 2
(M) = (zg") kil p) = 2mer) + K BN el )

We shall work in the laboratory frame, with the target proton at rest, p = (Mc,
0, 0, 0). An electron with incident energy F scatters at an angle 0, emerging w1th
energy E'. Let us assume it’s a moderately energetic collision (E, E') > mc?,

so that we can safely ignore the mass of the electron (set m = 0);f then p, =

E . E . A a
— (1, Bi) and ps = — (1, By), with p; b = cos 6, and we find (Problem 8.8)
M = gec” (2K —+K 29 (8.20)
< > T AEE’ sin® (8/2) sin’ > cos’ ) )
SIil (Wy4) \ -7

The outgoing electron energy, E’, is not an independent variable; it is kinemat-
ically determined by E and # (Problem 8.9):
E

Y (8.21)

* The subscript 3 is traditionally reserved for a term that enters in the corresponding analysis
of neutrino-proton scattering, but does not occur here.

t The Mott formula (7.127) neglects proton structure and proton recoil; it applles to the
reglme E < Mc?, but it does not assume E > mc>. We now work in the regime E » mc?, but do not
1gnore proton structure and recoil (i.e., we do not assume E < Mc?). In the 1ntermed1ate range,
mc? < E < Mc?, the two results agree. (See Problem 8.10.)
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For a massless incident particle we have (Problem 6.10)

2 - ( ME, .~Y<|M|Z> (8.22)

\87McE]

A0y
[£4.Y/

and so, for elastic electron-proton scattering
do _ ( ah

dQ  \aME sin? (6/2)
where E' is given by equation (8.21). This is known as the Rosenbluth formula;
it was first derived in 1950.' By counting the number of electrons scattered in a
given direction, for a range of incident energies, we can determine the “form

factors” K,(¢?) and K»(g?), and compare the results with theoretical predictions’
(see Fig. 8.4).

2
) E [2K, sin? (8/2) + K, cos® (6/2)] (8.23)

8.4 INELASTIC ELECTRON-PROTON SCATTERING

At modest energies, electron-proton scattering is necessarily elastic (¢ + p —
¢ + p); the proton recoils, but it’s still just a proton. But if the incident electron
carries enough energy, all sorts of other stuff may come out—pions, kaons,
deltas, you name it. We describe such an inelastic process (¢ + p — e + X) by
a diagram of the form

X

~

Photon

Electron Proton

Again, the blob veils our ignorance about the photon-proton vertex; the extra

PR P o am o e am

outgoing lines represent the hadronic “shrapnel” from the exploded proton. As
before, the electron vertex is unaffected by all the excitement at the proton end,
and so the (spin-averaged) amplitude, for a given final state X, takes the form

(M = ‘f]% L crronK A X) (8.24)

where K, is some (unknown) quantity describing the subprocess v + p — X it
depends on g = (p; — ps), p = p», and the various outgoing momenta p,, Ds,

.» Pn. The scattering cross section is determined by the “Golden Rule” [eq.
(6.34)]:

o = R M ( ¢ d°ps )( ¢ d’p, ) _ (ﬂ)

4V(p: - pa)* — (mumac?? \(27)2E;)\Q27)*2E, (2%)’2E,
X Qo 6" pr+p2—ps—pa— -+ —p,) (8.25)
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Figure 8.4 Proton elastic form factors. Apart from an overall constant (1 + X), the
electric and magnetic form factors G and G, (ref. 2) are practically identical, and [at
least, up to about 10 (GeV/c)?] are well fit by the phenomenological “dipole” function
G (solid line). Circles are experimental values of Ga /(1 + K)=Gg). [Source: H. Frauen-
felder and E. M. Henley, Subatomic Physics (Englewood Cliffs, NJ: Prentice-Hall, copyright
© 1974), p. 127. Based on data of P. N. Kirk et al., Phys. Rev. D8, 63 (1973).]

However, in a typical experiment only the momentum of the scattered
electron (p;) is recorded. What we measure is the so-called “inclusive” cross
section, in which all accessible final states X, and all possible outgoing momenta,
are included. To obtain the inclusive cross section from equation (8.25), we sum
over X and integrate over p4, Ps, - . ., Pu:

hgel” (cd’ps )
= = ArMW,, (8.26)
4q“V(p1-pz) — (mumac®y ((2«)3253) #
\ { ¢cd3n. \
whe , = ¢ Paiadl EN DRV Pl L
e W 41rM J wl )k(szzEJ k(21r)32E,J

XQ2uy 6 g+p—ps— -+ — Do) (8.27)

For a massless electron of energy E striking a stationary proton of mass M,
the square root is just ME. Meanwhile, d°p; = |ps|* d|p3|d®, and (again setting
m = 0) |psl = E'/c, where E'(=E3) is the outgoing electron energy. Thus
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do ah\
, = L‘“’W (8.28)
dFE dQ cq’] E
Notice that E' is not kinematically determined by E and 4, in the inelastic case,

for the outgoing hadrons can soak up a range of energies. [More precisely, the
total hadronic momentum, p,,; = ps + ps + + + + + p,, is no longer constrained
by the condition pZ, = M?c?, as it would be for a single proton. Therefore p; =
D1 + P2 — Dt is also unconstrained, and equation (8.21) no longer follows.]
Accordingly, what we are interested in is the differential cross section for scattering
in a particular energy range dE', and this is what equation (8.28) gives us.

From here on the story is familiar: W,, is a second-rank tensor, which can
only depend on ¢ and p, all other momenta having been integrated out. As
before, it can be written in the form

W
e (PP (829

5 a"q" +

W = —W g +
£ (M)

Y2t
(Mcy®
However, this time the W, are functions of two independent scalars, g% and g+ p
(because piy is no longer constrained, g - p is no longer related to ¢2). Once again,
we have (Problem 8.4)

g W =0 (8.30)
from which it follows that (Problem 8.11)
Mc)? .
W4 ( qC) W] + (qqp) W2 and W5 = — (qqu) W2 (831)

and therefore W* can be expressed in terms of just two “structure functions’:

ur — — ok q'q” W, ho_ q;p H yo__ q._p v
i W‘( g+ q2)+(MC)2[p (qz )q }[p (qz)q} (8.32)

Putting equations (8.13) and (8.32) into equation (8.28) (and again setting m =
0) we conclude

de ([ ah Y )
5~ amae ) WS 6D+ Wacos 02)) 839

Equation (8.33) is the fundamental result for inclusive inelastic electron-
proton scattering; it is the analog to the Rosenbliuth formula (8.23)

2 !
g—; = (4ME ;:1’2 (0/2)) % [2K, sin? (8/2) + Ka cos? (8/2)]  (8.23)
which describes elastic scattering. Remember that the structure functions (W,
and W,) depend on two independent variables, for a given incident energy (E).
The experimentalist would use E’ and 8, whereas the theorist would generally
prefer the Lorentz-invariant quantities ¢ and ¢ - p—or better (for reasons you’ll
see in the next section)—q? and

(8.34)
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By contrast, the elaszic form factors (K, and K3) depend on only one variable (6,
for the experimentalist, g2 for the theorist}—in this case E’ is determined by
equation (8.21) and x is fixed (x = 1). In a formal sense, elastic scattering is a
special case of inelastic scattering, in which we impose an extra constraint
(P2, = M?*c?) on the outgoing hadron momenta. It should be possible, therefore,
to obtain the Rosenbluth formula from equation (8.33), by appropriate choice

of the W’s. You can check for yourself that

KI,Z(qz)
2Mq?

WiAg? x) = — d(x — 1) (8.35)
does the job (see Problem 8.12).

I should point out that there is precious little pAysics in all of this; what
we have done is to sef the agenda for a theory of proton structure. A successful
theory must enable us to calculate the structure functions and form factors,
which at this stage are completely arbitrary. The most naive model treats the
proton as a simple point charge; in this case (Problem 8.6)

K =—¢* and K,= (2Mc)’ (8.36)

It's not a bad model at low energies, where only elastic scattering occurs, and
the electron never gets close enough to “see” the structure of the proton. But it
is grossly inadequate at high energies (see Fig. 8.5). In the next two sections we
shall see what the quark model has to say about the high-energy régime.

8.5 THE PARTON MODEL AND BJORKEN SCALING

In the late sixties, Bjorken predicted that at very high energy the dependence of
the inelastic structure functions on g? fades away, and they become functions
of x alone. More precisely, he suggested that?

15—

- i 4 § E=10GeV
5t I A ﬁ“ i
= RS *ﬁfﬂlﬁ W
. 1of § TR,
> R M
& i b 4 t '
3 H f ¢ ; * o +
W 05H ‘
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i
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Figure 8.5 Cross section for inclusive inelastic electron-proton scattering, as a function
of “missing mass” (W = Vp_fo:/c). The elastic peak at W = M has been reduced by factor
8.5, to fit it on the graph. (Source: J. 1. Friedman and H. W. Kendall; reproduced, with
permission, from the Annual Review of Nuclear and Particle Science, Volume 22, ©
1972 by Annual Reviews Inc.; page 210.)
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Figure 8.6 Scaling behavior of the structure function W, in deep inelastic scattering.

Here the quantity —(g%/2Mc*x) W»(q?, x) is plotted against —g? (in GeV/c)?, for x = 0.25.

(Source: J. I. Friedman and H. W. Kendall; reproduced, with permission, from the Annual

Review of Nuclear and Particle Science, Volume 22, © 1972 by Annual Reviews Inc.:

page 227.)

MW(q*, x) — Fi(x) (8.37)

_q2

2Mc*x

Wig?, x) — Fa(x) (8.38)

in the so-called “deep inelastic scattering” régime, where —g?[=(4EE’/c?)
X sin’® (6/2)] and q-p[=M(E — E’ )] are both large, but their ratio 2x =
—q*/q - p) is not.* This behavior is known as “scaling,” and it was dramatically
confirmed by experiments at SLAC in the early seventies (Fig. 8.6). As we shall
see in a moment, scaling is a consequence of the fact that the proton is made of
pointlike constituents (“partons”—hideous term—they were called in those days.
when it was unfashionable to take quarks and gluons too seriously). In 1969,
Callan and Gross* suggested that Bjorken’s scaling functions are related:

2xFi(x) = FxX) (8.39)

Thas, too, has been confirmed experimentally (Fig. 8.7). The Callan-Gross re-
lation reflects the fact that the charged constituents of the proton carry spin !
(for spin 0 one predicts 2xF,/F, = 0, instead of 1, and this is clearly inconsistent
with the data). The experimental verification of Bjorken scaling and the Callan—
Gross relation in deep inelastic scattering provided the first compelling evidence
for the existence of quarks.

There are several ways to derive equations (8.37), (8.38), and (8 39), but

fo irth !
the crucial point is that af high energies the virtual photon interacts with a single

essentially free quark.t We can treat this scattering, therefore, using the old

* Expenmentally, Bjorken scaling sets in for —¢*> S | (GeV/c)? and (g-p) & 3.5 (GeV/cY.
Notice that x is restricted to the range 0 < x < 1 (see Problem 8.13).

T At low energies (long wavelengths) the photon *“sees” the whole proton as a simple point
charge—that glves Mott scattering. At high energies (short wavelengths) the photon “sees” a single
quark—-thls gives Bjorken scaling and the Callan-Gross relation. At intermediate energies the photon

“sees” the proton in all its complex structure—this will clearly be the hardest case to analyse.
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Figure 8.7 Scaling functions and the Callan-Gross relation. In (a) and (b) I plot the
experimental measurements of Fi(x) and Fy(x). In (c) the ratio 2xF /F is plotted against
x, as a test of the Callan-Gross relation, which evidently holds well for x = 0.2. [Data
from A. Bodek et al., Phys. Rev. D20, 1471 (1979).]

electron-muon results. According to equations (8.35) and (8.36), the structure
functions for scattering off a quark of flavor i are

o 2wl
wi=Slog—1), Wi=--=" CzQ 6(x; — 1) (8.40)
2m,-
Here m; is the mass of the quark and
2
Xi=—— (8.41)

2q-pi
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where p; is the quark’s momentum. As before, (; is the quark charge, in units
of e ( for the u, —} for d and s); we include a factor of Q7 in W' so that we
don’t have to touch the rest of the cross-section formula (8.33). The trouble is,
although the proton momentum is p, we do not know the momenta of the in-
dividual quarks. Let us suppose that z; is the fraction of the total momentum
carried by quark /, so that

Di=Zp (8.42)

[This may sound reasonable, but it is actually a pretty slippery proposition, for
it assumes that each component p# gets the same fraction of p*. There is no
room here for the quarks to move around within the proton; if the proton is at
rest, so too are all the quarks. In particular, it follows (since p? = m?¢? and
P’ = M?c?) that

m; =z;M (8.43)

which implies that if z; is variable, so too is the quark mass!*] Equation (8.42)
implies that

xi== (8.44)
Z;

and hence
. Q0?7 _ 2XMcE
W= == §x — z)), Wh = — (x — z; 8.45
L= 57 (x ) 2 7 —— Q7 & ) ( )
Finally, let f;(z;) be the probability that the ith quark carries momentum fraction
z;. Integrating over z;, and summing over all the quarks in the proton, we conclude

that
e

Wi= I || 5 88— ez = 507 3 QU0 (8.46)
2x2Mc _2Mc?
W= Ef ( )Q2 6(x — z;)fi(z))dz; = 3 i) (8.47)
Thus
1
MW, =2 2 Qifi(x) = Fi(x) (8.48)
4>
Mx V2T X 2 Q1 fi(x) = Fxx) (8.49)
confirming the Bjorken scaling law. Comparing the two expressions, we obtain
Fz(X) = 2XF1(X) (850)

which is the Callan-Gross relation.
The importance of Bjorken scaling and the Callan-Gross formula lies in
the fact that they provide for a clear experimental test of the quark-parton model,

* More rigorous derivations of the scaling equations avoid this problem by working in the
“Infinite momentum frame,” in which the proton energy is so much greater than its mass that the
proton and the quarks can be treated as massless particles, and (8.43) is trivially satisfied.
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a test that was passed with flying colors in SLAC’s deep inelastic scattering ex-
periments. Protons really do have charged constituents, and those constituents
really do behave as pointlike Dirac particles, carrying spin 3. One modest dividend
is a radical simplification in the analysis of high-energy electron-proton scattenng,
for in place of two unknown functions of two variables [Wi(g% x) and
Wy(g?, x)] we now have only one unknown function of one variable to contend
with [F;(x)]. If we put equations (8.37), (8.38), and (8.39) back into (8.33), we

find

2 '

do =F1(x)( ah )[H 2E e g] ©.50)
dE'dQ  2M \Esin(6/2) (E — E")

Moreover, equation (8.48) shows that to finish the job we need to know the
probability functions f;(x), for then

Fi(x) = Z Qifi(x) (8.52)

We consider this problem in the following section.

8.6 QUARK DISTRIBUTION FUNCTIONS

If we take equation (8.43) at face value, the momentum fraction carried by the
ith quark is proportional to its mass, and the probability density f; must therefore
be a delta function:*

m.
fiz)) = 5(3"4" - Zi) (8.53)
If, moreover, the proton consists simply of two up quarks and a down quark,
then equation (8.48) says

- 5 G ) GT ) e

and if m, = m,, we obtain the simple resultf

M M

In this model the cross section reduces to the electron-muon form, with the
quark mass in place of the muon mass. The proton as such has disappeared
from the problem; we simply have elastic scattering of electrons from free quarks.

What’s wrong with this naive picture (which, as you can see from Figure
8.7, is totally incompatible with the experimental data)? Basically, we have taken

too literally the idea that the quarks inside a proton are free. It is true that they

Fi(x) == 6(ﬂ — x) Fyx) = x c‘i(ﬂ — x) (8.55)

* | assume that J;] fi(x)dx = 1, since this is the total probability of finding quark i with some
fraction of the proton momentum.

+ Cons1stency requires that m, = 1 M, for if these are the only constituents of the proton, we
must have Z, j] xfi(x)dx = 1. However, thls naive picture ignores the contribution of gluons and
sea” quarks, as we shall see momentarily.
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Figure 8.8 Quark structure functions.
xs(x) [Source: F. Halzen and A. D. Martin,
i | Quarks and Leptons (New York: Wiley,
0 0.2 04 06 08 1.0 copyright © 1984), p. 203. Reprinted by
X permission of John Wiley & Sons, Inc.]

behave as free particles in their interaction with the virtual photon, but on a
longer time scale they are obviously not free; after all, they are bound together
by the confining force of QCD. In particular, the “mass™ of a quark within a
hadron is not a very well-defined notion (as we have discovered on several pre-
vious occasions—see Chap. 4, Sect. 4.5 and Chap. 5, Sects. 5.8 and 5.10). Since
they are continually interacting with one another, the quarks are really virtual
particles, and do not lie on their mass shells. In this sense it is appropriate after
all to regard m; as a continuous variable, in equation (8.43), and the delta function
in (8.53) is smeared out accordingly. Exactly what shape it assumes is a problem
for quantum chromodynamics, which we are not presently in a position to address.

Moreover, it is an oversimplification to say that the proton consists only
of quarks. Let’s say that u(x) is the probability (density) that momentum fraction
x is carried by a u quark, and d(x) is the corresponding probability for a d quark,*
so that

Fy(x) = x{(3)u(x) + (3)* d(x)} (8.56)

[In the naive model w(x) = 26(m,/M — x) and d(x) = 8(mz/M — x).] One is
tempted to guess that u(x) = 2d(x), but this assumption is not sustained by the
data (see Fig. 8.8), at least, not near x = 0 and x = 1. (A quark carrying 90% of
the proton’s momentum is almost certain to be a i, whereas at the 10% level it
is only slightly more likely to be a #.) Nevertheless, the average momentum
carried by up quarks ( ﬁ,‘ pxu(x)dx) 1s surely twice the average carried by the
down quark, since there are twice as many of them, and they all weigh about
the same:

1 1
f xu(x)dx = 2 f x d(x)dx (8.57)
0 0

* More precisely, if you had a large sample of protons, #(x)dx is the average number of up
quarks (per proton) carrying a momentum fraction between x and (x + dx).
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[And this is confirmed by data on electron-neutron scattering (se¢ Problem 8.1 5.]
Combining equations (8.56) and (8.57), we find

1 1
f x d(x)dx = f Fy(x)dx (8.58)
0 0

If you measure the area under the experimental curve (Fig. 8.7b), you’ll find
that this integral is about 0.18, and hence

1 |
f x d(x)dx = 0.18, J; xu(x)dx = 0.36 (8.59)
0

These numbers have a remarkable implication: the average fotal momentum
carried by the quarks is

1 1
J; xpu(x)dx + J; xpd(x)dx = p(0.18 + 0.36) = 0.54p (8.60)

On the average, then, only 54% of the proton’s momentum is accounted for by
the quarks. Who’s got the rest of it? Answer: the gluons. They’re uncharged, so
they don’t contribute to electron-proton scattering, but they do carry a share of
the proton’s momentum. The structure functions allow us to determine the
momentum carried by charged partons; whatever is left over must be ascribed
to uncharged partons. Thus, in an indirect way, the deep inelastic scattering
experiments provide substantial evidence for the existence of gluons, as well as
quarks.

Finally, even the quark content of the proton is more complicated than I
have suggested. For the gluons can produce quark-antiquark pairs:

AAAAA

At any given moment the proton might actually contain an extra uu pair, or
dd, or s5, or even several such pairs. (In principle, it could even have a heavy
quark pair—c¢, bb, ti—but this is far less likely, because of the large mass term
in the denominator of the quark propagator.) We call the “original” quarks
(&, u, d, for the proton) “valence” quarks, and the “extra” ones “sea” quarks.
1t is possible for the virtual photon, in electron-proton scattering, to couple to
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one of the sea quarks, so they should really be included in our formulas for
Fiand F»:

Fi(x) = ${(3)[u(x) + ()] + GV d(x) + dx) + s(x) + 5]} (8.61)

Not much progress here: we seem to have traded one unknown function
for six unknown functions! Fortunately, the same “quark structure functions™™*
occur (with different coefficients) in electron-neutron scattering, and in neutrino-
proton scattering, so we have a certain amount of independent experimental
information about them. In addition, they are constrained by several “sum rules”
(see Problem 8.16). Because the sea quarks are all produced by the same mech-
anism, and carry roughly the same mass, it is reasonable to assume that

#H(x) = d(x) = 5(x) = s(x) (8.62)

while the up and down quark distributions can be separated into a valence part
and a sea part [the latter presumably again equal to s(x)]

u(x) = uy(x) + s(x), d(x) = dy(x) + s(x) (8.63)
This reduces the problem down to three unknown functions:
Fi(x) = 15 {4usx) + d(0) + 125(x)} (8.64)

The shape of these functions, as inferred from experiments, is indicated in Figure
8.8. Notice that the sea contributes only at relatively low x (that is, sea quarks
typically carry only a small fraction of the proton’s momentum—that’s why |
could safely ignore them in calculating the gluon contribution). Now, the number
of valence u quarks is certainly 2, and for d quarks, 1, so

1 1
f ux)dx = 2, J; d(x)dx = 1 (8.65)
0
It follows that

J(«)l s(x)dx = %(2 J;‘ Fy(x)dx — 1) (8.66)

and therefore, in principle, we can determine the average number of sea quarks
of each species, by measuring the area under the F(x) graph (Fig. 8.7a). Un-
fortunately, the area is extremely sensitive to the behavior of the function as
x — 0, and depending on how you extrapolate the experimental curve, it is
pos51ble to produce any number between 0.5 and infinity. (As a matter of
fact, some theories predict that the proton contains enormous numbers of very

low-energy sea quarks; hence, I suppose, the name “sea”).

* In this business everything is called a “structure function”: W,, W,, F;, and F, are “proton
structure functions”; the f;’s and u(x), @(x), d(x), d(x), 5(x), 5(X), 1.{x), and d,(x) are “quark structure
functions.” T prefer the term *‘distribution functions” for the latter.
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contribution to the proton’s magnetic moment); others prefer Gz = F; — K1k,
Gy = F, + KF,. (The latter are related to the Fourier transforms of the charge and
magnetic moment distributions, respectively; see F. Halzen and A. D. Martin, Quarks
and Leptons (New York: Wiley, 1984), Sect. 8.2.) Anyone can play this game; K,
and K, are my own contributions.

3. J. D. Bjorken, Phys. Rev. 179, 1547 (1969); Phys. Rev. 163, 1767 (1967). (Bjorken’s

4.

functions F, and F, have no relation to the elastic form factors F, and F, of ref. 2.
Sorry about that.)
C. G. Callan and D. Gross, Phys. Rev. Lett. 22, 156 (1969).

PROBLEMS

8.1.

8.2.
8.3.

(a) Derive equation (8.1), from the Feynman rules for QED.
(b) Obtain equation (8.2) from equation (8.1).
(c¢) Derive equation (8.3) from equation (8.2).
(d) Derive equation (8.4) from equation (8.3).

Derive equation (8.5), starting with equation (8.4).

Why don’t we use o(¢*e” — e*¢7) in the denominator, to define R [eq. (8.7)]?
[Answer: For one thing, we would have to include the crossed diagram

X ¥
DA

and the kinematic factors would no longer cancel.]

8.4. Prove equation (8.16). [Hint: First show that g,[* = 0. Then argue that we may

as well take K* such that g, K** = 0, in the sense that any term in K** that does
not obey ¢, K** = 0 will contribute nothing to L*’K,,,.] Comment: Equation (8. 16)
actually follows more simply and generally from charge conservation at the proton
vertex, but 1 have not developed the formalism here to make this argument (see

Halzen and Martin, ref. 2, Sects. 8.2 and 8.3).

|: One way to proceed is as follows. Take g* = (0, 0, 0, g); then g, [ = 0 = L*" =

D) So I*K,, = D)& ), and 7 may as well be 1&:10.-&
0000 0000/ M XXX XX X X
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8.11.

8.

8.13.

8.14,

8.

F)
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8.5.

8.7.
8.8.
8.9.
8.10.

12.

15.
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Prove equation (8.17), from equation (8.16). [Hint: First contract with g,, then
with p,.]

. Find K, and K, for a “Dirac” proton. [4nswer: compare (8.13) and (8.18): K, =

—gq* Ky = QM)

Derive equation (8.19).

Dertve equation (8.20).

Derive equation (8.21).

Check that the Rosenbluth formula (8.23) agrees with the Mott formula (7.128) in
the intermediate-energy régime (mc? < E < Mc?). Use the expressions for K, and
K appropriate to a “Dirac” proton (Problem 8.6).

Derive equation (8.31). [Note the reduction to equation (8.17) in the elastic case,
where p-q = —g%/2.)

Put equation (8.35) into equation (8.33), and carry out the E’ integration (holding
f constant) to recover equation (8.23).

Show that x [eq. (8.34)] is restricted to the range 0 < x < 1. What sort of collision
would have x = 1? What sort of collision has x = 07 [4nswers: Elastic; E » E']
Suppose the proton were a “Dirac” charge; would the structure functions scale? If
so, what are F(x) and F;(x) in this case? Is the Callan-Gross relation satisfied?
[Answer: Fi(x) = $8(x — 1); Fa(x) = 8(x — 1); yes.]

Electron-neutron scattering experiments are harder to do than electron-proton ex-

periments, because you cannot make a target of free neutrons. Nevertheless, the
essential data can be inferred from electron-deuteron scattering, and it is found that

i
f F3oon dx = (.12
0

Use this, together with the proton result
1
f F dx = 0.18
0

to confirm equation (8.57). [Hint: How do you suppose #"(x) and d"(x) are related
to the corresponding functions for the proton?]

From the known flavor content of the proton, find the value of _];1 [1d(x) — (x)]dx.
State corresponding “sum rules” for 4 and s.

8.17 Are the data in Figures 8.7b and 8.8 compatible with equation (8.56)?



Chapter 9

In this chapter 1 develop the Feynman rules for quantum chromodynamics,
the theory of strong interactions. Some suggestive results in perturbative QCD
are derived (in particular, the effective interquark potential in various meson
and baryon configurations), and the essential ideas underlying asymptotic
freedom are sketched. This material relies heavily on Chapter 7, and also on
the last three sections of Chapter 5. It is not necessary as background for
Chapters 10 and 11.

9.1 FEYNMAN RULES FOR CHROMODYNAMICS

In the last two chapters we have seen how quantum electrodynamics (QED)
describes the interactions of charged particles; in the present chapter we look at
how quantum chAromodynamics (QCD) describes the interactions of colored par-
ticles. Electromagnetic interactions are mediated by photons, chromodynamic
interactions by gluons. The strength of the electromagnetic force is set by the

,,,,,, ket
COUpIlIlg COISLdIIL

2. = Vdro (9.1)

In appropriate units g, is the fundamental charge (the charge of the positron).
The strength of the chromodynamic force is set by the “strong” coupling constant

gs = Véma; (9.2)

which may be thought of as the fundamental unit of color. Quarks come in three
colors,* “red” (r), “blue” (b), and “green” (g). Thus the specification of a quark

* Quarks also come in different flavors, of course, but this is irrelevant in QCD, except insofar
as the different quark flavors carry different masses. Just as QED only looks at the charge of a particle,
QCD cares only about its color.

279
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state in QCD requires not only the Dirac spinor ¥“(p), giving its momentum
and spin, but also a three-element column vector ¢, giving its color:

/ 1 N\ / 0\ / G\
c= (0) for red, ( 1 ) for blue, ( 0) for green (9.3)
0 0 1

(I'll label the elements of ¢ by a Roman subscript near the middle of the
alphabet—c;, for example—so that /, j, k, . . . run from 1 to 3 over quark colors.)*

Typically, the quark color changes at a quark-gluon vertex, and the differ-
ence is carried off by the gluon. For example:

(In this diagram a red quark turned into a blue quark, emitting a red-antiblue
gluon.) Each gluon carries one unit of color and one of anticolor. It would
appear, then, that there should be nine species of gluons—7, rb, rg, bi, bb, bg,
gF, gb, g&. Such a nine-gluon theory is perfectly possible in principle, but it would
describe a world very different from our own. In terms of color SU(3) symmetry
(on which, as we shall see, QCD is based), these nine states constitute a “color
octet’:

|1y = (v + bi)/V2 5y = —i(rg — gF)/V2
2) = —i(rb — BV2  16) = (b5 + gh)/V2

13) = (7 ~ bBY/V2 17y = —i(bg — gb)/V2 G4
4y = (rg + g7)/V2 18) = (7 + bb — 2g¢)/V6
and a “color singlet’”:
9% = (/7 + bb + gg)/V3 (9.5)
(See Section 5.8; there we were concerned with flavor, not color, but the math-

ematics 1s identical—just let u, d, s — r, b, g. We’re not concerned with isotopic
spin, here, and I have used different linear combinations of states within the
octet. This simplifies the notation later on.) If the singlet gluon existed, it would
be as common and conspicuous as the photon.t Confinement requires that all
naturally occurring particles be color singlets, and this “explains” why the octet
gluons never appear as free particles.t But |9) is a color singlet, and if it exists

* I should perhaps warn you that most books do not specify quark color states explicitly; they
are “implied,” or “understood to be contained in w«(p).” I think it is wiser at this stage to write them
out explicitly, even at the cost of some extra notational complexity.

1 Maybe the “ninth gluon” is the photon! That would make for a beautiful unification of the
strong and electromagnetic interactions. Of course, the coupling strength isn’t quite right, but that’s
a problem with all unification schemes, and could presumably be handled. There’s a much more
serious difficulty with this idea, which I'll let you figure out (see Problem 9.1).

1 Notice the distinction between “colorless™ and “color singlet.” Gluons |35 and |8 are colorless.
in the sense that the net amount of each color is zero, but they are not color singlets. The situation
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as a mediator it should also occur as a free particle. Moreover, it could be ex-
changed between two color singlets (a proton and a neutron, say), giving rise to
a long-range force with strong coupling,* whereas in fact we know that the strong
force is of very short range. In our world, then, there are evidently only eight
kinds of gluons.t

Like the photon, gluons are massless particles of spin 1; they are represented
by a polarization vector, ¢, which is orthogonal to the gluon momentum, p:

ep, =0 (Lor:antz condition) (9.6)
As before, we adopt the Coulomb gauge:§
& =0, so thate-p =0 (9.7)

This spoils manifest Lorentz covariance, but it cannot be helped (see Sect. 7.4).
To describe the color state of the gluon, we need in addition an eight-element
column vector, a:

for |15, for |7), and so on (9.8)

DO OO~
O~ OO O QOO0

[Elements of a will be labeled by a Greek superscript near the front of the alphabet
(a®); a, B, v, . .. run from 1 to 8 over gluon color states.] Because the gluons
themselves carry color (in contrast to the photon, which is electrically neutral),
they couple directly to one another. In fact, there is a three-gluon vertex and a
four-gluon vertex:

is analogous to spin: We can have a state with S; = 0, but this does not prove it has spin 0 (although
spin 0 certainly implies S, = 0, and by the same token a color singlet is necessarily colorless). Many
authors use the word “colorless” to mean “color singlet,” but this can lead to misunderstanding. (I
was sloppy myself, back in Chapters 1 and 2, because at that stage it was not possible to explain the
idea of a color singlet.) You might prefer the word “color-invariant” (instead of “color singlet™), or
even “color scalar”; the essential point is that such a state is unaffected by the transformations of
color SU(3) (see Problem 9.2).

* Because gluons are massless, they mediate a force of infinite range (the same as electrody-
namics). In this sense the force between two quarks is actually Jong range. However, confinement,
and the absence of a singlet gluon, conceals this from us. A singlet state (such as the proton) can only
emit and absorb a singlet (such as the pion), so individual gluons cannot be exchanged between a
proton and a neutron. That’s why the force we observe is of short range. If the singlet gluon existed,
it could be exchanged between singlets, and the strong force would have a component of infinite
range.

+ In group theoretical terms, the issue here is whether the symmetry of QCD 1s U(3) (which
would require all nine gluons) or SU(3) (which calls for only eight). The experimental situation
resolves the question decisively in favor of the latter.

1 There is a subtle problem here, because gauge transformations in chromodynamics are more
complicated than equation (7.81), and in fact the Coulomb gauge cannot be consistently imposed.
However, the correction to equation (7.81) contains a factor of g, and hence, in the Feynman calculus,
the “error” introduced by using the Coulomb gauge can be compensated for by appropriate modi-
fication of the rules for computing higher-order (loop) diagrams.
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¢

Before I can state the Feynman rules for QCD, I need to introduce two
items of notation. First, the Gell-Mann “A-matrices,” which are to SU(3) what
the Pauli spin matrices are to SU(2):

0 0 0 —i 0 1 0 0
}\1=(1 0) )\2=(i 0 0) 7\3=(0 —1 0)

0 0 0 00 0 00

0 0 0 —i 0 0 0
}\4=(0 (0 0 0) )\6=(0 0 1) (9.9)

I i 0 0 01 0

0 0 0 /1 0 0
AMM=10 0 —i AS=T01 0
0 i 0 3\o 0 -2

Second, the commutators of the X matrices define the “structure constants”
(f*#") of the group SU(3):

o OO OO -
[ RSN
N
>
[
I

[Ae, 8] = 24 =B7)\Y (9.10)

(summation over y—from 1 to 8—implied by the repeated index). The structure
constants are completely antisymmetric, f%°7 = f*% = —f% You can work
them out for yourself (Problem 9.5). Since each index runs from 1 to 8, there
are 8 X 8 X 8 = 512 structure constants in all, but most of them are zero, and
the rest can be obtained by antisymmetry from the following set:

f123=1 f147=f246=f257=f345=f516=f637=%
f458 =f678 = vg/z (911)

1. External Lines. For an external quark with momentum p, spin s, and
color ¢:

incoming ( * ): u"’(p)c} ©.12)

outgoing ( _#" ) a)(p)’

(note that ¢' = &* will be a row matrix). For an external antiquark:

Quark {

* Loop diagrams in QCD require special rules, including the introduction of so-called “Faddeev-
Popov ghosts.” These are deep waters, into which we shall not venture here.!
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: - - 56 pyet
incoming ( _~" ): D (p)c} ©0.13)

outgoing ( A" ): v(p)c

where ¢ represents the color of the corresponding guark. For an external
gluon of momentum p, polarization ¢, and color g, include a factor

Antiquark{

- ~
incoming ( ** ): ep)a”

Gluon < / > (9.14)
outgoing ( «u ): epa*

\_ _/

To avoid confusion it is helpful to indicate on the diagram the indices
(space-time and color) you are using for each gluon.

2. Propagators. Each internal line contributes a factor

g + mc)

Quark-antiquark ( *—>—* ) =——5 (9.15)
g% — m’c

. —ig,, 8
Gluon (% o ) ————'g;”z 9.16)

3. Vertices. Each vertex introduces a factor

_igs

Quark-gluon ( ) Axy¥ (9.17)

Three gluon (

_gstQBT[g,uv(kl - kZ))« + gv)l(k2 - k3),u + g?m(k3 - kl)v] (9'18)
Here the gluon momenta (k,, k», k3) are assumed to point into the

vertex; if any point outward in your diagram, change their signs.

B 7. A

Four gluon ( ).

P
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_ig.%[faﬁ?f”yaﬂ(gu)\gvp - g,upgy)\) +fa676-m(gnug)\p - gu)\gvp)
+ fﬂ‘yf‘lf‘ﬁﬁn(g#pgﬂ - g,uvg)\p)] (9 19)

Everything else is the same as for QED: Impose conservation of energy and
momentum at each vertex to determine the internal four momenta; follow each
fermion line “backward’ along the arrow, erase the overall delta function, and
set the result equal to —i/M. In the next two sections I'll work out some examples.
to show you how it goes.

9.2 THE QUARK-QUARK INTERACTION

In this section we consider the interaction between two quarks (also a quark and
an antiquark) in lowest-order QCD. Of course, we cannot observe quark-quark
scattering directly in the laboratory (although hadron-hadron scattering is an
indirect manifestation), so we won’t be looking for cross sections here. Instead.
we concentrate on the effective potentials between quarks——the QCD analog of
the Coulomb potential in electrodynamics. We used such potentials, with a
promise to derive them later, back in Chapter 5, in the analysis of quarkonium.
Bear in mind that this is a perturbation theory calculation, valid only insofar as
the coupling o, is small. We cannot hope to get the confining term in the potential
by this route—we are implicitly relying on asymptotic freedom, and all we’re
going to find is the short-range behavior. Nevertheless, we will obtain a very
suggestive result: Quarks attract one another most strongly when they are in the
color singlet configuration (indeed, in other arrangements they generally repel).
At very short range, then, the color singlet is the “maximally attractive channel”—
an indication that binding is more likely, at least, for singlet states.*

Case 1: Quark and Antiquark Consider first the interaction of a quark
and an antiquark, in QCD. We shall assume that they have different flavors, so

nemle, Ainsensaa £ nezrmod e Al o i~ R V- Ty Mg

+he » diagr ] the in Fiouire O 1 4 3 for
inc Oniy aiagram (ifn 10wWESt oracr) is inc onc in rigulc ~.1,T rCproscntiing, 101

instance, ¥ + d — u + d. The amplitude is given by

* This is a very pleasing conclusion, but it does not prove that binding mus? occur in the color
singlet, or that it cannot occur in other configurations. For this we would have to know the long-
range behavior of the potential, about which, at present, we can only speculate.

t In principle, for the same flavor (e.g., u + u — u + u) we should include a second diagram:
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P3, Cy Pa.Cyq

/ T \ Figure 9.1 The quark-antiquark inter-
Py, 04 Py, Cy aCtion.

—iM = [a(s)c};][—i ][“(1)61][ g; W]

X [ﬁ(z)cz][—i% Af’v"][v(4)c4] (9.20)
.2
Thus M = =& S O DB @I NN 02D

(summation over « implied). This is exactly what we had for electron-positron
scattering (7.106), except that g, is replaced by g, (of course), and we have in
addition the “color factor”

= {(cINe ) (cEAcq) (9.22)

The potential describing the gg interaction is, therefore, the same as that acting
in electrodynamics between two opposite charges (to wit: the Coulomb potential),
only with « replaced by fo,:

(ash c)

V() = -f (9.23)

Now, the color factor itself depends on the color state of the interacting quarks.
From a quark and an antiquark we can make a color singlet (9.5) and a color
octet (9.4) (all members of which yield the same /). I'll calculate the octet color
factor first, because it’s a little easier.”

EXAMPLE 9.1 Color Factor for Octet Configuration
A typical octet state (9.4) is rb (any of the others would do just as
well; see Problem 9.6). Here the incoming quark is red, and the incoming
antiquark is antiblue. Because color i1s conserved, the outgoing quark must

also be red and the antiquark antiblue. Thus

1 0
a=c=101, =c=11

N0/ \0/

1 0
and hence f= 1| (1 00))\“(0) 01 O))\“( 1 ) = IAHAS
0 0

However, in the nonrelativistic limit of interest here this second diagram does not contribute anyway
(see footnote, page 234), so in practice what we're doing applies just as well whatever the quark
flavors. (See also Problem 9.7.)
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A glance at the A matrices reveals that the only ones with entries in the 11

and 22 positions are A* and A%, So
- 8 — = _1
S= Y005 + M) = HED + (/B33 = —§ (9.24)

i -~ )

EXAMPLE 9.2 Color Factor for Singlet Configuration
The color singlet state is (9.5)

(1/V3)(r7 + BB + g8)

If the incoming quarks are in the singlet state (as they would be for a
meson, say) the color factor is a sum of three terms:

1 0
f= Z T [cix“ (g )J [(1 0 0)A%c,] +[c;xa( (1) ﬂ [0 1 0)A%c,]
0
+ CD\"‘(O) [(001)A%¢,]
1

The outgoing quarks are necessarily also in the singlet state, and we get
nine terms in all, which can be written compactly as follows:

1 1 1
[ ay oy — _T o) o .
f a2 3‘/_()\)\ 7 r(A“A%) (9.25)
(summation over / and j, from 1 to 3, implied in the second expres-
sion). Now
Tr(A®N°) = 268 (9.26)

(Problem 9.3), so, with the summation over «,
Tr(A\*) = 16 (9.27)
Evidently, then, for the color singlet
f=3 (9.28)

Putting equations (9.24) and (9.28) into equation (9.23), we conclude that
the quark-antiquark potentials are

V() = — g (@,70) (color singlet) (9.29)
Via(r) = . (ashc) (color octet) (9.30)

From the signs we see that the force is attractive in the color singlet but repulsive
for the octet. This helps to explain why quark-antiquark binding (to form mesons)
occurs in the singlet configuration but not in the octet (which would have pro-
duced colored mesons).
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Py, C3 P4iCy

q > \
3 / ps.c, Figure9.2 The quark-quark interaction.

Case 2: Quark and Quark We turn now to the interaction of two quarks.
Again, we shall assume that they have different flavors, so the only diagram (in
lowest order) is the one indicated in Figure 9.2,* representing, say, ¥ + d — u
+ d. The amplitude is

—g?
4

M= ;]1;[a(:-s)fy"u(1)][ﬁ(4mu(2)](cxxacl)(czx“cz) 9.31)

This is the same as for electron-muon scattering (7.104), except that g, is replaced
by g, and there is a color factor

= §(cXe)(crey) (9.32)

The potential, therefore, takes the same form as that for like charges in electro-
dynamics:
(ashc)
r

Vil = f (9.33)
Again, the color factor depends on the configuration of the quarks. From two
quarks, however, you can’t make a singlet and an octet (as for gg)—rather, we
obtain a triplet (the antisymmetric combinations):

(rb — br)/V2
bg — gb)/\2 (triplet) (9.34)
(er — rg)/V2

and a sextet (the symmetric combinations):}

{rr, bb. g } (sextet) (9.35)

b+ bryV2, (bg + gb)/V2, (gr + rey\2

* For identical quarks there is also the “crossed” diagram:

\/

However, inclusion of this diagram, together with the statistical factor S'in the cross-section formula,
leads to the same nonrelativistic limit (see footnote page 234), so in fact our potentials are correct
even for same-flavor quarks.

+ In group theoretical language, 3® 3 =1 ®8,but 3®3 =3 ® 6.
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EXAMPLE 9.3 Color Factor for Sextet Configuration
A typical sextet state is 7r (use any of the others if you prefer—you’ll get
the same result for /). In this case

1
c,=c2=c3=c4=(0>
0
1 1
(100)7\“(0) (100))\"() = — (AT1AT)
0 4

1
and hence f= 0
0
oo ()]
A3+ A58 2 (1) + i\

B

W | = -bl*—‘

(9.36)

EXAMPLE 94 Color Factor for Triplet Configuration
A typical triplet state 1s (rb — br)/ V2, so

L ooelo)] oot
—4‘5_‘5 ( ) 0 ) )

E

— N O\

(0 10)A (0 (100)A* 1)
L 0/4 L 0
— (1

— 0N -
- (100))\“(1) (0 1 0)A* )
__ 0/]
B O\] 1Y]
- (OlO))\“(l) (1 0 0)A" O)
| 0, 0/

= %{)\?1)\52 — AMIAL — ARAS T )\22)\
= Ilt()\'fl)\gz — AT2A%1)
= LOd A + AL — MDA — AR

Sl o1 1y =3 9.37)

Putting equations (9.36) and (9.37) into equation (9.33), we conclude that
the quark-quark potentials are
2 (ash0) .

V) =— 3 (color triplet) (9.38)

1 (ashc)
Vadr) = ’

(color sextet) (9.39)

In particular, the signs indicate that the force is attractive for the triplet and
repulsive for the sextet. Of course, that’s not too helpful as it stands, because
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neither combination occurs in nature.* However, it does have interesting im-
plications for the binding of three quarks. This time we can make a singlet
(completely antisymmetric), a decuplet (completely symmetric), and two octets
(of mixed symmetry), as we found in Section 5.9 of Chapter 5.} Since the singlet
is completely antisymmetric, every pair of quarks is in the (antisymmetric) triplet
state—the attractive channel. In the decuplet, every pair is in the (symmetric)
sextet state—they repel. As for the two octets, some pairs are triplet and some
are sextet; we expect some attraction, then, and some repulsion. Only in
the singler configuration, though, do we get complete mutual attraction of the
three quarks. Again, this is a comforting result: as in the case of mesons, the po-
tential is most favorable for binding when the quarks are in the color singlet

configuration.

9.3 PAIR ANNIHILATION IN QCD

In this section we consider the process quark plus antiquark — two gluons—
the QCD analog of pair annihilation. The calculation is quite similar to Example
7.8: however, in QCD there are three contributing diagrams, in lowest order:

(3) (4)

3: 83, C3 Pa,84,Cy

.87, Cy Py, 82,0,

1 2

The amplitude for diagram 1 is given by

y—| Fllq/+ mc)-l
—iM, = v(z)cIL—z %Ny J[ezzaﬁ*][ = 2J
g’ — m’c
s [—i& e “-I{e%',‘“a‘—;*]u(l)ci (9.40)

(To simplify the already overburdened notation I'll leave the * off the gluon
polarization vectors and color states until the end.) Here ¢ = p, — ps, s0

g* — mPc? = p} — 2p,-ps + pi — m’c® = —2p;+ p; (9.41)

* If you don’t heed the warning in footnote (*) on p. 284, you may be alarmed to find that
two quarks in the triplct state attract one another. There is some comfort in the observation that the
singlet ¢g coupling is twice as strong; but still, if this were the whole story we might very well expect
triplet gg binding to occur, leading to free “diquark” states There has, in fact, been some speculation
about the possible existence of diquarks within nuclei.’

+ In Chapter 5 we were dealing with flavor, not color, but the mathematics is the same. Group
theoretically, 3®@3®3=1®8® 8 ® 10.
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—g:
8 pi-ps
X asaf(ciNr¢) (9.42)

and hence M= V(2)Les (71 — ps + me)es]u(l)

Similarly, for diagram 2

_—&;
8 pi'Ds

M, V) es(p1 — #s + moeJu(l) asal(cIANe))  (9.43)

Notice that the A’s appear this time in the opposite order. Finally, for diagram
3.

_ S < g 5
—iM; = v(Z)CI[—i% A va]u(l)cl[—z gﬂqz ] {—& /" [gu(—D3 + P
+ ga(—Ps — @), + &g + D))} e4as]eral) (9.44)

In this case ¢ = p; + ps4, so g° = 2p;-p,; simplifying (and using e+ p; =
€ ps = 0), we find (Problem 9.10):
g 1
My =i " V(2)(e3- €)(pa — 73) + 2(P3- €s)e3 — 2(pa- €e3)eq]u(l)
D3 Ds

X f**vasad(ci\"c,) (9.45)
So far, this is all completely general (and rather messy). To make things

more manageable, let’s assume (as we did in our study of e*¢™ annihilation) that
the initial particles are at rest:

p=p=(mc0), p3=(mcp), ps=(mc —p) (9.46)
Then P D3 = pr+ps = (me)’ and D3*Ds = 2(mc)2 (9.47)

Meanwhile, in the Coulomb gauge, equation (9.7)
D3ea=—Pre&s=—pyreg =0 (9.48)

(likewise p4 - €3 = 0), so two terms in M5 drop out. Using equations (7.137) and
(7.138) to simplify M, and M,, we find that the total amplitude (M = M, + M,
+ Jil3) can be written

2

M= — £ 0508 FQ)essasNN + e BNN
8(mc)
— i(es* ea)th — 2O PNy 1) (9.49)

We may as well orient our coordinates so that the z axis lies along p; then
r=mc¥*=7), pm=mc(x*+7v’), #—p=2mey’  (9.50)
From equations (7.142) and (7.143) we have
€363 = —(€3°€4) — (€3 X 4)* Z, £55 = —(e3+€4) + i(e3 X €4)- 2 (9.51)

Putting this into equation (9.49), and exploiting the commutation relation (9.10)
for the A’s, we obtain
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2
M = 2= asal B - ), M}y

+ ie; X eg) - Z(TA™
LI = B B 3 bk W A

28140 1 3 ABLA3VYo g (1) (9.52)
A% J' 1 ll\ LAY j ’ l}l.r I \ }

where curly brackets denote the anticommutator: {4, B} = AB + BA. (You
might compare this result with the corresponding expression in QED (7.146),
to which it reduces if you set all the A’s equal to 1, drop the color states @ and
¢, and let g./2 — g..)

Suppose now we put the quarks into a spin-0 (singlet) state (the triplet state
cannot go to two gluons anyway; it needs at least three):

M= (M — M)/ V2 (9.33)
For M, we have [see egs. (7.150) and (7.151)]
D(2)Y°u(1) = B(2)Zv%u(1) = 0, PREZYVu(l) = —2mcz  (9.54)
As before, M; = —./l/tn, and we are left with*

M=—iV2E (e3><e4)za3a£(c;{x M}c)  (spin singlet)  (9.55)

Once again, we have obtained a result that is identical to the one in QED (eq.
7.153), except that g. — g,, and there is a color factor
f= tasai(d{r, M}e) (9.56)

In particular, if the quarks occupy the color singlet state, (1/ VE)(rr" + bb + g2),
then

1 0 0
f=tpeps L (100){A% MY 0 |+ © 1A 2 1 |+ 00 D{A%, A% 0
8 V3 0 0 1

1
= —= as3ad Tr{\", \*} (9.57)
8V3 ’
But Tr{A%, N} = 2Tr(A°N%) = 46 (9.53)
(Problem 9.3), so
| .
f=—F=asa% (color singlet) (9.59)
2V3
Now, the singlet state for two gluons (see Problem 9.12) is
|singlet) = \f Z |n)iln ), (9.60)

* At this stage all terms in ¢; - ¢, drop out. The fact that /H, is proportional to €3 - ¢4 [eq. (9.49)]
means that the diagram containing a three-gluon vertex makes no contribution, when the quarks are
at rest in the spin singlet configuration. Most books simply ignore it from the start, but in principle
it should be included (see also Problem 9.11).
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Evidently asag = = 8) = 212 (9.61)
and hence =Y2/3 (9.62)

Conclusion: for ¢ + §— g + g in the spin singlet, color singlet configuration,
with the quarks at rest, the amplitude is

M = —4V2/3g2 (9.63)
[see eq. (7.160)], and the cross section is
2 47 (ha,\’
=227 64
o 3 70 ( - ) (9.64)

[see eq. (7.165)]. Just as the cross section for ¢ + ¢~ — v + v indicated, the
positronium decay rate

T = ovly(0)[? (9.65)

[eq. (7.168)], so we can now give a formula for the decay of a spin-0 quarkonium
state (such as n,—note that ¢ and T themselves carry spin 1, and go to three
gluons):

8n (has

T —28) = 2\~

2
2
= ) W) (9.66)

As it stands, this is not terribly useful, since we don’t know (0). However, the
electromagnetic decay 5. — 2v involves the same factor, and we can derive a
clean expression for the branching ratio (see Problem 9.13).

9.4 ASYMPTOTIC FREEDOM

In the last section of Chapter 7 we found that the loop diagram
\ /

/ N

in quantum electrodynamics makes the effective charge of the electron a function
of the momentum transfer g.:*

a(0
allg?®) = a(O){ I+ % ln(lqzl/(mC)z)} (g%l = —¢*> (mo)?)  (9.67)
* It also introduces a divergent term, which we soak up in the “renormalized” charge
[eq. (7.185)]. But that’s an entirely different problem, one which (however troublesome you may
find it) has no observable consequences, and once the appropriate words have been said is of no
further importance. The perfectly finite dependence of & on ¢? is the significant matter, for it car-
ries direct and measurable implications.
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The coupling strength increases as the charges get closer together (larger |¢%), a
fact that we interpret physically as a consequence of “vacuum polarization”: the
vacuum functions as a kind of dielectric medium, partially screening the charge.
The closer we approach, the less complete is the screening, and the greater is the
effective charge. Of course, equation (9.67) is valid only to order a(0)%. There
are higher-order corrections, of which the dominant ones come from chains of
bubbles:

As it happens, these can be summed explicitly, and the result is*

a(0)

2| 5 2
1 ~ (a(0)/37) ln(|q2|/(mc)2) (Ig% » (mc)*) (9.68)

a(lg?) =

Ostensibly, the coupling blows up at In(|lg*l/(mc)?) = 3n/a(0). However, this is
not to be taken too seriously, since it occurs at an energy of about 10?*° MeV,
which (to put it mildly) is not an accessible region (see Problem 9.15).

Much the same thing happens in QCD: quark-antiquark bubbles

lead to a screening of the quark color which (modulo appropriate color factors)
is the same as equation {9.67). However, there is a new twist to the story, for in
QCD we also have virtual g/uon bubbles

* This is perhaps not so surprising. What we have, in effect, is the geometric series

1

1 =X

l+x+xt4+x34 .0 =

where x is for one bubble, x? is for two, and so on. Although equation (9.68) is correct to all orders
in (0), it is not exact, since we are ignoring diagrams such as

These can be shown to make a much smaller contribution in the limit |g* > (mc)’. Equation (9.68)
is called the “leading log” approximation,
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as well as diagrams of the form

It turns out* that the gluon contribution works in the other direction, producing
“antiscreening,” or “camouflage.” 1 do not know of a persuasive qualitative
explanation of this effect’—suffice it to say that the formula for the running
coupling constant in QCD [analogous to eq. (9.68)] is

ayp?)
1+ (adw®/ 127X 11n — 2f) In(lg®|/u®)

where 7 1s the number of colors (3, in the Standard Model), and f'is the number
of flavors (6, in the Standard Model). In any theory for which 11x > 2f, anti-
screening will dominate, and the coupling constant will decrease with increasing
|g?|; at short distances the “strong” force becomes relatively weak. This, of course,
is the basis of asymprotic freedom, on which so much of what we can say quan-
titatively about the hadrons is predicated. Asymptotic freedom is what allows
us to treat partons as essentially free particles, leading to Bjorken scaling; it is
what licenses the use of the Feynman calculus in QCD to calculate interquark
potentials; it is a basic ingredient in the theory of quarkonium; and it is presum-
ably responsible for the OZI rule. Chromodynamics would have gone out of
business if it had not been for the timely discovery of asymptotic freedom.®
You may have noticed the appearance of a new parameter, g, in equation
(9.69). In electrodynamics it is natural to define “the charge” of a particle as the
long-range (fully screened) value—that’s what Coulomb and Millikan measured,
and it’s what an engineer or a chemist or even an atomic physicist (unless he’s
measuring the Lamb shift) is concerned with. Thus «(0) is the “good old” fine
structure constant, 137, and it is the sensible parameter in terms of which to do
perturbation expansions. But we don’t have to do it this way; we could work
from any other value of g2 [provided only that we stay well below the singularity
in (9.68), where a(|g?|) runs larger than 1, and perturbation theory breaks down].
In QCD, however, we cannot work from g? = 0, because that’s where « is large.
We must use as a reference some place where a; is small enough to justify a
perturbation expansion. That’s why equation (9.69) is expressed in terms of
a(u?), instead of ay(0). Provided that it’s large enough so that ay(u?) < 1, it

g% > w’  (9.69)

adlq’l) =
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doesn’t matter what value of u we use (see Problem 9.16). Indeed, if we introduce
a new variable A, defined by

11 LA 1L IU

2 = _ _ 2
In A2 =Ing? — 12x/[(11n — 2f) 3] (9.70)

the running coupling constant can be expressed in terms of a single parameter:

127
(11n — 2f) In(lg*/A%)

(see Problem 9.17). This compact result'tells us explicitly the value of the strong
coupling at any |¢?|, in terms of the constant A. Unfortunately, it is hard to
determine A precisely from experimental data, but Ac appears to lie somewhere
in the range

adlg®) = (gl > A% (9.71)

100 MeV < Ac < 500 MeV. (9.72)

Notice that whereas the QED coupling varies only minutely over the accessible
energy range (Problem 9.15), variation in the QCD coupling is substantial (Prob-
lem 9.18).

9.5 APPLICATIONS OF QCD

It must be admitted that the number of things one can actually calculate in QCD
is, at this stage, embarrassingly meager. I have not, of course, shown you every-
thing that has been done: violations of scaling, due to gluon emission processes
such as

have been analyzed in detail, and the agreement with experiment is impressive;
QCD corrections to the R formula [eq. (8.8)) can be computed; you can work
out the distribution of jets in e*¢™ and e p scattering; and the “Drell-Yan”
process, p + p— u* + u~ + X, can be studied for scaling violations.” All this is
perturbative, based on asymptotic freedom, and limited to the short-distance
region. At the other extreme, much work has been devoted to an understanding
of confinement in QCD, but this, involving as it must the /ong-range behavior

of the interquark force, cannot be done perturbatively. The most promising

technique 1s “lattice gauge theory,” in which the space-time continuum is re-
placed by a finite lattice of discrete points, and the equations of QCD are solved
numerically. One hopes to achieve realistic results in the limit as the lattice
spacing shrinks to zero.? The trouble is that any theory, even QED, exhibits
confinement on a finite lattice. The delicate question is whether this behavior
persists in the continuum limit. In QED we find a kind of “phase transition” at
which the system flips over to a nonconfining mode; computer studies indicate
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that no such phase transition occurs in QCD, and so the theory remains confining.
This is tantalizingly close to a confirmation of confinement in QCD, although
a rigorous proof would, of course, be preferable.

But even confinement, important though it is, has more to do with the
internal consistency of the model than with experimental data. If QCD is the
correct theory of strong interactions, where is its solution to the c/assic problems
in hadron physics? Why don’t we now calculate the neutron-proton mass dif-
ference, or the force between two protons, or the cross section for pion-nucleon
scattering, or the binding energy of the deuteron? The trouble is that all these
simple-sounding questions involve complicated many-body problems. I sup-
pose that in the course of time we will find ways of handling such matters using
QCD, just as physical chemists have learned to apply quantum mechanics
to large molecules. But for the moment we must make do with more modest
achievements.’
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PROBLEMS

9.1. Why can’t the “ninth gluon” be the photon? [Answer: The gluon would couple to
all baryons with the same strength, not (as the photon does) in proportion to their
charge. Since the mass and baryon numbers are approximately proportional in bulk
matter, such a force would, in fact, look very much like an extra contribution to
gravity. There was a flurry of interest in this possibility in early 1986. (E. Fischbach
etal., Phys. Rev. Lett. 56, 3 (1986). See, however, the comments in Phys. Rev. Lett.
56, 2423 (1986).]
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9.2. Color SU(3) transformations relabel “red,” “blue,” and “green” according to the

9.3.

94.

9

9

.cr

5.

6.

3

transformation rule
c— ¢ =Uc

where U is any unitary (VU = 1) 3 X 3 matrix of determinant 1, and c is a three-
element column vector. For example

0 1 0
U=10 0 1
1.0 0

would take r — b, b — g, g — r. The ninth gluon (|9)) is obviously invariant under
U, but the octet gluons are not. Show that |7) and |8) go into linear combinations
of one another:

177 = al7) + BI8), 18" = |7 + 8I8)
Find the numbers «, 3, v, and 6.
Show that
Tr(A*Af) = 25°°
(Notice that all the A matrices are traceless.)
What are the structure constants for SU(2)? That is, what are the numbers /% in
[¢', /] = 2if %o*
(a) Given that /**" is completely antisymmetric (so that f''* = 0 automatically,

. and having calculated ' ?*, we don’t need to bother with /'3, /23! etc.) how
many distinct nontrivial structure constants remain?

8:-7-6
Answer: = 56
[ 3.2-1 ]
(Of these, it turns out that only nine are nonzero—those listed in equation
(9.11)—and among these there are only three different numbers.)
(b) Work out {A!, A?], and confirm that f'?” = 0 for all v except 3, while
fl 23 _ 1'
(¢) Similarly, compute [A!, A*] and [A*, A®], and determine the resulting structure
constants.

Calculate the octet g4 color factor using the state

{a} ho
\&)y vs

(b) (7 — bB)V2
(©) 7+ bb — 2g8)V6

Find the amplitude J# for the diagram
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9.8.
9.9.

9.10.
9.11.

9.12.

9/QUANTUM CHROMODYNAMICS

What is the color factor {analogous to eq. (9.22)] in this case? Evaluate fin the
color singlet configuration. Can you explain this answer? [Answer: it’s zero; a singlet
cannot couple to an octet (gluon).]

Calculate the sextet gg color factor using the state (rb + br)\@.

Color factors always involve expressions of the form AfAg (summed over a). There
is a simple formuia for this quantity, which shortens the arithmetic:

Aﬁki‘d = 26,’1 6jk - %5,) Bk]

{See Kane, ref. 2]. Check this theorem for

@i=j=k=1=1 [see eq. (9.36)]
b i=j=1, k=I1=2 [see eq. (9.24)]
©i=I=1, j=k=2 [see eq. (9.37)]

and
(d) Use it to confirm equation (9.27).

Dertve equation (9.45), starting from equation (9.44).

There is a simple test for the gauge invariance of an amplitude (M) in QCD
(or QED): Replace any gluon (or photon) polarization vector by its momentum
(e3 — p3, say), and you must get zero (see Problem 7.21). Show using this criterion
that M = M, + M, + M5 is gauge-invariant, but M, + M, alone is not. {Thus the
three-gluon vertex is essential in QCD to preserve gauge invariance. Notice, by
contrast, that #, + /M, alone is gauge-invariant in QED (Example 7.8). The fact
that A matrices do not commute makes the difference.]

Construct the color singlet combination of two gluons (9.60). {One method is as
follows:

,
Let c=(b>
b4

Under SU(3), ¢ — ¢' = Uc, where U'is a unitary (UU' = 1) matrix of determinant
1. Similarly, let d* = (r, b, g), transforming by the rule d' — @ = dU*. Form the

matrix
‘yF rb rg
M=cd'= (bf bb bg
gr gb gg
Note that M’ = ¢'d't = UMU*.
Remove the trace:

N =M — [Tr(M)), so that Tr(N) = 0

[Note that Tr(M') = Tr(M) = (rr + bf? + gg), so this combination is SU(3)-invariant;
it is the singlet combination in 3® 3 = | @ 8, N is the octet.]

N' =M — {(Tr(M"] = UMU" - {{Tr(M))JUU* = UNU?

The question is how to put together two 8’s to make a 1; that is, how to make
something bilinear in N, and N, which is invariant under U. The solution is

§= .Tr(N,Nz)
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9.13.

9.14.

G
[
h

A ]
-
[~

9.17.
9.18.

For
s' = Tr(N\N%) = Tr(UNUTUN,UY = THUYUN, N,) = Tr(N\N,y) = s
It remains to figure out what s is in terms of the elements of M, and M,:

Tr(N\Ny) = Tr{(M, — §[Tr(M)}(M; — 5[Tr(M>)]}
= Tr(MMy) — [ Tr(M))[Tr(M3)]
3[(”—)1(”_)2 + (bb)(bB), + (gg)(g2).]
P W(bD), + (rr_)l(gg’)z + (bb)(rF), + (bb)i(g8):
+ (g@N(rP)2 + (€2)(bD)] + [(rB)(bF), + (r@)i(gr):
+ (bP)i(rb); + (b2)\(gh): + (gM)i(r2); + (gD (Bg)]
= |01 + 12041232 + 30132 + [4)414)2

+IS015)2 + 6062 + 1730752 + 8,82 = 3 Il

This—the invariant product of two octets—is the STU(3) analog to the dot product
of two 3-vectors in SU(2).]

Determine the branching ratio I'(n. — 2g)/T'(n. — 2v). [Hint: Use equation (9.66)
for the numerator, and a suitable modification of equations (7.165) and (7.168) for
the denominator. There are two modifications: (i) the quark change is Qe, and (ii}
there is a color factor of 3, for quarks in the singlet state (9.5). Answer: §(a,/a).]

(Gluon-gluon scattering)

(a) Draw the lowest-order diagrams (there are four of them) representing the in-
teraction of two gluons.

(b) Write down the corresponding amplitudes.

(¢) Put the incoming gluons into the color singlet state; do the same for the outgoing
gluons. Compute the resulting amplitudes.

(d) Go to the CM frame, in which each gluon has energy E; express all the kinematic
factors in terms of E and the scattering angle 8. Add the amplitudes to get the
total, M.

{e¢) Find the differential scattering cross section.

(f) Determine whether the force is attractive or repulsive (if it is the former, this
may be a likely gluebail configuration).

i 21 T T oy

. (a) Caiculate the energy (V|g~ |c ?) at which the QED coupling constant (9.68) blow

up. (Remember, a(0) = 137, the fine structure constant.)
(b) Atwhat energy do we geta 1% departure from «(0)? Is this an accessible energy?

. Prove that the value of 4 in eguation (9 69)is ar}'ufrnry fTh t is, suppose p nhvmrnd

l.lulr

A uses the value u,, and physicist B uses a dlfferent value, up. Assume A’s version
of equation (9.69) is correct, and prove that B’s is also correct.]

Derive equation (9.71) from equations (9.69) and (9.70).

Calculate «a; at 10 and 100 GeV. Assume Ac = 0.3 GeV. What if Ac = 1 GeV?
How about Ac = 0.1 GeV?






Chapter 10

This chapter surveys the theory of weak interactions. It relies heavily on
Chapter 7, but not on Chapters 8 and 9; Section 4.6 of Chapter 4 would be
useful background. I begin by staiing the Feynman Rules for the coupling of
leptons to W*, and treat three classic problems in some detail: the beta decays
of the muon, the neutron, and the charged pion. Next, we consider the coupling
of quarks to W=, which brings in the Cabibbo angle, the GIM mechanism,
and the Kobayashi-Maskawa matrix. In Section 10.6 I state the Feynman
rules for coupling quarks and leptons to the Z°, and the final section (probably
the most difficult in this book) shows how all electromagnetic and weak vertex
factors can be derived, in the Glashow-Weinberg-Salam electroweak theory.

10.1 CHARGED LEPTONIC WEAK INTERACTIONS

The mediators of weak interactions (analogous to photons in QED and gluons
in QCD) are the W”s (W* and W) and the Z°. Unlike the photon and gluons,
which are massless, these “intermediate vector bosons” are extremely heavy—
by far the heaviest elementary particles yet detected. Experimentally,

My = 82 + 2 GeV/c?, M, =92 + 2 GeV/c? (10.1)

Now, a massive particle of spin 1 has three allowed polarization states (m, = 1,
0, —1), whereas a free massless particle has only two (if z is the direction of
motion, the “longitudinal” polarization m, = 0 does not occur). Thus for photons
and gluons, we imposed both the Lorentz condition

ep, =0 (10.2)

(reducing the number of independent components in ¢ from 4 to 3) and also

301
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the Coulomb gauge (¢° = 0, so that ¢- p = 0, which reduces it further from 3 to
2). However, for the W’s and the Z the Lorentz condition alone exhausts the
gauge freedom, and we do not invoke the Coulomb gauge. Moreover, the prop-
agator for massive spin-1 particles is no longer simply —ig,,/¢> but rather,*

_i(guv — unv/Mzcz)
_ MZCZ

where M is My, or M, as the case may be. In practice, ¢ is ordinarily so much
smaller than (Mc)® that we may safely use

(propagator for Wand Z) (10.3)

1€
(Mc)?

However, when a process involves energies that are comparable to Mc? we must,
of course, revert to the exact expression.

The theory of “charged” weak interactions (mediated by the W ’s) is simpler
than that for “neutral” ones (mediated by the Z), so for the moment I shall
concentrate on the former. In this section we consider the coupling of W’s to
leptons; in the next section we’ll discuss their coupling to quarks and hadrons.
The fundamental leptonic vertex is

(propagator for ¢*> < (Mc)?) (10.4)

4]

-

Here an electron, muon, or tau is converted into the associated neutrino, with
emission of a W~ (or absorption of W*). The reverse process (v; — [~ + W) is
also possible, of course, as well as the “crossed” reactions involving antileptons.
The Feynman rules are the same as for QED (apart from the modifications
already mentioned to accommodate the massive mediator), except for the vertex
factor

_lgw
2V2
The various 2’s are purely conventional, and g,, = ‘\/’LTaw is the “weak coupling
constant” (analogous to g, in QED and g, in QCD). The factor (1 — v°), however,

is of profound importance, for v alone would yield a vector coupling (like QED

3
or QCD), whereas y*y> gives an axial vector [see eq. (7.68)). A theory that adds

(1 — %) (weak vertex factor) (10.5)

* It might bother you that this does not reduce to the photon propagator as M — 0. For
particles of spin 1 (or higher) the massless limit is notoriously treacherous, because in one critical
respect it is not a continuous procedure. The number of degrees of freedom (that is, the number of
allowed spin orientations) drops abruptly from 2s + 1 (for M # 0) to 2 (for M = 0). There are ways
of formulating the theory that aliow a smooth transition to A7 = 0, but only at the cost of introducing
spurious nonphysical states.
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a vector to an axial vector is bound to violate the conservation of parity, and
this is precisely what happens in the weak interactions (Chap. 4, Sect. 4.6).*

EXAMPLE 10.1 Inverse Muon Decay
Consider the process

v, te —pu +o,

represented (in lowest order) by the diagram

¢
P3 Pa
v, U
q
—_ __’,.__ —_
w
e Uu
p1 pz

Here g = p, — p3, and for any experiment likely in the near future ¢* <
M?%,¢?, so we can safely use the simplified propagator (10.4), and the am-
plitude is

M= g(-ﬁij)z [@3)y*(1 — Y )u(D)[E@)y (1 — Y)u2)]  (10.6)
Applying Casimir’s trick (7.123), we find
> M= (--—g-%v—)2 Trly*(1 — ¥’)#1 + mey'(1 — ¥)pi]
spins 8(Myc) ‘
X Trlv(1 = ¥yl — ¥ + mo]  (10.7)
The trace theorems of Chapter 7, Section 7.7, yield
8[pips + Dipk — (i - p3) — i€ D3] (10.8)

for the first trace, and

8[p2,P4, t+ D2,Ds, — 8w D2° Da) — € D3D3] (10.9)
for the second. It follows thatt
S P = 4( o ) (01 D)3+ D) (10.10)
wC

Actually, we wan

* In fact, the violation is “maximal,” in the sense that the two terms are equally large. When
parity violation was first considered, a factor of the form (1 + ey*) was used, but experiments soon
dictated that e = —1. (See Problem 10.1.) We call it a *“F-4" (*vector minus axial vector’’) coupling.
Fermi’s original theory of beta decay was a pure vector theory (like QED), and although others
proposed scalar, pseudoscalar, tensor, or pure axial couplings, it was not until 1956 that anyone
seriously contemplated mixing terms of different parity.

1 Note that ¢*¢,,,, = —2(6}87 — 887). (See Problem 7.33.)



304 10/WEAK INTERACTIONS

spins. The electron has two spin states, but the neutrino (as we learned in
Chapter 4, Section 4.6) has only one (if you like, the incident neutrinos
are always polarized, since they only come “left-handed”). So

4
(M) = 2( Af; C) (p1*P2) (D3 Da) (10.11)

If we now go to the CM frame, and neglect the mass of the electron

o)
(M Py S(ch2)1 S (10.12)

where E is the incident electron (or neutrino) energy. The differential scat-
tering cross section [eq. (6.42)] is isotropic (all scattering angles equally

likely)
do _1 (—hcg vE )2{1 - (m“cz)z}2 (10.13)
dQ 2 \4x(Myc?? 2E '
and the total cross section is
1 . 2 2 m 02 242
0= [(Micz) th] {1 = (E) } (10.14)

10.2 DECAY OF THE MUON
Electron-neutrino scattering is not the easiest thing in the world to study exper-

imentally, but the closely related process, muon decay (p — e + », + v,), is the
cleanest of all weak interaction phenomena, theoretically and experimentally.

The Feynman diagram

—— P -
w™
n
P
leads to the amplitude
2
Sw 5 5
M=— Il — 1 4 | v(2 10.15
S0y [ (1 — ¥ y(D][u(@)y (1 — ¥ 2]  ( )
from which we obtain, as before,
4
M7y = 235 ) (o1 - (10.16)

In the muon rest frame, p; = (m,c, o), we have
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DD =mEy (10.17)
and since p, = p, + ps + D4
(p3 + pa)* = D5+ D3 + 2p3 - pa = mic* + 2p3 - ps
=0 —p) =pt+p—2pp2=mic? —2p,-py (10.18)
from which it follows that

2 2\ .2
m, = m)e” _ o E, (10.19)

D3*Ds = X ("

The algebra will be simpler later on, at no significant cost in accuracy, if we set
m, = 0, so that

4
My = ( _Aj“’c) m? Ex(m,c? — 2E>) (10.20)

Now, the decay rate is given by the Golden Rule (6.15):*

=<lm|2>(cd3p2 )(Cd3p3 )(cd3p4) § S — o e —
A= nm, \err2E\r2e; \my2E, )& TP = P2 = s = P)
(10.21)

where E> = |plc, E; = |pslc, and E4 = |pslc. To begin with, we peel apart the
delta function:

E, E;

E
8 py —p2— D3 — Da) = 6(m,.c LT ?4)63(1)2 +ps+ps) (10.22)

and perform the p; integral:

_ <|Jn|2>c3 (d’pXd’py) 5(m E, E, E;

F_ ————— —_—
¢ 162wy’ hm, E,E;E, ¢ c) (10.23)

where E; now stands for [p, + palc. Next we’ll do the p, integral. Setting the
polar axis along p4 (which is fixed, for the purposes of the p, integration), we
have

E 2
(73) = |ps + pal> = P3 + pZ + 2p2 - p4
1
=3 (E3 + E3 + 2E,E, cos ) (10.24)
. (EN*dE, .
and d’p, = k-m—} sin 6 df do (10.25)
c c

The ¢ integral is trivial (| d¢ = 27); to carry out the 8 integration, let

1 E
x=-VE?+ E2+ 2E,E cos 0 = = (10.26)
C C

* Note that this is a three body decay, so we have to go all the way back to the Golden Rule.
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so that dx = (10.27)
CE3
Th '~ sin 6 df 6/ E, E; E,\\
n me—————
© Jo E; l ¥ C C ¢ )
_ C ** E2 E4)
= L.k f_ 6(mﬂc b's p - dx
c . Ez E4
- | GE’ if x_ < ( m”Cw?—? )<x+ (10.28)
0, otherwise
1
where X, = % VE? + E? + 2E,E, = - |E> + Ey4 (10.29)

The inequality in equation (10.28) can be expressed more neatly:
|E; — Ey| <(my*—E, — E)) <E,+ E, (10.30)
or, adding (E; + E,) and dividing through by 2:
{IEy — Ef| + E; + E;} < im,c® < (E, + Ey) (10.31)
The term on the left is simply the larger of E, and Ej; the other one is necessarily
even smaller, so expression (10.31) is equivalent to three inequalities:
E2 < %mﬂc 2
E, < %m“c2 (10.32)
(E; + Eg) > im,c?
[These constraints make good sense kinematically: Particle 2, for example, gets

the maximum possible energy when 3 and 4 emerge diametrically opposite to
it

In this case 2 picks up half the available energy (1m,c?), while 3 and 4 share the
other half. If there is a nonzero angle between 3 and 4, 2 gets less, and 3 plus 4
get correspondingly more. Thus §m,¢? is the maximum energy for any individual
outgoing particle, and the minimum total for any pair.]

The inequalities (10.32) specify the limits on the E, and E, integrals: E,
runs from m,c?® — E, up to $m,c?, and E, will go from 0 to im,c% The 0 and
¢ integrals leave us with
_ (M P)e d’ps

= Gy dE, — (10.33)

dT
E;

Putting in equation (10.20) and carrying out the E- integral, we have
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m,.C d 3p4 1/2muc 2
(41rM WC) h Eﬁ l/2m,‘c2—E4 Exm,e” — 2E)dE;
\4 mec /m
(%M c) h ( ——E,,)d Ps (10.34)
w

Finally, writing

E\? dE
43 24(_4)___1‘
Pa T c p

and dropping the subscript (E = E, is the electron energy), we obtain

dr » ' miE? 4E
_=(g ) i 3(1___-_3) (10.35)
dE ~ \Myc) 2h@P ' 3myg

This tells us the energy distribution of the electrons emitted in muon decay. It
fits the experimental spectrum perfectly (Fig. 10.1). The total decay rate is

4 2 1/2m,c2? 4FE
I‘=( S ) i 3f E2(1 - 2)dE
Myc) 2h(4a) Jo Imc

4 2
m,gw m,c
= |~ ’ 10.

( MW) 12 (87)° (10.36)

and hence the lifetime of the muon is

1 (MW )“ 12h(87)°
T m.g.  mgc’

10.37
= (10.37)

Notice that g, and My do not appear separately, either in the muon lifetime
formula or in the electron-neutrino scattering cross section; only their ratio occurs.
It is traditional, in fact, to express weak interaction formulas in terms of the
“Fermi coupling constant”

V2( 2. \
Gr=— (Mi C,_) (ho) (10.38)
Thus the muon lifetime is written
19273R7
7= it (10.39)

In Fermi’s original theory of beta decay (1933) there was no W; the interaction
was supposed to be a direct four-particle coupling, represented in the Feynman
language by a diagram of the form
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Figure 10.1 Experimental spectrum of positrons in g* — ¢* + v, + v,. The solid line is
the theoretically predicted spectrum based on equation (10.35), corrected for electro-
magnetic effects. (Source: M. Bardon et-al., Phys. Rev. Lett. 14, 449 (1965).)

From the modern perspective, Fermi’s theory combined the W propagator
with the two vertex factors, in the diagram

to make an effective four-particle coupling constant G . It worked, but only
because the W 1s so heavy that expression (10.4) is a good approximation to the

___________ 10 nied 2o £nnt 14 wine recnonived alveady P
true propagator (10.3),* and in fact it was recognized already in the fifties that

Fermi’s theory could not be valid at high energies. The idea of a weak mediator
(analogous to the photon) was suggested by O. Klein as far back as 1938.

* Fermi also thought the coupling was pure vector, as [ mentioned in the footnote (x) on
p- 303. Despite these defects (for which Fermi could scarcely be blamed; after all, he invented the
theory at a time when the neutrino was a wild speculation and the Dirac equation itself was quite
new) Fermi’s theory was astonishingly prescient, and all subsequent developments have been relatively
small adjustments to it.
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If we put in the observed muon lifetime and mass, we find that

2
2) = 1.166 X 1075/GeV? (10.40)

The corresponding value of g,, (less accurately known, at present, because of the
experimental uncertainty in My) is

gw = 0.66 (10.41)

and hence the “weak fine structure constant” is

go |1
= 2 (10.42)
This number should come as something of a shock: It is /arger than the electro-
magnetic fine structure constant (¢ = 137), by a factor of nearly five! Weak
interactions are feeble not because the intrinsic coupling is small (it isn’t), but
because the mediators are so massive—or, more precisely, because we typically
work at energies so far below the W mass that the denominator in the propagator
(q* — M%.c?) is extremely large. New machines are presently under construction
that will run at energies close to My-c2, and in this regime the “weak” interactions
will far surpass the electromagnetic ones in strength.

10.3 DECAY OF THE NEUTRON

The success of the muon decay formula (10.35) encourages us to apply the same
methods to the decay of the neutron, n — p + e + v,. Of course, the neutron
and proton are composite particles, but just as the Mott and Rutherford cross
sections (which treat the proton as an elementary “Dirac” particle) give a good
account of low-energy electron-proton scattering, so we might hope that the
diagram

P Py Pa
N AN /
v, e
Proton
—_—— - — —
Neutron w
Py

tha cneman na fae 1 Aa~ax <r ith 11 v 9 L /™ 2ea smalann ~F 1 LI\
\Lll\/ SAlllic add 1U1 llluull ucba) Ulll’ W].L].l ’L - y T FF 111 plabc L F - Vﬂ T FF }

will afford a reasonable approximation to neutron beta decay. From a calcula-
tional point of view the only new feature is that 3 is now a massive particle (a
proton, instead of a neutrino). As it happens (Problem 10.4) this does not change
the amplitude:

4
(M = 2{-2) (p, p2)(ps+ po) (10.43)
ch
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which is the same as (10.16). In the rest frame of the neutron, we find

4
(M = ( A‘ZC) m, Eo[(m2 — mi — m2)c? — 2m, E] (10.44)

) /

In this case the electron rest energy is a substantial fraction of the total energy
released, (m, — m, — m.)c?, so we cannot afford to ignore the electron mass.
The decay rate calculation proceeds as before:

z<lmlz>(cd3p2 )(Cd3l)3 )(cdﬁu) e
A= o, \@r2E,\awr2E: \an2E, )& O 0~ P2~ Ps— P
(10.45)

where  E,=clp), Ey=cVpi+mi®  E,=cVpi+ mic® (10.46)
The p; integral yields

_ 23| MI*) d’p,y dps
(4x)’hm, EE;E,

dr 5(m,,c ————— —) (10.47)

which is the same as equation (10.23), except that this time
E; = cV(p2 + pa)® + mic? (10.48)

To carry out the p, integral, we set
1 .
d>p, = |p2)? dlps| sin 6 do do = i E3 dE, sin 0 df d¢ (10.49)

and orient the coordinates so that the z axis lies along p, (which is fixed, for
purposes of the p, integral); then

E;5 = cV|po* + Ipal* + 2Ipallpsl cos 6 + m2c? = cx (10.50)
E, sin 6 df
and DSMo & d = — ﬁ (10.51)
E, D4l

The ¢ and @ (or rather, x) integrals yield
__(MP) dE dp

dl’ = 10.52
(Axyhm, Epd ( )
where IEJ"' 5(m,,c—x—2—ﬁ)dx
X— c C
(. { E E)
I, 11x_<\m,,c————}<x+
= 1 _ ¢ ¢ (10.53)
0, otherwise
and the limits [from (10.50)] are
x. = V(lpa| = [pal)? + mic? (10.54)

As before, equation (10.53) defines the range of the E; integral; I'll let you work
out the algebra (Problem 10.5):
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1 2 2 23,2
s(my — my + m)e” — myE,

E, = — 10.55
My — Es/c? F |pdl/c (10-53)
The E, integral 1s thus
E+
E)l(mj — mi — m2)c? — 2m,E)dE, = J(E,) (10.56)
. 3 2 _ 4
and since d’ps = 4Ax|pal” dlps| = s |ps|Es dE, (10.57)
we conclude that
dr 1 2. )4
— = JE 10.58
dE  hc¥4r)? (ch (£) ( )

(since there is no further occasion for ambiguity, I'm eliminating the subscript
on Iy; from now on E is the electron energy).

Equation (10.58) is exact (use it, if you like, to rederive equation (10.35),
setting m,, — m, and m,, m, — 0), but J(E) is a rather cumbersome function.
From the definition (10.56):

2m
3

where E, are given by equation (10.55). It pays to approximate, at this stage,
recognizing that there are four small numbers here:

“(E3 — E%)  (10.59)

1
HE) = 5 (m} ~ m} — m)cX(E? — E2) -

e=""""r _ 40014, 5 = = 0.0005,
m, ny
_ ks _ Ipdl
1=az G<un<o, $=0 ©O<é<n  (1060)

(The last of these is not independent, of course: ¢*> = 5° — §%) Expanding to
lowest order (Problem 10.5), we obtain

4
J = 4mictnd(e — n)* = p EVE? — m2c*{(m, — my)c* — EPF  (10.61)

So the distribution of electron energies is given by

dl 1 g Y VEZ = ni2d
dE ~ ©h (2MWC2) EVE® — mec*{(my — my)c” — E)° (10.62)

The experimental results are shown in Figure 10.2. The electron energies
range from m,¢? up to about (m, — mp)c2 (Problem 10.6). Integrating over E,
we get the total decay rate (Problem 10.7):

1 g 4
T = W )
473 h (2MWc2) (mec?)

X l:% (2a*—9a* - 8)Va’ -1 +a In(a + Va? — 1)] (10.63)
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Figure 10.2 Electron energy distribution from neutron beta decay. (Solid line is the
theoretical curve; dots are experimental data.) [Source: C. J. Christensen et al., Phys. Rev.
D5, 1628 (1972), Figure 4.]

where a=——" (10.64)
Putting in the numbers, we find (Problem 10.8)
|
TR T 1316 sec (10.65)

This is in the right ball park, as they say: The experimental neutron lifetime* is
898 + 16 sec, and given that weak decays range from 15 min down to 107" sec,
perhaps we should be pleased to get the right order of magnitude. But why isn’t
the agreement perfect?

The main problem is that we have treated the proton and neutron as though
they were simple point particles, interacting with the ¥ in exactly the same way
as leptons do. To be honest about it, we should go back to the beginning, admit
that we do not really know how the W couples to composite structures, draw in

a blob on the Feynman diagram (to symbolize our ignorance)

and express the amplitude in terms of various unknown “form factors,” whose

* The number is taken from the Particle Data Booklet, Free neutrons are hard to work with,
and the “official” neutron lifetime has changed substantially over time, dropping by more than 10%
in the last 15 years. Note also that nuclear physicists tend to list the saif-life (£, = 7 In 2), and beta-
decay specialists often quote the “comparative half-life”—the so-called “/f”” value—which has certain
kinematic and Coulombic factors removed. (For the neutron the correction factor £ is about 1.7.)
All this is just to warn you that the numbers quoted in the literature for the neutron “lifetime” are
scattered all over the map, and it pays to read the fine print and check the date.
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structure is limited only by Lorentz covariance—just as we did in Chapter 8 for
the proton-photon vertex. Only when a mature QCD can provide us with the
detailed structure of the nucleons will we be in a position to perfect the neutron
lifetime calculation.

And yet, the Mott formula works well for low-energy electron-proton scat-
tering: Why does essentially the same procedure give us the right answer in
electrodynamics, but not in the weak interactions? In both cases the wavelength
of the “probe” (v or W, as the case may be) is much larger than the diameter
of the “target” (p or n) (see Problem 10.9); the nucleon’s internal structure is
not “resolved,” and it behaves as a point particle. The crucial question, though,
is: What is the net coupling strength of this object? Of course, the net charge of
the proton is simply e (the same as for the u*, say.) It doesn’t matter what
complicated processes are going on inside—valence quarks emitting virtual
gluons, gluons producing quark-antiquark pairs, these “sea” quarks recombining,
and so on—because all this frenzied activity conserves charge. From the per-
spective of a long wavelength photon it just looks like a point, and the net charge
of the composite nucleon is just the sum of the charges of the valence quarks.
But there is no a priori reason to suppose that the same applies to the weak
coupling; when a gluon splits into a quark-antiquark pair, the net contribution
of this pair to the weak coupling may not be zero—who knows? To account for
this, we make the following replacement in the n — p + W vertex factor:

(1 =)= (cv — cavd) (10.66)

where ¢ is the correction to the vector “weak charge,” and ¢, is the correction
to the axial vector “‘weak charge.”* Now, the same basic process, n — p + ¢
+ »,, occurs not only for the free neutron, but also within radioactive nuclei, so
we have in principle many independent opportunities to measure ¢, and ¢,4.F
The experimental results are as follows:

¢y = 1.000 = 0.003, cqs =126 £0.02 (10.67)

Surprisingly, the vector weak charge is not modified by the strong interactions
within the nucleon. Presumably, like electric charge, it is “protected” by a con-
servation law; we call this the “Conserved Vector Current” (CVC) hypothesis.
Even the axial term is not altered much, evidently, it is “almost™ conserved. We
call this the “Partially Conserved Axial Current” (PCAC) hypothesis.

The effect of the substitution (10.66) on the neutron lifetime is something
you can calculate for yourself, if you have the stamina; to good approximation,
the decay rate is increased by a factor of

L3 +3c) = 1.44 (10.68)

and the lifetime is decreased in the same ratio:

* ¢, and ¢, are related to the g = 0 limits of the corresponding weak form factors.

t A particular favorite is '*O — '*N, which is known (from the observed spin and parity of
the initial and final states) to involve only vector coupling. It affords a direct and relatively precise
measure of ¢p.
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_ 1316 sec

1 44 = 914 sec (10.69)

’
This is now within the error bars of the experimental value. Unfortunately, the
agreement is deceptive, for there is yet another correction to be made. The un-
derlying quark process here is d — u + W (with two spectators):

Proton
/-_M"\
d u u
v
—_— — e — —
w
d u d
H—)
Neutron

and this quark vertex carries a factor of cos 6., where
fc = 13.1° (10.70)

is the Cabibbo angle. I'll have more to say about this in the next section, but the
essential point for now is that our theoretical value for the neutron lifetime,
corrected for nonconservation of the axial charge and modified by the Cabibbo
angle, is

14
g o218 s e (10.71)

cos® O¢

Two steps forward, one step back!*

10.4 DECAY OF THE PION

According to the quark model, the decay of a charged pion (v~ — [~ + 7;, where

/ 1s a muon or an electron) is really a scatfering event in which the incident
quarks happen to be bound together:

PNy

* This 1sn’t the end of the story; there is a small Coulomb correction, (due to the attraction
of the electron and proton in the final state); there is presumably some ¢° dependence in the form
factors even near g° = 0; and there may yet be inaccuracies in the experimental data. In particular,
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In this sense it is a weak-interaction analog to positronium decay (¢" + e — v
+ ) or 7. decay (¢ + ¢ — g + g)—electromagnetic and strong processes, re-
spectively. We could analyze it this way, following the methods of Example 7.8
stuck with a factor of |{(0)}?, and at this stage we have no idea what the wave
function () of the quarks within a pion looks like. Given that such a calculation
will carry this undetermined multiplicative factor anyway, it is simpler to proceed
as follows.

Redraw the Feynman diagram, with a blob to represent the coupling of
T to W

P,

N

w

P3
I

|

A

i

?ﬂ

Pion

We may not know how the W couples to the pion, but we do know how it
couples to the leptons, so the amplitude must have the general form

gn
8(Mycy
where F* is a “form factor” describing the @ — W blob. It has to be a four-
vector, to contract with the v, in the lepton factor. But the pion has spin zero;
the only vector associated with it, out of which we might construct F*, 18 1ts
momentum, p*.* (I won’t bother with a subscript on the pion’s momentum:
p = p;.) So F* must be some scalar quantity times p*:

F* = f.p* (10.73)

(In principle, f; is a function of p*—the only available scalar—but since the pion
is on its mass shell, p? = m2c? and hence f, is simply a fixed number. We call it
the “pion decay constant™.)t

M= [@(3)v. (1 — Y (2)IF* (10.72)

the neutron lifetime is very sensitive to uncertainties in ¢,. But we are within 6% of the experimental
result, and it is time to move on.

* Notice that we introduce the (weak) pion form factor at the level of M, whereas for the
(electromagnetic) proton form factors and structure functions we waited until the {|M*) stage. The
reason is that the proton has a spin, and we would have to include that in the roster of available
vectors; it is only after we have averaged over the spins that the list reduces to two, and the problem
becomes manageable. The pion, however, has no spin, so we can afford to introduce the form factor
directly in J#, where it is only a vector quantity, instead of a tensor.

+ The pion decay constant evidently contains the factor of |¢(0)|? alluded to earlier; we have
simply wrapped our ignorance in a more convenient package. (See Problem 10. 10.)
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Summing over the outgoing spins, we have

qmpy = [ (-2 )Tza.m Triv(l =)o (l = ¥ + mio)]

r!

L8 \My
I 2. VT

== Ld 2Ap-+ . — . 74
2 [ﬁ( M C) ][ (p+p2)Pp3) — P(D2-D3)] (10.74)

[the trace was already calculated in equation (10.9)]. But p = p, + ps, so
pP'P2=Dpaps, P D3=mic’ + p-ps (10.75)
and PP=pi+p5+2p:-py, sothat 2py-p; = (m:—mhc?  (10.76)

4
Thus (MPy = ( bw ) 2m2(m2 — m?) (10.77)
2My

(a constant).
The decay rate is given by the standard formula (6.32):

_ ll)2|
I'= 81rhm2c<| ) (10.78)

and the outgoing momentum is [see eq. (6.31) or Problem 3.16]

C
P2l = o (10.79)
f > g \'
Thus I = whrmg' ( ad ) mim?: — m})? (10.80)
x "]MW

Of course, without knowing the decay constant, f,, we cannot calculate the pion
lifetime.* Nevertheless, we are able to determine the branching ratio

Mo~ —e +v)  mym; — myy _
_—c Ty ¢ = 1.28 X 1074 (10.81)
I'(ewm > pu +v ) mi(m? — m2y?
The experimental number is 1.23 + 0.02 X 107, At first glance this is a very

surprising result, for it predicts (correctly) that the pion prefers the muon mode,
in spite of the fact that the electron is much lighter. Phase space considerations
favor decays for which the mass decrease is as large as possible, and unless some
conservation law intervenes, we ordinarily find that the lightest final state is the
most common one. Pion decay is the notorious exception, and it calls for some
special dynamical explanation. A clue is suggested by equation (10.80): Notice
that if the electron were massless, the 7~ — ¢~ + ¥, mode would be forbidden
completely. Can we understand this limiting case? Yes. The pion has spin 0, so
the electron and the antineutrino must emerge with opposite spins, and hence
equal helicities:

* It is a rather striking fact that if you put in f, = m,c (or, better yet, m,c cos 8¢) you come
out very close to the 7~ — u~ + y, lifetime, but | know of no persuasive theoretical justification for
this ansatz.
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The antineutrino is always right-handed, so the electron must be right-handed
as well. But if the electron were truly massless, then (like the neutrino) it would
only exist as a left-handed particle. More precisely, the 1 — ~° in the weak vertex
factor would couple only to left-handed electrons, just as it couples only to left-
handed neutrinos (see Problem 10.11). That’s why if the electron were massless,
the decay =~ — € + 7, could not occur at all, and why (the physical electron
being very close to massless) the decay i$ so heavily suppressed.

10.5 CHARGED WEAK INTERACTIONS OF QUARKS

In the case of leptons, the coupling to W™ takes place strictly within a particular

Thatis, e — v, + W, u~ — v, + W, 17—y, + W7, but there is no cross-
generational coupling, of the form ¢ — v, + W, for example. This observation,
in fact, is enshrined in the laws of conservation of electron number, muon num-
ber, and tau number. The coupling of W to quarks is not quite so simple, for
although the generation structure is similar

(u) (c) (I) (quark generation
d)’ NE b qu generations)

the weak interactions do not strictly respect their separate identities. There are,
to be sure, interactions of the form d — u + W~ (the process that underlies
neutron decay, n — p + e + ,), but there exist as well cross-generational cou-
plings, such as s — « + W~ (seen, for example, in the decay A — p + e + v,).
Indeed, if this were not the case, we would have three absolute “flavor-conser-
vation”’ laws: conservation of ‘“‘upness-plus-downness,” ‘“‘charm-plus-strange-
ness,” and “truth-plus-beauty”’—analogous to the three lepton number conser-
vation laws. As a result, the lightest strange particle (K~) would be absolutely
stable, and so would the B meson (the lightest beautiful particle); our world
would be a quite different place.

In 1963 (when u, d, and s were the only quarks known) Cabibbo' suggested
that the d — u + W~ vertex carries a factor of cos fc, whereas s — u + W~
carries a factor of sin 8c; apart from that they are identical to the leptonic cou-

I A TAE 4 D

pliﬁgs 1€g. L 1V.0)].

) v, v, )
, (lepton generations)
u T

— e —— — e w— —
w- w-

_igw .
“1 — 4°) cos 8 “1 — ~°)sin 6 10.82
V2 Y Y) c V2 (1 — ) c ( )
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The strangeness-changing process (s — u + W) is conspicuously weaker than
the strangeness-conserving one (d — u + W), so evidently the “Cabibbo angle”
0 is rather small. Experimentally

6c=13.1° (10.83)

The weak Interactions almost respect quark generations . . . but not guite.

EXAMPLE 10.2 Leptonic Decays
Consider the decay K~ — [~ + 7, where / is an electron or a muon. This
is the analog to n~ decay (Sect. 10.4), but now the quark vertex is s
+ u— W7, instead of d + # — W~. From equation (10.80) we have

2 4

The coupling strength is presumably the same as before, except that where
J= contained a factor of cos 0, fx carries a factor of sin 6. Accordingly,

'K~ =1 "+w») ., (m,,)3(m§< — m;?-)z
T =1 +5) 2 ) 2 =z (10:84)

Putting in the appropriate numbers, we get 0.96 for the muon mode
(/ = p) and 0.19 for the electron mode (/ = €). [The experimental ratios
are 1.34 and 0.26, respectively, corresponding to a Cabibbo angle of 15.4°.
These decays are pure axial-vector, and as we discovered earlier—see eq.
(10.67)—perfect agreement is not to be expected.]

For obvious reasons, processes of the kind considered in Example 10.2 are
called /eptonic decays. There also exist semileptonic decays, such as 7~ — =«°
+e + v, K°— 7" + u~ + v, (Fig. 10.3a), or for that matter the beta decay of
the neutron: n — p™ + ¢~ + ¥,. Finally, there are nonleptonic weak interactions,
such as K~ — «° + 7~ or A — p* + 7~ (Fig. 10.3b). Generally speaking, the
latter are the hardest to analyze, because there is strong interaction contamination
at both ends of the W line. We shall not consider nonleptonic weak processes
in this book.®

XAMPLE 10.3 Semileptonic Decays

In the case of neutron decay (n — p + e + »,) the basic quark process is
d — u + W (with two spectators). However, there are two d quarks in
the neutron, and either one could couple to the W; the net amplitude for
the process is the sum. The simplest way to keep track of the numbers
is to use the quark wave functions of Chapter 5, Section 5.9: the flavor
states ¢,, for instance, give n = (ud — du)d/ \/5, from which (with d — u)
we get [(uu — uu)d + (ud — du)u]/\/i = (ud — du)u/\/i = p. The overall
coeflicient is then simply cos 6. (as I claimed at the end of Section 10.3).
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{a) {b)
Figure 10.3 (a) A typical semileptonic decay (K° — 7" + u~ + 7). (b) A typical nonleptonic
weak decay (A — p* + 7).

By contrast, in the decay 30 — 3+ + e + v,, the quark process is still
d — u, but here 2° = [(us — su)d + (ds — sd)u)/2 — [(us — sw)u + (us
— swu)/2 = (us — swu = VEE*, and hence the amplitude carries a factor
of V2 cos 6-.* The decay rate is given by equation (10.63), which reduces
(in the case a > 1) to the form
1 gw )“
I'= Amc?y X2
307k (2ch2 (Amc?)

where Am is the baryon mass decrease and X is the Cabibbo factor
(cos 8¢, for neutron decay; V2 cos 8¢, for 2% — =t + e + 1,; etc.). I'll let
you work out the numbers for yourself (Problem 10.13).%

Cabibbo’s theory was very successful in correlating dozens of decay rates,
but there remained a disturbing problem: this picture allowed the K % to decay
into a pu*u~ pair (see Fig. 10.4). The amplitude should be proportional to
sin 8. cos 8., but the calculated rate is far greater than the experimental lim-
its allow. A solution to this paradox was proposed in 1970 by Glashow, Iliop-
oulos, and Maiani (GIM).> They introduced a fourth quark (¢)—remember,
this was four years before the “November Revolution” produced the first direct
experimental evidence for charm—whose couplings to s and d carry factors of

PSS LWIE Y Lan Y AU

cos - and —sin §, respectively:

N\ NS

—_— > — - ——— — -

~1g, . 8w
#(1 — °)—sin 4 “(1 — ¥°) cos 6 (10.85)
" 0% v ) a2 0% Y c

* Actually, there is a technical difference here: The active quark is bound to the spectator in
a spin singlet state. Fortunately, this does not affect the lifetime.

t This procedure includes only the valence quarks, and hence is insensitive to the noncon-
servation of the axial coupling. As we found in equation (10.68), PCAC can lead to a correction of
nearly 50%, so one does not expect fine precision in the lifetimes. Cabibbo'’s theory included a way
of calculating the axial couplings, but I shall not go into that here.
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KO ={ds) Fignre 104 The decay K® — ut + p~.

In the “GIM mechanism,” the diagram in Fig. 10.4 is canceled by the corre-
sponding diagram with ¢ in place of u (Fig. 10.5), for this time the amplitude is
proportional to —sin ¢ cos §..*

The Cabibbo-GIM scheme invites a simple interpretation: Instead of the
physical quarks d and s, the “correct” states to use in the weak interactions are
d’ and s, given by

d’ = d cos ¢ + s sin O, s’ = —dsin ¢ + 5 cos O, (10.86)

(dr) _ ( c.os fc sin BC)(d) (10.87)
s’ —sin O cos O:-/\s

The W’s couple to the “Cabibbo-rotated” states

@) )

vV V
in exactly the same way that they couple to lepton pairs, ( e) and ( “) : their
€ ®

couplings to the physical particles (states of specific flavor) are then given by

() Cressoc b vamad () Cavmoss s
d’ d cos 8¢ + s sin 0./ s’ —d sin 0¢ + 5 cos O

That is, d — u + W~ carries a factor cos 8., s — u+ W a factor sin 6., and
so on.t

or, in matrix form

* The cancellation is not perfect, because the mass of the ¢ is not the same as the mass of the
u. However, these virtual particles are so far off the mass shell that both propagators are essentially
just igfg’. (In calculating J we shall be integrating over the one remaining internal momentum
which is not fixed by the conservation laws. This is essentially the momentum “circulating around
the loop.” Because of the two W propagators, the main contribution will come in the region of the
W mass, which is so much greater than the ¢ or » mass that the latter can, to good approximation,
be neglected. Actually, the decay does oceur, it’s just extremely slow, and if you include the effects
of u/c mass difference, the calculation is consistent with the observed rate.)

1 It is purely conventional that we “rotate” 4 and s, rather than u and ¢; we could accomplish
the same purpose by introducing ¥’ = u cos f- — ¢ sin bcand ¢’ = usin ¢ + ¢ cos . Incidentally,
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u .u/
Vu
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w4 Yw
i i
! [
c
d § Figure 10.5 The GIM mechanism. [This
. —~ » chagram cancels (10.4). Note the virtual ¢
KO ={ds) quark replacing the u.]

At the time, the GIM mechanism seemed a little extravagant—introducing
a new quark just to fix a rather esoteric technical defect in a largely untested
theory. But the skeptics were silenced by the discovery of the y(c¢) in 1974.
Meanwhile, Kobayashi and Maskawa* had generalized the Cabibbo-GIM scheme
to handle three generations of quarks.* The “weak interaction generations,”

d s b’
are related to the physical quark states by the Kobayashi-Maskawa matrix:

u c !
( ), ( ), ( ) (weak interaction quark generations) (10.88)

d’ Uud Uus Uub d
s = Ucd U U S (1089)
b ! Utd Uts Utb b

where U,,, for example, specifies the coupling of u to d(d — u + W™). There
are nine entries in the KM matrix, but they are not all independent (see Problem
10.14). U can be reduced to a kind of “canonical form,” in which there remain
just three “generalized Cabibbo angles,” (6,, #,, 83) and one phase factor (8):°

2 51€3 5183
U= —§1C2 C1CC3 — 5283 e’ C1C283 + 5503 e’ (1090)
\ 5152 (1505 + Cr81 Cla Ci1838: — G0 clé

Here ¢; stands for cos §;, and s; for sin §,. If 6, = 6, = 0, the third generation

does not mix with the other two, and We Tecover the ongmal Cabibbo-GIM

1 —_ MtrATro £, ~ ~1_ -
picture, with 8, = 8.. However, ther namely, the ob-

you might ask why a similar rotation does not occur in the /epron sector. The answer is, it already
has—or rather, we'd never notice it if it did. The point is that all neutrinos are massless, and any
linear combination of them is still massless. So there is no “tag” to identify the “unrotated” states,
and what we call »,, for example, is “the neutrino paired with the ¢ in weak interactions,” just as d’
1s “the quark paired with i in weak interactions.”

* It is interesting to note that Kobayashi and Maskawa proposed a third quark generation
before the second was complete, and long before there was any experimental evidence for a third
generation of leptons or quarks. They were motivated by a desire to explain CP violation within the
Cabibbo-GIM scheme. It turned out that for this purpose they needed a complex number in the
“rotation” matrix (10.87), but such a term could always be eliminated, by suitable redefinition of
the quark phases, unless they went to a 3 X 3 matrix, and hence to three generations. It remains to
be seen whether the 4 term in the KM matrix is the actual source of CP violation in nature, but the
precocious prediction of three generations has, of course, been richly confirmed.
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served decay of the B~(bu) meson) for some third-generation mixing, although
it must be fairly small in order to account for the success of the original Cabibbo-
GIM scheme. The Standard Model offers no insight into the KM matrix (indeed,
this is one of the most conspicuous weaknesses of the Standard Model); for the
moment, we simply take the values of the matrix elements from experiment.
There is a small industry devoted to the accurate measurement of these param-
eters. So far, only their magnitudes are known with any precision:®

0.9705 t0 0.9770 021 t0o0.24 0. t00.014
U= 021 10024 0971100973 0.036t0 0.070 | (10.91)
0. 100024 0.036100.069 0.997 to 0.999

The third generation mixing (the off-diagonal elements in the third row and
column) turns out to be very small indeed, as we learned from the surprisingly
long lifetime of the B meson (107 sec).

10.6 NEUTRAL WEAK INTERACTIONS

In 1958, Bludman’ suggested that there might exist neutral weak interactions,
mediated by an uncharged partner of the W’s—the Z 0,

Here fstands for any lepton or any quark. Notice, however, that the same Fermion
comes out as went in (just as in QED and QCD). We do not allow couplings of
the form u~ — e + Z°, for example (this would violate conservation of muon
and electron number), nor of the form s — d + Z° (such a strangeness-changing
neutral process would lead to K® — u* + u~, which, as I have already remarked,
is strongly suppressed).* In 1961, Glashow® published the first paper on unifi-
cation of weak and electromagnetic interactions; his theory required the existence

* In the case of neutral processes, it doesn’t matter whether you use the physical states (d, s.
b) or the “Cabibbo-rotated” states (&, s, b'). Schematicaily, the argument runs as follows:

gives M ~ d'd’ = dd cos® O + §s sin? B¢ + (ds + §d) sin B¢ cos O¢

gives M ~ §'s' = dd sin® B + §s cos? B¢ — (ds + 5d) sin 8¢ cos 8¢

So the sum of the two is M ~ d'd’ + §'s’ = dd + §5. Thus the ner amplitude, once both diagrams
are combined, is the same whichever states we use. (The same argument generalizes to three geperations.
as long as the KM matrix is unitary.)
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of neutral weak processes, and specified their structure (see Sect. 10.7). In 1967,
Weinberg and Salam® formulated Glashow’s model as a “spontaneously broken
gauge theory,” and in 1971, ’t Hooft'® demonstrated that the Glashow—Weinberg-
Salam scheme is renormalizable. Thus there were increasingly persuasive theo-
retical reasons for thinking that neutral weak interactions occur in nature, but
for a long time there were no experimental data to support this hope. Finally,
in 1973,"" a bubble chamber photograph at CERN (Fig. 10.6) revealed the first
convincing evidence for the reaction

-
v, te—vy, te

suggesting mediation by the Z:

The same series of experiments also witnessed the corresponding neutrino-quark
process, in the form of inclusive neutrino-nucleon scattering:

v, *+N—ypy, +X
v,t N—py, + X
Their cross sections were about a third as large as those of the related charged

events (v, + N— p* + Xand v, + N — u~ + X), indicating that this was indeed
a new kind of weak interaction, and not simply a higher-order process

Figure 10.6 The first picture of a neutral weak process (v, + ¢~ — v, + ¢7). The neutrino
enters from the left (leaving no track), and strikes an electron, which moves off horizontally
to the right, emitting two photons (which show up in the picture only when they subse-
quently produce electron-positron pairs) as it slows down and spirals inward in the su-
perimposed magnetic field. (Photo courtesy CERN.)
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(which would yield a far smaller cross section). The CERN results came as wel-
come encouragement to electroweak theorists, who had been out on a limb now
for several years. Meanwhile a series of deep inelastic neutrino scattering exper-
iments was conducted (also at CERN) that confirmed not only the basic structure
of charged and neutral weak interactions, but also the quark-parton model itself—
which carries over directly from electron-nucleon scattering, (an electromagnetic
process) to neutrino-nucleon scattering (a weak process).'?

As we have seen, the coupling of quarks and leptons to W+ is a universal
“V-A” form; the vertex factor is always

—igw 5
(1 =)
2V2
(It is true that the axial coupling to composite structures, such as the proton, is
modified, but that is a result of strong interaction contamination—the underlying
quark process is pure V'=A4). The coupling of the Z° is not so simple:
_igz
2
where g; is the neutral coupling constant, and the coefficients c{/ and cf; depend
on the particular quark or lepton (f) involved. In the GWS model, a/l these
numbers are determined by a single fundamental parameter 6,,, called the “weak
mixing angle” (or “Weinberg angle™). See Table 10.1. Moreover, the weak cou-
pling constants are related to the basic unit of electric charge:

(W* vertex factor) (10.92)

Yl — ) (Z° vertex factor) (10.93)

P

&e 8e
wo o ’ == — 10.94
& = sin 8, 527 Gn 8,, cos 8, ( )

where g, is the electromagnetic coupling constant (in appropriate units, the charge

TABLE 10.1 NEUTRAL VECTOR AND
AXIAL VECTOR
COUPLINGS
IN THE GWS MODEL

f Cy Ca

1 1

Ve, Vyy ¥y 3 3
e w T —3+ 2sinf, ~3
1 4 1

u,ct ‘2‘_35"12 B 3
12 gin2 1

ds b —3+3sin" 6, -3
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of the positron). You’ll see where these predictions come from in the following
section. The Standard Model provides no way to calculate 8, itself; like the KM
matrix, its value is taken from experiment:

0, = 28.7° (sin? 6,, = 0.23) (10.95)

Derivation of 8,, stands as a major challenge for any theory going beyond the
Standard Model. Meanwhile, the Z° propagator is [eq. (10.3)]

—i(g,, — .4, /M3’
z(g,;2 _q;jv%/c / z7) (10.96)

In the typical case g> <€ M%c?, it reduces to

18y
10.97
(M0 {1057
Finally, the W=* and Z° masses are related by
My = Mzcos 8, (10.98)

Equations (10.93)-(10.98) are the basic predictions of the GWS model. Given
the weak mixing angle, we can now calculate the W and Z masses (see Problem
10.17). Their discovery by Rubbia at CERN in 1983, at My = 82 GeV/c? and
M, = 92 GeV/c? (as predicted) was persuasive evidence for the GWS model. '3

EXAMPLE 10.4 Elastic Neutrino-Electron Scattering
In Example 10.1 we calculated the cross section for the W-mediated process
v, + e = v, + p. We now consider the related Z°-mediated reaction
v, te—y, te

Py

The amplitude is

p

_ &
8(M zc)?

and hence

M [Z3)y"(1 — Y uDIE@Y v — ca¥)u(2))  (10.99)

4
(M = 2(4;;226) Tr{v(1 — ¥)pv'(1 —¥) 83}

X Trivdey = ey ) + meyy ey — cay’ W + me)}

1 a

=3 ( Ajzc) {(cv + c) (D1 P2)(D3 - a)

+ (v — c)(p1 PN P2+ p3) — (M) (¢t — ch)(p: - p3)}  (10.100)
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Figure 10.7 Elastic neutrino-electron scattering in the CAf.

where m is the mass of the electron, and ¢ and ¢4 are the neutral weak
couplings for the electron. If we now go to the CM frame, and ignore the
electron mass (i.e., set m — 0), we find

. ) 4 )
(M = Z(MZCZ) [(CV + ¢4 + (cy — c4)? cos? 5] (10.101)
where E is the electron (or neutrino) energy, and 6 is the scattering angle
(Fig. 10.7). The differential scattering cross section [eq. (6.42)] is

5‘-75=2(£‘5)2(—g2——)4152[( + e + (cv — ca)? 49] (10.102)
P - 4MZCZ Cy Cq Cy Cyq)” COS 3 .

and the total cross section (integrating over all angles) is

2 g \
o= g (hC)?'(W) EZ(C%/ + C,24 + cpcy) (10.103)

Putting in the GWS values for ¢, and ¢, (from Table 10.1), and comparing
the result of Example 10.1 [eq. (10.14)], we find that for energies substan-
tially above the muon mass

o(v, +te —vy,+te) 1 .

4
— 1 _Gin?0,+2sin0, =009  (10.104
O'(V,u +e—v,t+ ,U,_) 4 0 3 o ’ ( )

I B Ay

The current experimental value'* is 0.08, which, given the 10% uncertainties
in the measurements, as well as the (somewhat smaller) uncertainty in 6,
is excellent agreement.

You might well ask why it took so long for neutral weak interactions to

be detected in the laboratory; after all, 15 years separate Bludman’s original
speculations from the definitive experiments at CERN. The reason is that most
neutral processes are “masked”” by competing electromagnetic ones. For example,
et + e — ut + u can occur either by a virtual Z° or by a virtual v (Fig. 10.8);
at low energies the photon mechanism overwhelmingly dominates.* That’s why

* [t is interesting to note, however, that there is a weak contamination in every electromagnetic

process, since the Z° couples to everything the v does (and then some). For example, the Coulomb
potential binding the electrons to the nucleus in an atom is slightly modified by Z° exchange, and
this is observable in atomic spectra. Similarly, there is a weak contribution to electron-proton scattering.
Although these effects are minute, they carry a tell-tale signature: parity violation. (See ref. 15.)
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rcontributions to e* + ¢ — ut + u”.

neutrino scattering was originally used to confirm the existence of neutral weak
interactions; neutrinos have no electromagnetic coupling, so the weak effects are
not obscured. But neutrino experiments are notoriously difficult; hence the long
delay. An alternative would be to work at extremely high energies—specifically,
in the neighborhood of the Z° mass, where the denominator of the Z® propagator
1s small, and the “weak” interaction is correspondingly large. In the early days
it was hard to estimate 0,,, and hence the Z® mass was quite uncertain. But by
the late seventies a variety of experimental data pointed to 8,, ~ 29°, and hence
to M, = 90 GeV/c? (see Problem 10.17). This prediction was stunningly con-
firmed in 1983,'® and inspired a major effort to build electron-positron colliders
that would operate at the Z° peak. [Two such facilities, the Stanford Linear
Collider (SLC) at SLAC, and LEP at CERN, are presently under construction,
and scheduled to begin operation in 1987 and 1989, respectively.]

EXAMPLE 10.5 Electron-Positron Scattering Near the Z° Pole
Consider the process e + e~ — f+ f(Fig. 10.9), where fis any quark or
lepton.* This time we shall not use the approximate form of the Z° prop-
agator [eq. (10.97)], for we are interested precisely in the regime g? ~
(M zc)*. The amplitude is
g:

— _ ~ et .5
M 2" = 0D [(Hy(cv — car’ v (3)]

QﬂQV -— » e 5

X (g vy )[0(2)7 (c¥ — cay)yu(1)] (10.105)
Y (M)

where ¢ = p; + p, = p; + p4. Since we are working in the vicinity of 90

GeV, we can afford to ignore the lepton and quark masses.t In this case

the second term in the propagator contributes nothing, for g, contracts

N
with * to give

I |
* Not an electron, however, for then we would have to include the diagram

t 1 assume my <€ Mz, which is safe unless perhaps fis a top quark. All we know at present is
that m, > 23 GeV.
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e e
/\ Figure 10.9 Electron-positron scattering

3 », near the Z° pole.

#(Dglcy — cay’ Y (3)

but g = g3 + g4, and #(4) g4 = 0 (the Dirac equation (7.94) for a massless
particle), and

picy — ey (3) = (cv + cy)psv3) = 0

for the same reason. Thus

_ g: o s
M= Aa® — Mo [i2(4)y*(ch — v’ w(3)]
X [DQ)yc§ — &y )u(1)] (10.106)

and it follows that

2 2
ity = [z | il — v ed — i)

X Tr{vcy — &V ) Prviles — civ’) pa} (10.107)

Now, the first trace is

(c} + cDIp4ps + pips — &°(p3 - pa)] — 2icvcae” " ps,pa, (10.108)

and there is the correspondmg expression for the second trace, so we obtain

(M) = J ([ + (NS + (€Y

2 Lg? (M cy?
X [(p1 P32 pa) + (D1 Pa)(D2* P3)]
+ dclcheicSlpy - p)p2+ P = (prpeXp2pa)l} (10.109)
In the CM frame this reduces to
|JW> gk 12{[(CJ Y + (] )‘J[(C Y + (c2}(1 + cos® §)
[(2E)2 agcry | e+ @rll@r e
- 8c£c’chA cos 0} (10.110)

where E is the energy of each particle and 6 is the scattering angle. The
differential scattering cross section (6.42) is therefore

do hcg’E 2
*-(; ) (Il + P + (7K + cos'

— 8chchccs cos 0} (10.111)
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and the total cross section is

1 ( heglE \2
= — g5 ) () + PN + (] (10.112)
7 3 AIQEY — (o) (O Herll@r e ao

As it stands, o blows up at the Z° pole—that is, when the total energy
(2E) hits the value M c? (just right to put the Z° on its mass shell). The
problem is that we have treated the Z° as a stable particle, which it is not.
It has a finite lifetime 7 (not yet accprately measured), which has the effect
of “smearing out” its mass. We can account for this by modifying the

propagator'®

1 1
g — (Mg g% — (Mz) + ihMTy

(10.113)

where I'; is the decay rate (I'; = 1/7,). With this adjustment, the cross
section becomes
- (heglEY UG + (DI + (chY’]
Br  [REY — (M + (hM T )

(10.114)

Because hI'y; <€ Mc?, the correction for finite Z° lifetime is negligible
except in the immediate vicinity of the Z° pole, where it has the effect of
softening the infinite spike.

In Chapter 8 we calculated the cross section for the same process
when mediated by a photon [eq. (8.6)]:

_ (hegdy’ Q'Y
77 T 48x E?

(where Q7 is the charge of £ in units of ¢). Thus the ratio of weak to
electromagnetic rates in (for example) muon production, is

alete” = Z° — ptu) { 1 —2sin? 49, + 4 sin* Bw)z}
(sin 8,, cos 8,

(10.115)

ale’e” -y — utp’)
E4
QREY — (Mzc)*P + (hTzMc?Y

X [ (10.116)
The factor in curly brackets is approximately 2, if we use the current value
of the weak mixing angle (10.95). Substantially below the Z° pole 2F <
Myc?), then,

4
5'—5;2( E ) (10.117)

2
Gy Mzc

and the electromagnetic route dominates (at 2E = 1M,c?, for instance,
the weak contribution is less than 1%). But right on the Z° pole 2F =

Mzcz)
oy |1 Mzcz)
- 10.118

g,y 8 ( hrz ( 0 )

12
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Figure 10.10 Electron-positron scattering in the neighborhood of the Z° pole.

The lifetime of the Z° is easily estimated (Problem 10.20); using AT, =
2.5 GeV, we obtain ¢,/0., = 200. At the Z° pole, therefore, the weak
mechanism is favored, by a factor of well over 100, and possibly by as
much as 1000.* (See Fig. 10.10.)

10.7 ELECTROWEAK UNIFICATION

10.7.1 Chiral Fermion States

All the cards are now on the table;} it remains only to explain where the GWS
parameters in Table 10.1 and equations (10.94) and (10.98) come from. Glashow’s
original aim was to unify the weak and electromagnetic interactions, to combine

* Equally interesting is the electromagnetic-weak “‘interference” that occurs when the two
amplitudes are combined: |, + Mz = |, + | M + 2 Re(i, M;). We have calculated |M)°
and (in Chap. 8) |#,|%, but the cross term provides a sensitive test of the GWS theory, even at energies
substantially below the Z° pole. (See Halzen and Martin, ref. 12, Sect. 13.6, and ref. 15.) Indeed, it
was the success of the electroweak interference experiments in 1978 that convinced most theorists
that the GWS model is correct. For a contemporary account, see Physics Today, September 1978,
p. 17.

t I'have not discussed the couplings of W’sand Z%s to one another (or of #’s to the photon).
The rules are similar to those for gluon-gluon coupling in QCD, and are listed in Appendix D.
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them into a single theoretical system, in which they would appear not as unrelated
phenomena, but rather as different manifestations of one fundamental “elec-
troweak” interaction. This was a bold proposition, in 1961."7 In the first place,
there was the enormous disparity in strength between weak and electromagnetic
forces. However, as Glashow and others recognized, this could be accounted for
if the weak interactions were mediated by extremely massive particles. Of course,
this immediately begs the second question: If it’s really all one basic interaction,
how come the electromagnetic mediator (y) is massless, when the weak mediators
(W* and Z°) are so heavy? Glashow had no particularly good answer (“Tt is a
stumbling block we must overlook,” he said coyly). The solution was provided
by Weinberg and Salam, in 1967 (see refs. 8 and 9) in the form of the “Higgs
mechanism” (Chapter 11). Finally, there is a structural difference between the
electromagnetic and weak vertex factors, which at first glance would seem to
preclude any possibility of unification: The former are purely vectorial (y*),
whereas the latter contain vector and axial vector parts. In particular, the W=
coupling is “maximally” mixed V-4 in character (v*(1 — ¥°)).
This last difficulty is overcome by the ingenious device of absorbing the
matrix (1 — v°) into the particle spinor itself. Specifically, we define
5
u(p) == up) (10.119)

The subscript (L) stands for “left-handed,” and is supposed to make you think
“helicity —1.” However, this is somewhat misleading, since #;, is not, in general,
a helicity eigenstate. In fact, as you can easily show (see Problem 10.23)

c(p-0)
2
vup) = | £ me cp-o) | HP (10.120)
0 2
E—mc

If the particle in question is massless, then E = |p|c, and

v u(p) = (P Z)u(p) (10.121)
o 0O

where z = ( ) (10.122)
0 o

as before. Recall [eq. (7.48)] that 2/2Z is the spin matrix for a Dirac particle,
and hence (p - Z) is the helicity, with eigenvalues +1. Accordingly
“p) [0 if #(p) carries helicity + 1)

F i ol PP & TS TN
(tor m = U only)

2=
—~
p——

1 (p), if 4(p) carries helicity — 1)
p (10.123)

|
More generally, 1(1 — v°) functions as a “projection operator,” picking out the
helicity —1 component of w(p). On the other hand, if the particle is not massless,
it is only in the ultrarelativistic regime (E > mc?) that equation (10.121) holds
(approximately), and hence only in this limit that #; (as defined by equation
(10.119) carries helicity —1. Nevertheless, everybody calls u; a “left-handed”
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TABLE 10.2 CHIRAL SPINORS

Particles

Antiparticles

uy = 3(1— y)u
ug = 31 + v)u
i, = #3(1 + +°)
tig = @5(1 — %)

v =31 +¥°W
v = 51— y°w
.= 03(1 - %)
Ur = U3(1 + v%)

10/WEAK INTERACTIONS

Rand L correspond to helicity +1 and —1 if m =
0, and approximately so if E » mc?,

state, and I shall stick to the customary language.* Meanwhile, for an antiparticle
equation (10.121) reads

Yo(p) = —(5-Zw(p)  (fm=0) (10.124)
(see Problem 10.23), and for this reason we define
(1+%%)
v(p) = 5 v(p) (10.125)

The corresponding “right-handed’ spinors are

(1 + 7% _(-%)

up(p) = > u(p), VR(p) = 5 v(p) (10.126)
As for the adjoint spinors, we have
_ 1 —+° 1+ _(+4%°
i = uly® = m‘%y" — ity 27 )= 7! 27 ) (10.127)

[Recall that v° is Hermitian (v = ¥°), and it anticommutes with v* (y*y° =
—v°4*).] Similarly

(=) - _ (1 —%) - -1+
=P — =y—" =0 — 10.128
Uy =70 > 5 Ur = U D ; V=10 > ( )
We call these various splnors (summanzed in Table 10.2) “chiral” fermion states

PR VGRS PR | [ M. | o P R, P I,
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[ emphasize that all this is only notation and terminology; it is useful because
it allows us to recast the weak and electromagnetic interactions in a form that
facilitates their unification. Consider, to begin with, the coupling of an electron

and a neutrino to the W~ (as it occurs, say, in inverse beta decay, Example 10.1):

N>

_——— ——

* Please understand that equation (10.119) is a definition of u;—nobody’s arguing about that,
I’'m only worrying about the potentially misleading name. “Left-handed” does not mean “helicity
—1,” except in cases where the particle’s mass is negligible.
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The contribution to /M from this vertex is given by

5
i = i E=2L)e (10.129)
\ L /
(here e and v stand for the particle spinors; for a while we need to keep careful
track of the different particle species, and u,, u,,, etc. just gets too cumbersome).
This quantity is called the (negatively charged) weak ‘“‘current”; as we shall see,
it plays a role somewhat analogous to the electric current in QED. Now

1 _75 2 _l B {5 s 1_75
( 5 )—4[1 2y +('y)]—( 5 ) (10.130)
— A5 5
and 7,‘(1 2“’)=(1+27)7# (10.131)
— a5 5 s
SO ’Yﬂ(l 27)=(1;7)7n(1 27) (10.132)

This may not look like much of an improvement, but it enables us to rewrite
equation (10.129) more neatly, in terms of the chiral spinors:

ji = ny.er (10.133)

The weak vertex factor is now purely vectorial—but it couples only Jefi-
handed electrons to left-handed neutrinos. In the latter sense it is still structurally
different from the fundamental vertex in QED; however, we can play a similar
game there, too. Notice that

1-%° 1+7°
u=( 27 )u+( 27)H=UL+IIR (10134)

(similarly # = #; + ug), so the electromagnetic “current” can itself be written
in terms of chiral spinors:

Ji" = —ev.e = —(er + er)yfer + er) = —erv.eL — eryer (10.135)

(For future purposes it is best to build in a factor of —1, to account for the
negative charge of the electron). Observe that the “cross terms” vanish:

_ {1 +%° l-l-‘)(5 - 1—75 1 +4°
eL‘erR=e( 5 )*y“( 3 )e=efy#( 3 )( 5 )e (10.136)

but A=) 1+y)=1-()P=0 (10.137)

Equations (10.133) and (10.135) are beginning to look like the stuff of which
one might build a unified theory. It is true that the weak current only couples
left-handed states, whereas the electromagnetic current couples both types, but
apart from that they are strikingly similar. So attractive is this formulation that
physicists have come to regard left- and right-handed fermions almost as different
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particles.* In this view, the factor (1 — v°)/2 in the charged weak coupling char-
acterizes the participating particles, rather than the interaction itself: the latter
is vectorial in all cases—strong, electromagnetic, and weak alike.

10.7.2 Weak Isospin and Hypercharge

In addition to the negatively charged weak current

Ve

J; =I’L7#eL ___;Vt_

describing the process ™ — v, + W™, there is also, of course, a positively charged
current

|+ — —
Ju T €Ly e o
W

Ve

representing the process v, — ¢~ + W*. We can express them both in a more
compact notation by introducing the left-handed doublet

XL = (v) (10.138)
e/
and the 2 X 2 matrices
0 1 0 0
t = T =
T (0 0) T (1 0) (10.139)
so that Ji = Xov.mxe (10.140)

The matrices = are linear combinations of the first two Pauli spin matrices [eq.
(4.26)]:

+

== 1"+ ir?) (10.141)

* There is a danger in carrying this foo far. You may find yourself wondering, for example,
whether the left-handed electron necessarily has the same mass as the right-handed electron; or,
noting that no vector interaction can couple a left-handed particle to a right-handed one [see egs.
(10.136) and (10.137)], you may ask how the two “worlds” communicate at all. Both questions are
based on a misunderstanding of #; and ug. The problem is that, useful as it is in describing particle
interactions, handedness is not conserved in the propagation of a free particle (unless its mass is zero).
(Formally, v* does not commute with the free particle Hamiltonian.) In fact, #; and g do not satisfy
the Dirac equation (see Problem 10.24). A particle that starts out left-handed will soon evolve a right-
handed component. (By contrast, helicity is conserved in free-particle propagation.) Only for massless
fermions can left- and right-handed species be considered distinct particles in the full sense of the
word; and, of course, left- and right-handed neutrinos are distinct: as far as we know right-handed
neutrinos do not exist at all.
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(I use the letter 7 here, instead of o, to avoid possible confusion with ordinary
spin.) This is all very reminiscent of isospin, in Chapter 4, Section 4.5, we put
the proton and neutron into a doublet similar to (10.138). Indeed, we could
contemplate a full “weak 1sospin” symmetry, if only there were a third weak

_1(1 0)_
2\0 -1/

L

Ja = Xevdvxe = v — 3evaer (10.142)

current, corresponding to i7°

“Perfect!” (I hear you exclaim.) “There’s the neutral weak current!” Not so fast.
This current only couples /efi-handed particles; in the older language it is pure
V-A, whereas the neutral weak interaction involves right-handed components
as well. But hang on—we’re almost there.

Building on the parallel with 1sospin, we are led to consider a weak analog
of hypercharge (Y),* which is related to electric charge (Q, in units of ¢) and the
third component of isospin (Z°), by the Gell-Mann-Nishijima formula [eq. (4.37)]:

Q=r+1iYy (10.143)
We introduce, then, the “weak hypercharge” current
Y=2jm — 2j3 = —2éry.er — €rv.€L — ViYL (10.144)

This is an invariant construct, as far as weak isospin is concerned, for the latter
does not touch right-handed components at all, and the combination

ery.er ¥ ViYL = XrYuXL

is itself invariant.} The underlying symmetry group is called SU(2); ® U(1);
SU(2); refers to the weak isospin (with a subscript to remind us that it involves
left-handed states only), and U(1) refers to weak hypercharge (involving both
chiralities).

I have developed all this in terms of the electron and its neutrino, but it is
a trivial matter to extend it to the other leptons and quarks. From the left-handed
doublets (Cabibbo-rotated, in the case of the quarks)

Iye\ Iy,u\ f ar C\ s E \
R R R R ¢ R R
€/L M/ § b L
we construct three weak isospin currents
Ju = IXIYATXL (10.146)

and a weak hypercharge current

Jr=2 =20 (10.147)

* You have probably forgotten this word, but hypercharge is essentially the same as strangeness,
only shifted, in the case of baryons, so that the center row of Eightfold Way diagrams will always
carry Y = (. Specifically, Y = S + A, where 4 is the baryon number.

T If you care to think of it this way, what we have done is to combine two weak-isospin
doublets to make an L sotriplet, vier, (vpvr — erer), ervy [analogous to (5. 89)] and an 1sosmglet
(vryr + ezer) [analogons to (5.90)]. The first three go to make the weak isospin currents j* and j*
the last, together with a right-handed piece, makes the weak hypercharge current, ;7.
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where j; is the electric current:

M“

 Qu(u,

/‘-\
+
=1

i) (10.148)

JH

~.
I
—

(summed over the particles in the doublet, with Q; the electric charge).*

10.7.3 Electro-Weak Mixing

Now, the GWS model asserts that the three weak isospin currents couple, with
strength g,,, to a weak isotriplet of intermediate vector bosons, W, whereas the
weak hypercharge current couples with strength g'/2 to an isosinglet intermediate
vector boson, B:

—il:gwj#-W“ + %j{B“] (10.149)

Within this fundamental structure is contained all of electrodynamics and all of
the weak interactions. The arrow denotes a three-vector in weak 1sospin space;
the dot product can be written out explicitly:

Jur WE =gl 4 P2 4 e (10.150)

or, in terms of the charged currents, j* = j} + jj2:
s W= (V2 + (V)5 + i (10.151)
where == (1/V2)W! ¥ iw?) (10.152)

are the wave functions representing the W= particles.

The couplings to W™ can now be read off, from the coefficients of W in
expression (10.149). For example, in the process e — v, + W~ we have j, =
vry.er = vy[(1 — v°)/2]e [see eq. (10.129)], giving a term

—ig1/V2)j W+ = — 7 [Pyl — ¥ el W™ (10.153)

The vertex factor 1s

"8 (1 - 4Y) (10.154)

2V2

which 1s exactly what we started with [eq. (10.5)].

* You might ask what the difference is between weak isospin (and hypercharge) and their
ordinary (“strong’’) counterparts. The question is particularly pertinent when you come to the light

u
quarks: The weak isospin doublet 1s (:;,) , whereas the strong isospin doublet is ( d) . Pretty similar

L
... is there anything to this? Nope. After all, (i) weak isospin applies to leptons as well as quarks
(and to all three quark generations); (ii) weak isospin involves only the /efi-handed chiralities, (all
right-handed states are singlets—i.e., invariant—as far as weak isospin is concerned); (i) weak iso-
doublets are Cabibbo-rotated. To put it plainly, strong isospin and weak isospin have nothing to do
with one another, save for a common mathematical structure (which, for that matter, they share with
many other systems, such as ordinary spin 4) and the (perhaps unfortunate) similarity in their names.
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But the underlying SU(2); ® U(1) symmetry is “broken,” in GWS theory:
The two neutral states, W? and B, “mix,” producing one massless linear com-
bination (the photon), and an orthogonal massive combination (the Z°):

A, = B, cos 8, + W} sin 0,
Z,= —B,sin 6, + W3 cos 8, (10.155)

(You see now why 0, is called the “weak mixing angle.””) In terms of the physical
states (4* and Z*), then, the neutral portion of the electro-weak interaction
(10.149) reads: !

—i[gwjiW“3 + ‘%ji’ B“] = —i{[gw sin 8,3 + 5 cos 0,/ ]A“

2
+ I:gw cos 8,3 — % sin Bwjf]Z“} (10.156)
Of course, we know the electromagnetic coupling; in the present language it is
—ig.ji" A" (10.157)

Meanwhile, from equation (10.147), j¢" = j3 + 1;jX. Evidently consistency of
the unified electro-weak theory with ordinary QED requires

gwsinb, =g’ cosb, =g, (10.158)

The weak and electromagnetic coupling constants are not independent.
There remains the weak coupling to the Z°. Using equations (10.147),
(10.156), and (10.158), we obtain

—igAj} — sin’ 0,.jS) Z* (10.159)

where g = _ 8 (10.160)

" sin 8, cos @,
From expression (10.159) we can pick out the neutral weak couplings. For ex-
ample, the process », — », + Z® comes exclusively from the j3 term; referring
back to equation (10.142), we have

.gz - igz - 1 - 75
—1 5 vy yo)Zt = — B [V‘Y“( 5 )V]Z"

and hence the vector and axial vector couplings [eq. (10.93)] are ¢} = ¢% = 1.
I'll leave it for you to work out the other entries in Table 10.1* (Problem 10.26).

Finally, there is the obvious question: w#y is the underlying SU(22), ® U(1)
symmetry of the electroweak interactions “broken”—why do the B and W*
states “mix”? [eq. (10.155)]—to form the Z° and the photon? If weak and elec-
tromagnetic interactions are, deep down, both manifestations of a single elec-
troweak force, how come the weak mediators (W™* and Z°) are so heavy, while
the electromagnetic mediator (-y) is massless? We shall address these matters in
the next chapter.

* Since the weak mixing angle is undetermined, in the GWS model, there remain in effect
two independent coupling constants (g, and g,,, say, or g, and g,); in this sense it is not a completely
unified theory, but rather an integrated theory of weak and electromagnetic interactions.
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PROBLEMS

10.1.

10.2,

10.3.

104.

10.5.
10.6.

10.7.

10.8.
10.9.

(a) Calculate (I./nF) for v, + e — u~ + », using the more general coupling
Y*(1 + ey®). Check that your answer reduces to equation (10.11) in the case
€= —1. f

4
2( B ) [(1 = (D1 paX D2+ P3)

|
Answer: M2 ==
[ swer: 3 P = 3 (e

spins

+ (1 + 66 + ) pi - )X ps ‘P4)]:|

(b) Let m, = m, = 0, and calculate the CM differential scattering cross section.
Also, find the total cross section.

(¢) If you had accurate experimental data on this reaction, how could you deter-
mine €?

Calculate the lifetime of the 7 lepton. Compare the experimental result. (Assume

that the muon mass can be neglected, in comparison with m,. Do the experimental

data support this approximation?)

Suppose the weak interaction were pure vector (as Fermi supposed). Would you
still get the graph shown in Figure 10.1?

Using the coupling v*(1 + ey’) for n — p + W, but 4*(1 — +°) for the leptons,
calculate the spin-averaged amplitude for neutron beta decay. Show that your
result reduces to equation (10.43) when ¢ = —1,

4
[Answer.‘ (P = %( Aﬁ:, c) [(p1- p2Xp3- pa)(1 — €

+ (D1 paXp2- D)1 + & — (1 — Eymmuci(p; -m)]}
(a) Derive equation (10.55). (b) Derive equation (10.61).

In the text I said that electron energies in neutron decay range up to about
(m, — my)c?. This is not exact, since it ignores the kinetic energy of the proton
and the neutrino. What kinematic configuration gives the maximum electron
energy? Apply conservation of energy and momentum to determine the exact
maximum electron energy.

[Answer: (m2 — m2 + m2c?/2m,,.]

How far off is the approximate answer (give the percent error)?

(a) Integrate equation (10.62) to get equation (10.63).
(b) Approximate as suitable for m, < Am = (m, — m,). Note that m, now drops
out.

Obtain equation (10.65).

Find the minimum de Broglic wavelength (A = A/p) of the W in neutron decay,
and compare it with the diameter of the neutron (~107'3 cm). [4nswer: maximum

N
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10.11.

10.12.

10.13.

10.14.

10.15.
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lpl = 1.18 MeV/c, occurring when p and e emerge back to back, so the minimum
A = 107" cm]

. Analyze =~ decay as a scattering process using the methods of Example 7.8 and

AR e vwa ALAE prA S awAldy HILEP vAAW AN Lid L1 B,

Section 9.3. Calculate the decay rate, and, by comparing your answer with the
one in the text, obtain the formula for £, in terms of Iv,b(O)lz. Assume m, =
My = M.

3

zzn cos Bclxb(O)lz]

[Answer: fi= ah

Show that if mc? < E

wx (')
vu = Nu
0 e:p

where u is a particle spinor satisfying the Dirac equation:
Uy

U= c(p-o)

u
E+me? ™

with E > 0 [eq. (7.36)]). Show therefore that the projection matrix
P =41 £7°
picks out the helicity + 1 component of u:
Z-p(P.u) = +(P.u)

Calculate the ratio of the decay rates K~ — ¢~ + v, and K~ — u~ + »,. The
observed K~ lifetime is 1.2 X 107® sec, and 64% of all K~ particles decay by the
u~ + v, route. Estimate the kaon decay constant fx.

Calculate decay rates for the following processes: (a) 2°— Z* + e+ 7, (b)) 2 —
Ate+v, ©OE —-E+e+v,, (d)A—p+e+7v.,.()Z —n+e+v,
() 2° — =* + e + v,. Assume the coupling is always y*(1 — y°)—that is, ignore
the strong interaction corrections to the axial coupling—but do not forget the

Cabibbo factor. Compare the experimental data, where available.

(a) Show that as long as the KM matrix is unitary (U™! = U"), the GIM mechanism
for eliminating K® — u*u~ works for three (or any number of) generations.

(b) How many independent real parameters are there in the general 3 X 3 unitary
matrix? How about n X n?
We are free to change the phase of each quark wave function (normalization
of u really only determines |N|?; see Problem 7.3), so 2n of these parameters
are arbitrary—or rather, (2n — 1), since changing the phase of a// quark wave
functions by the same amount has no effect on U. Question: Can we thus
reduce the KM matrix to a rea/ matrix (if it is real and unitary, then it 1s
orthogonal: U~ = U).

(c¢) How many independent real parameters are there in the general 3 X 3 (real)
orthogonal matrix? How about n X n?

(d) So, what is the answer? Carn you reduce the KM matrix to real form? How
about for only two generations (n = 2)?

Show that the KM matrix (10.90) is unitary for any (real) numbers 4,, 6,, 8s,
and é.
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10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

10.22,

10.23.
10.24.

10.25.

10.26.

Suppose you started with a 7" meson (td). Given equation (10.91), what is the
most likely sequence of decays? [Answer: Leaving out pions or leptons, we expect
T+ —B°— D" — K*— "]

Using the value of the Fermi constant Gr [eq. (10.40)] and of 8, [eq. (10.95)],
“predict™ the mass of the W= and the Z° in GWS theory. Compare the experi-
mental values.

In Example 10.4 I used muon neutrinos, rather than electron neutrinos. As a
matter of fact, », and v, beams are easier to produce then v, and v,, but there is
also a theoretical reason why v, + ¢~ —» v, + ¢ issimpler than v, + ¢ — v, + e~
orv,+e — v, + e . Explain.

(a) Calculate the differential and total cross section for», + € — v, + ¢ in the
GWS model.
[Answer: Same as equation (10.103), only with the sign of ¢4y reversed; see
Halzen and Martin, ref. 12, eq. 13.49.]

(b) Find theratioo(y, + e — v, + € )/o(v, + € — v, + ). Assume the energy
is high enough that you can set m, = 0.

(a) Calculate the decay rate for Z° — f+ f where fis any quark or any lepton.
Assume f'is so light (compared to the Z) that its mass can be neglected.

2 M ZCZ

= _ &
. 0 -
[Answer. NZ°—=f+f) Yy

(4 + 14,

(b) Assuming these are the dominant decay modes, find the branching ratio for
each species of quark and lepton (remember that the quarks come in three
colors). Assume that 2m, < M, and that the approximation in (a) is valid
even for .

[Answer: 3% each for e, u, 7; 6% each for v,, v,, v.; 10% each for u, ¢, t; 14%
each for d s, b.]

(¢) Calculate the lifetime of the Z°. How would it change if there exists a fourth
generation? (Notice that an accurate measurement of the Z° lifetime will
tell us how many quarks and leptons there can be with masses less than
45 GeV/c?)

Estimate R (the total ratio of quark pair production to muon pair production in

e*e” scattering), when the process is mediated by Z°. For the sake of argument

assume the top quark is light enough so that equation (10.112) can be used. Don’t

forget color.

Graph the ratio, equation (10.116) as a function of total energy (2F), using 2 for

the expression in brackets, Mzc? = 90 GeV, and AT, = 2.5 GeV.

Derive equation (10.120), using equation (7.36). Also derive equation (10.124).

(a) If u(p) satisfies the Dirac equation (7.34), show that u; and ug (Table 10.2)
do not (unless m = ().

(b) Find the eigenvalues and eigenspinors of the matrices P, = (1 + 4°).

(c) Can there exist spinors that are simultaneously eigenstates of P, (say) and of
the Dirac operator (' — mc)?

[Answer: No; these operators do not commute.]

Work out the weak isospin currents j; and j} for the light quark doublet # and
d'. Also, construct the electromagnetic current (j™) and the weak hypercharge
current (). (Leave your answers in terms of d".)

From expression (10.159), determine the vector and axial vector couplings in
Table 10.1. \






Chapter 11

This chapter introduces the “‘gauge theories” that are now believed to underlie
all elementary particle interactions. I begin with the Lagrangian formulation
of classical mechanics, and proceed to Lagrangian field theory, the principle
of local gauge invariance, the notion of spontaneous symmetry breaking, and
the Higgs mechanism (which accounts for the mass of the W’s and the 7).
This material is quite abstract (in contrast to previous chapters); it concerns
the fundamental quantum field theories from which the Feynman rules derive.
1t will not help you to calculate any cross sections or lifetimes. On the other
hand, the ideas discussed here constitute the foundation on which virtually
all modern theories are predicated. To understand this chapter it will help to
have studied some Lagrangian mechanics, but more essential is the relativistic
notation in Chapter 3, the taste of group theory in Chapter 4, the Feynman
calculus from Chapter 6, and the Dirac equation from Chapter 7.

11.1 LAGRANGIAN FORMULATION OF CLASSICAL
PARTICLE MECHANICS

According to Newton’s second law of motion, a particle of mass m, subjected
to a force F, undergoes an acceleration a given by
F = ma (11.1)

If the force is conservative, it can be expressed as the gradient of a scalar potential
energy function U:

F=-VU (11.2)

and Newton’s law reads

343
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m—=—-VU (11.3)

where v is the velocity.'
An alternative formulation of classical mechanics begins with the “La-
grangian”

L=T-U (11.4)
where T is the kinetic energy of the particle:
T = 1 mv? (11.5)

The Lagrangian is a function of the coordinates g; (say, g1 = X, 2 = ¥, ¢3 = 2)
and their time derivatives g;(¢; = Ux, ¢2 = v, ¢3 = V). In the Lagrangian for-
mulation the fundamental law of motion is the Euler-Lagrange equation:?

d (oL oL
—|l—=)=—— =1, 2, .
7 (aqi) 3, (i ,2,3) (11.6)

Thus in Cartesian coordinates we have

oL _ aT _

a—q.]—a—vx— muv, (117)
aL aU

— = _ = 11.8
aql ox ( )

and the Euler-Lagrange equation (for / = 1) reproduces the x component of
Newton’s law, in the form of equation (11.3). The Lagrangian formulation is
thus equivalent to Newton’s (at least, for conservative systems), but it has certain
theoretical advantages, as we shall see in the following sections. (See also
Problem 11.1))

11.2 LAGRANGIANS IN RELATIVISTIC FIELD THEORY

A particle, by its nature, is a localized entity; in classical particle mechanics we
are typically interested in calculating its position as a function of time: x(z), y(?),
z(?). A field, on the other hand, occupies some region of space; in field theory
our concern is to calculate one or more functions of position and time: ¢;(x, ¥,
z, t). The field variables ¢; might be, for example, the temperature at each point
in a room, or the electric potential ¥, or the three components of the magnetic
field B. In particle mechanics we introduced a Lagrangian L that was a function
of the coordinates g; and their time derivatives, ¢;, in field theory we start with
a Lagrangian (technically, a Lagrangian density) L, which is a function of the
fields ¢; and their x, y, z and ¢ derivatives:

a¢’i

— 11.9
pwr (1L.9)

au¢i =
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In the former case, the left side of the Euler-Lagrange equation (11.6) involves
only time derivatives; a relativistic theory must treat space and time coordinates
on an equal footing, and the Euler-Lagrange equations generalize as you might

expect.
aL 9.L .
aﬂ(a(a“(bi)) = %, (i=1,2,3,...) (11.10)

EXAMPLE 11.1 The Klein—-Gordon Lagrangian for a Scalar (Spin-0) Field
Suppose we have a single, scalar field variable ¢, and the Lagrangian is

1 1 {mc\> 5
L =2 @009 — 5 ( ) o (1L.11)
In this case
oL
= g* 11.12
369 ° (112

(If this confuses you, write out the Lagrangian “longhand”:

1 1 (mc)*
L= 3 {00 Bop — 31 D1 — D2 Dagp — O3 F3¢p] — 5 (f) ¢’

In this form it is clear that

3
=dp = PP, =0 =039,
aGor) T Ha W

and so on.) Meanwhile

oL _ _(_@)2¢
A h

and hence the Euler-Lagrange formula requires

2

mc

apa#¢+(—h~)¢=o (11.13)
\ b/

which is the Klein-Gordon equation [eq (7.9)], describing (in quantum

field theory) a particle of spin 0 and mass m.

EXAMPLE 11.2 The Dirac Lagrangian for a Spinor (Spin-1) Field
Consider now a spinor field ¥, and the Lagrangian

L = i(hopy* a3 — (me* )y (11.14)
We treat ¢ and the adjoint spinor ¢ as independent field variables.* Ap-
plying the Euler-Lagrange equation to ¢, we find

* Since y is a complex spinor, there are actually eight independent fields here (7 runs from 1
to 8): the real and imaginary parts of each of the four components of y. But in applying the Euler-
Lagrange equations any linear combinations of these eight will do just as well, and we choose to use
the four components of ¥ plus the four components of .
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9.L oL
==0, — =ihey* 4 — mc?
50,9 gy YW T mey
s that iy a4 ~ (%);o =0 (11.15)

This is the Dirac equation {eq. (7.20)], describing (in quantum field theory)
a particle of spin 3 and mass m. Meanwhile, if we apply the Euler-Lagrange
equation to ¥, we obtain

and hence [ 9.0v" + (@)J/ =0
which is the adjoint of the Dirac equation (see Problem 7.13).

EXAMPLE 11.3 The Proca Lagrangian for a Vector (Spin-1) Field
Finally, suppose we take a vector field, 4, with the Lagrangian

-1 1 {mc\?
- | v oAl — _ 14
L Tom (4" — 8" 4*)93,4, — 3,4,) + . ( h ) A’A, (11.16)
L -1
= — ("4" — F4* 11.17
Here 36,4) 4 4¥) (11.17)
(see Problem 11.2), and
0L 1 (me\
aAV—E(F)A (11.18)
so the Euler-Lagrange equation yields
2
I A — A" + ('%c) A4 =0 (11.19)

This is called the Proca equation; it describes a particle of spin 1 and mass
m. Incidentally, since the combination (8*4* — #4*) occurs repeatedly in
this theory, it is useful to introduce the shorthand

F* = 34" — 3 4» (11.20)
Then the Lagrangian reads
1 1 (mc):
L=——FF,+—|—1| A4, 11.21
167 Fo 8r ( h ) ( )

and the field equation becomes

2
3, F™ + (%) A" =0 (11.22)
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If the notation is beginning to remind you of electrodynamics, it’s no ac-
cident, for the electromagnetic field is precisely a massless vector field; if
you set m = 0 in equation (11.22) you’re left with Maxwell’s equations for
empty space.

The Lagrangians in these examples came out of thin air (or rather, they
were concocted in such a way as to reproduce the desired field equations). In
classical particle mechanics L is derived (L = T — U), but in relativistic field
theory £ is usually taken as axiomatici—we have to start somewhere. The La-
grangian for a particular system is by no means unique; you can always multiply
L by a constant, or add a divergence, (3,M*, where M* is any function of ¢,
and d,¢;)—such terms cancel out when you apply the Euler-Lagrange equations,
so they do not affect the field equations. In this sense the factors of ; in the
Klein—-Gordon Lagrangian, for example, are purely conventional.* Apart from
that, however, what we have here are the Lagrangians for spin 0, spin 4, and
spin 1. So far, however, we are talking only of free fields, with no sources or
interactions.

EXAMPLE 11.4 The Maxwell Lagrangian for a Massless Vector Field with
Source J*
Suppose
="Lper, Ly (11.23)
16w et T )
where F* (again) stands for 4" — 6"4*, and J* is some specified function.
The Euler-Lagrange equations yield

3, Fw = 47" J? (11.24)

which (as we found in Chapter 7, Section 7.4) is the tensor form of Maxwell’s
equations, describing the electromagnetic fields produced by a current J*.
Incidentally, it follows from equation (11.24) that

3,J" =0 (11.25)

That is, the internal consistency of the Maxwell Lagrangian (11.23) requires
that the current satisfy the continuity equation (7.74); you can’t just put
in any old function for J*—it’s got to respect conservation of charge.

* The Lagrangian (L) carries units of energy [eq. (11.4)], and the Lagrangian density (L) has
the units of energy per unit volume. The fields carry dimensions as follows:
¢ (scalar field): VML/T
V¥ (spinor field); L™*?
A* (vector field). YML/T
These are chosen so that y will go over to the Schrodinger wave function (in the nonrelativistic limit)

and 4* to the Maxwell vector potential (in the nonquantum limit). By the way, in Heaviside-Lorentz
units the Proca and Maxwell Lagrangians would be multiplied by 4.
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11.3 LOCAL GAUGE INVARIANCE

Notice that the Dirac Lagrangian

L = ihegy* o0 — meiy (11.14)
1s Invariant under the transformation
Y — ey (global gauge transformation) (11.26)

(Where 6 1s any real number), for then ¢ — ¢y, and in the combination Jy
the exponential factors cancel out. For historical reasons, we call (11.26) a (global)
gauge transformation (“phase” transformation would be a more sensible term).
But what if the phase factor is different at different space-time points; that is,
what if 8 is a function of x*:

Y — ey (local gauge transformation) (11.27)

Is the Lagrangian invariant under such a “Jocal” gauge transformation? The
answer 1s no, for now we pick up an extra term from the derivative of 6:

d.(e™) = i(8,0)e™y + e°d,y (11.28)
so that L — L — hod00vy (11.29)

Actually, for what follows it is convenient to pull a factor of —(g/%¢) out of 4,
letting

hc
Ax) = — ? 6(x) (11.30)
where g is the charge of the particle involved. In terms of A, then,
L — L+ (@) (11.31)
under the local gauge transformation
Y — e NI/ hey, (11.32)

So far, there is nothing particularly new or deep in all this. The crucial
point comes when we demand that the complete Lagrangian be invariant under
local gauge transformations.* Since the free Dirac Lagrangian (11.14) is not
locally gauge invariant, we are obliged to add something, in order to soak up

the extra term in equation (11.31). Suppose
L = [iheyy* . — me ] — (qhy"¥)A, (11.33)

where 4, is some new field (called a “gauge” field) which transforms under local
gauge transformations according to the rule

* I know of no compelling physical argument for why a global invariance should necessarily
hold locally. If you believe that gauge transformations are in some sense “fundamental,” then I
suppose one should be able to carry them out independently at spacelike-separated points (which
are, after all, out of communication with one another). But I think this begs the question. Better, for
the moment at least, to take the requirement of local gauge invariance as a new principle of physics
in its own right.
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A, — A, + o\ (11.34)

This “new, improved” Lagrangian is now invariant under local gauge transfor-
mations; the price we had to pay was the introduction of a new vector field that
couples to ¢ through the last term in equation (11.33) (see Problem 11.6). But
equation (11.33) isn’t the whole story; the full Lagrangian must include a *“free”
term for the gauge field. Since it is a vector field, we look to the Proca Lagrangian

—1 1 (mye 2
L=—F'F,+—{—] 44, 11.21
161rF +87r( h ) ( )

But there is a problem here, for whereas F*’ = 3*4" — 3°4* 1s invariant under
(11.34), as you should check for yourself, 4°4, is not. Evidently, the gauge field
must be massless (m, = 0), otherwise local gauge invariance will be lost.

Conclusion: if we start with the Dirac Lagrangian, and impose local gauge
invariance, we are forced to introduce a massless vector field (4*), and the com-
plete Lagrangian becomes

1 -
= [ihcyy* 9.9 — mc™y] + |:— FYF, :l — @4l (11.35)

As you will have guessed, 4* is precisely the electromagnetic potential; the gauge
transformation rule for 4* (11.34) is just what we found back in Chapter 7 [eq.
(7.81)], and the last two terms in equation (11.35) reproduce the Maxwell La-
grangian (11.23), with the current density

J# = cq(dy*y) (11.36)

Thus the requirement of local gauge invariance, applied to the free Dirac La-
grangian, generates all of electrodynamics, and specifies the current produced
by Dirac particles.

In case the procedure for invoking local gauge invariance seems mysterious,
let’s review it, and see what was actually involved. The difference between global
and local gauge transformations arises when we calculate derivatives of the fields

leq. (11.28)]:
a0 — civmea — i Loyl (11.37)
L ke "]

Instead of a simple phase factor, we pick up an extra term involving 9, A. If in
the original ( free) Lagrangian we replace every derivative (3,) by the so-called
“covariant derivative”

D, =4, +1——A (11.38)
he

the transformation of 4, [eq. (11.34)] will cancel the offending term in equation
(11.37)

Dy — e Dy (11.39)
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and the invariance of . is restored. The substitution of D, for d,, then, is a
simple device for converting a globally invariant Lagrangian into a Jocally in-
variant one; we call this the “minimal coupling rule” [it’s what I used, in fact,
to generate the extra term in eq. (11.33)].* But the covariant derivative introduces
a new vector field (4,), which requires its own free Lagrangian; if the latter is
not to spoil local gauge invariance, we must take the gauge fields to be massless.
This leads to the final expression (11.35), which people in the know would im-
mediately recognize as the Lagrangian for quantum electrodynamics—Dirac
fields (electrons and positrons) interacting wth Maxwell fields (photons).

The 1dea of local gauge invariance goes back to the work of Hermann Weyl
in 1919.3 However, its power and generality were not fully appreciated until the
early seventies. Our starting point—the global phase transformation (11.26)—
may be thought of as multiplication of ¢ by a unitary 1 X 1 matrix:

v— Uy, where UU = 1 (11.40)

(Here U = ™). The group of all such matrices is U(1) (see Table 4.2), and hence
the symmetry involved is called “U(1) gauge invariance.” This terminology is
extravagant for the case at hand (a 1 X 1 matrix is a number, so why not leave
it at that?), but in 1954 Yang and Mills* applied the same strategy (insisting that
a global invariance hold locally) to the group SU(2), and later on the idea was
extended to color SU(3), producing chromodynamics. In the Standard Model
all of the fundamental interactions are generated in this way.

11.4 YANG-MILLS THEORY

Suppose now that we have two spin-1 fields, ¥, and y,. The Lagrangian, in the
absence of any interactions, is

L = [ihcyv* a4 — mcp il + [ihcday*d s — mac™ays] (11.41)

It’s just the sum of the two Dirac Lagrangians. (Apply the Euler~Lagrange equa-
tions to this .£, and you’ll find that ¥, and y» both obey the Dirac equation,
with the appropriate mass.) But we can write equation (11.41) more compactly
by combining , and y; into a two-component column vector:

(¥ o
¢=\¢2} (11.42)

(Of course, ¢, and ¥, are themselves four-component Dirac spinors, and you
might prefer a double-index notation: y, ;, where a = 1, 2 identifies the particle

* The minimal coupling rule is much older than the principle of local gauge invariance. In
terms of momentum [p, < ihd,, see eq. (7.5)] it reads p, — p, — i(qg/c)A4,, and is a well-known
trick in classical electrodynamics for obtaining the equation of motion for a charged particle in the
presence of electrodynamic fields. See J. D. Jackson, Classical Electrodynamics, 2d Ed. (New York:
Wiley, 1975), eq. (12.29). It amounts, in this sense, to a sophisticated formulation of the Lorentz
force law. In modern particle theory we prefer to regard local gauge invariance as fundamental, and
minimal coupling as a device for achieving it.
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and i = 1, 2, 3, 4 labels the spinor component. However, in the present context
we are only concerned with the particle index, although the Dirac matrices, of
course, act on the spinor indices.) The adjoint spinor is

v=01 %) (11.43)
and the Lagrangian becomes
= iheyy* 84 — MY (11.44)
! " 0
where M= ) (11.45)
0 "

is the “mass matrix.” In particular, if the two masses happen to be equal equation
(11.44) reduces to

L = jheyy* 3.9 — meHy (11.46)

This looks just like the one-particle Dirac Lagrangian. However, y is now
a two-element column vector, and .£ admits a more general global invariance
than before:

v — Uy (11.47)
where U is any 2 X 2 unitary matrix

Utu =1 (11.48)
For under the transformation (11.47),

¥ — Ut (11.49)

and hence the combination Y4/ is invariant. Now, just as any complex number
of modulus 1 can be written in the form e”, with real 6, so any unitary matrix
can be written in the form®

U=e" (11.50)

where H is Hermitian (H' = H).* Moreover, the most general Hermitian
2 X 2 matrix can be expressed in terms of four real numbers, a;, a2, a3, and 8
(Problem 11.10):

H=0l+7-a (11.51)

where 1 is the 2 X 2 unit matrix, 7, 72, 73 are the Pauli matrices (4.26), and the
dot product is a convenient shorthand for 7,4, + 7242 + 73a;. Thus any unitary

s ] N vty o o avearaooad n r\rnf]llr\f

2 X 2 matrix can pe expressed as a proguct:

U= e"%"* (11.52)

* In matrix theory the natural generalization of complex conjugation () is Hermitian con-
jugation (+)—transpose conjugation. Of course, there’s no distinction in the case of 1 X | matrices
(complex numbers), but for higher dimensions it is the Hermitian conjugate that shares the most
useful properties of ordinary complex conjugation. In this sense the closest analog to a rea/ number
(a = a*) is a Hermitian matrix (4 = A"), and the analog to a number of modulus 1 (a*a = 1} is a
unitary matrix (44 = 1).
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We have already explored the implications of phase transformations (¢"); in this
section we shall concentrate on transformations of the form

{

Lir-a_s Y L, 11 £\
IS10IINALIO0 | \11.03)

Y — e {global SU(2) tr:
The matrix ¢ * has determinant 1 {see Problem 4.22], and therefore belongs
to the group SU(2). Generalizing the terminology of Section 11.3, we say that
Lagrangian (11.46) is invariant under global SU(2) gauge transformations.* What
Yang and Mills did was to promote this global invariance to the status of a local
invariance.

The inspiration and the strategy were similar to Weyl’s, but the imple-
mentation is more subtle, in iact, it’s quite remarkable that it works at all. The
first step is to let the parameters (a) be functions of x* [as before, equation
(11.30), I'll let A(x) = —(hc/q)a(x), where g is a coupling constant analogous to
electric charge]:

Y — SY, where S = ¢4 "X/t [local SU(2) transformation] (11.54)

As it stands, .L is not invariant under such a transformation, for the derivative
picks up an extra term:

a3y — Say+ (0.SW (11.55)

The remedy, again, is to replace the derivative in .£ by a ““‘covariant derivative,”
modeled on equation (11,38), but taking into account the structure of equation
(11.55):
D,=08,+i 1A, (11.56)
[ [ hc
and assign to the gauge fields A, (it takes three of them this time) a transformation
rule such that

Dy — S(DY) (11.57)

For then the Lagrangian (11.46) will clearly be invariant.

It is not a trivial matter to deduce the transformation rule for A, from
(11.57).5 Il leave it for you to show (Problem 11.11) that A, — A/, where A,
is given by

2 - A
7oA, = St A)ST il T )0,5)8™ (11.58)
q
This much is relatively straightforward. But S and S~! in the first term cannot
be brought together, because they do not commute with 7+ A,. Nor is the gradient
of S simply —i(gr - 3, A/ fic)S, because S does not commute with 7-3,X. You can
work out the exact result (using Problems 4.20 and 4.21), if you have the energy,

* It is also invariant under the /larger group U(2). But (11.52) shows that any element of U(2)
can be expressed as an element of SU(2) times an appropriate phase factor (in group-theoretical
language, U(2) = U(1) ® SU(2)), and since we have already studied U(]) invariance, the only thing
new here is the SU(2) symmetry.
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but the answer is not particularly illuminating. For our purposes it will suffice
to know the approximate transformation rule, in the limiting case of very small
\, for which we may expand S and keep only the first-order terms:

iq

iq . iq
~ —_ . ~ + —_ . ~
S=1 P A, ST =1 T A 3,5 = he

hc

In this approximation equation (11.58) yields

r-@N  (11.59)

T-A;;f.A#+%[rrAu,r-x]+T-a“>\ (11.60)
and hence (using Problem 4.20, to evaluate the commutator)
: 2q
A#;A#+6u)\+h—c()\xAu) (11.61)

The resulting Lagrangian
L = ihcyy* Dy — me*Py = [ihcyy® o9 — mc ] — (@¥y*ry)- A,  (11.62)
is invariant under local gauge transformations (11.54) and (11.58), but we have

been obliged to introduce three new vector fields A* = (4%, 44, 45), and they
will require their own free Lagrangian:

1 | 1 1
Ly =~ = F{Fpy — —— F§Fu — — F§'Fpy = — —— F*F

167 L 6x 167 167 w (11.63)

(Again, the three-vector notation pertains to the particle indices.) The Proca
mass term

1 (m Ac)2
—|—]A”-A, 11.64
87 ( h ( )
is excluded by local gauge invariance; as before, the gauge fields must be massless.
But this time the old association F* = ¢*4” — 0"4* must itself be modified, for
with this definition the gauge field Lagrangian (11.63) is not invariant either (see
Problem 11.12). Rather, we take*

2
F¥ = 8*A” — A — h—‘i (A* X A”) (11.65)
Under infinitesimal local gauge transformations (11.61)
2
P — P + —f-l% (\ X F*) (11.66)

(Problem 11.13), and hence .L 41s invariant. (See Problem 11.14 for a proof that
the invariance extends to finite gauge transformations.)

* Definition (11.65) is not as arbitrary as it may seem; the point is that with three vector fields
there is a second antisymmetric tensor form available, (A* X A*), and the coefhicient, —2g/Ac, is
chosen precisely to make L, invariant. Notice that when the coupling constant ¢ goes to zero we
are left with the free Dirac Lagrangian for each spinor field and the free (massless) Proca Lagrangian
for each of the three gauge fields.
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Conclusion: The complete Yang-Mills Lagrangian is

= [ihcyy* 8,9 — meP] — — (q¥v*1¢)- A, (11.67)
with F** defined by equation (11.65); it is invariant under local SU(2) gauge
transformations, (11.54) and (11.58), and describes two equal-mass Dirac fields
in interaction with three massless vector gauge fields. It all results from insisting
that the global SU(2) invariance of the original free Lagrangian (11.46) shall
hold /ocally. Borrowing the language of electrodynamics, we say that the Dirac
fields generate three currents

J* = cq(Yy*rd) (11.68)

which act as sources for the gauge fields; the Lagrangian for the gauge fields
alone

1 1
= By, — = J*.
L= == F"-F, ~ - J"A, (11.69)

1s reminiscent of the Maxwell Lagrangian (11.23), and gives rise to a rich and
interesting classical field theory.” (See Problem 11.15.)

Although Yang-Mills theory is inspired by the same idea as Weyl’s (namely:
a global invariance should hold locally), the implementation was more subtle at
two points: (1) the local transformation rule for gauge fields, and (2) the expression
for F*” in terms of 4*. Both complications derive from the fact that the symmetry
group in question is non-Abelian (2 X 2 matrices do not commute, whereas
1 X | matrices—obviously—do). To emphasize the distinction, we refer to the
Weyl case as an Abelian gauge theory, and Yang-Mills as a non-Abelian gauge
theory. In contemporary elementary particle physics many symmetry groups
have been explored; we shall encounter a few in the remaining sections of this
book. However, the hard work is over: Extending non-Abelian gauge theory to
higher symmetry groups is a straightforward procedure, once the Yang-Mills
model is on the table.

Curiously, though, Yang-Mills theory in its original form turned out to
be of little use. After all, it starts from the premise that there exist two elementary
spin-{ particles of equal mass, and as far as we know there are no such pairs in
nature. Yang and Mills themselves had the nucleon system (proton and neutron)
in mind, and thought of their model as a way of implementing Heisenberg’s
isospin invariance in the strong interactions. The small mass difference between
proton and neutron, 1.29 MeV/c?, would be attributed to electromagnetic

- alrin FAar tha thanry ta crirraad thara had tn avict o macclace
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1sotriplet of vector (spin-1) particles. The only candidates in sight are the p mesons;
but they are hardly massiess (M, = 770 MeV/c?), and this is not a minor dis-
crepancy that can be plausibly blamed on electromagnetic contamination. A
number of attempts were made to doctor up Yang—Mills theory to accommodate
massive gauge bosons, but by the time they finally bore fruit (through the Higgs
mechanism) it was pretty clear that p, #, and p are composite particles anyway,
and that isospin is just one component of a larger flavor symmetry that is too
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drastically broken to play any fundamental role in the strong interactions., When
non-Abelian gauge theory finally came into its own, it was in the context of color
(SU(3)) symmetry in the strong interactions and weak isospin-hypercharge (SU(2)
® U(1)) symmetry in the weak interactions. Meanwhile, for more than a decade
after 1954 the Yang-Mills model languished—a lovely idea that nature had
evidently chosen not to exploit.

11.5 CHROMODYNAMICS ‘

According to the colored quark model, each flavor of quark comes 1n three
colors—red, blue, and green. Although the various flavors carry different masses
(Table 4.4), the three colors of a given flavor are all supposed to weigh the same.
Thus the free Lagrangian for a particular flavor reads

L = [ihey* 00, — meW,] + [iheyy* 0 — mcdpds)

+ [ihce J’g’Y“ e — mc 2\T/g\bg] (11.70)
As before, we can simplify the notation by introducing
¥r
v=1 Y |, ¥ =iy (11.71)
Ve
so that L = ihcyy* 3,0 — me (11.72)

This looks just like the original Dirac Lagrangian, only y now stands for a three-
component column vector (each element of which is itself a four-component
Dirac spinor). Just as the one-particle Dirac Lagrangian (11.14) has (global) U(1)
phase invariance, and the (equal mass) two-particle Lagrangian (11.41) admits
U(2) invariance, so this (equal mass) three-particle Lagrangian exhibits U(3)
symmetry. That is to say, it is invariant under transformations of the form

v W (U (11.73)
where U is any unitary 3 X 3 matrix:
Uty = 1 (11.74)

But remember [eq. (11.50)], any unitary matrix can be written as an ex-
ponentiated Hermitian matrix:

U=eH  withH'=H (11.75)

Moreover, any 3 X 3 Hermitian matrix can be expressed in terms of nine real
numbers, a,, 4s, . . ., ag, and # (Problem 11.16):

H=6l+\a (11.76)

where 1 is the 3 X 3 unit matrix, A, A,, . . ., Ag are the Gell-Mann matrices [eq.
(9.9)], and the dot product now denotes a sum from 1 to 8:

Aea= ANay+ Maz+ co 0 + Agag (1177)
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Thus U= e%e™* (11.78)

We have already explored phase transformations (e”); what is new is the second
term. The matrix ¢™'* has determinant 1 (see Problem 11.17); it belongs to the
group SU(3).* So what we are interested in is the invariance of the Lagrangian
(11.72) under SU(3) gauge transformations, a global symmetry that we now
propose to make local.

That is: we modify £ in such a way as to render it invariant under /ocal

SU(3) gauge transformations:
v — SY, where S = ¢ /4r - #x)/he (11.79)

(again, I let ¢ = —(hc/q)a, with the coupling constant ¢ playing a role analogous
to electric charge in QED). As always, the trick is to replace the ordinary deriv-
ative, d,, by the “covariant derivative” 2D,

4q

D=8, +is-

A-A, (11.80)

and assign to the gauge fields A, (there are eight of them, notice) a transformation
rule such that

Dy — (D) (11.81)
Again [see eq. (11.58)], this entails
h
AeAL=SM\-A)S + i(?c)(éi,,S)S'l (11.82)
which, for the infinitesimal case, yields a formula identical to expression (11.61)
2q

A=A, +8,6+ (X A) (11.83)

However, this time the cross-product notation is shorthand for

8
(B X C), = Z ﬁjkBjCk .84)
k=1

where f are the structure constants of SU(3) [eq. (9.10)], analogous to ¢ for
SU{2). (See Problem 11.18.)
The modified Lagrangian

L =ihceyy* Dy — mey = [ihcdy* 3,0 — me Y] — (@y* M) - A, (11.85)

1s invariant under local SU(3) gauge transformations [(11.79) and (11.82)] but
as usual the cost 1s the introduction of gauge fields A* (eight of them, this time).
In particle language, these correspond to the eight gluons, just as the U(1) gauge
field in Weyl’s theory represents the photon.} To finish the job we must adjoin
the free gluon Lagrangian

* In the language of group theory, we have shown that U(3) = U(1) ® SU(3).

+ Remember that a ““ninth gluon,” coupling universally to all quarks, is apparently excluded
by experiment (see Problem 9.1).
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1
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2q
P = A"~ FA" — - (A X &) (11.87)

{with the SU(3) “cross-product”™ defined by equation (11.84)].
Conclusion: The complete Lagrangian for chromodynamics is

- - 1 -
L = [iheyy* 8, — meiy] — Ter T Fw = (@' )4, (11.88)

Of course, we need six replicas of equation (11.88), each with the appropriate
mass, to handle the six quark flavors. £ is invariant under local SU(3) gauge
transformations, and describes three equal mass Dirac fields (the three colors of
a given quark flavor) in interaction with eight massless vector fields (the gluons).
It derives from the requirement that the global SU(3) symmetry of the original
Lagrangian (11.70) should hold /ocally. The Dirac fields constitute eight color
currents

J* = cq(fy*NY) (11.89)

which act as sources for the color fields (A,), in the same way that e/ectric currents
act as sources for the electromagnetic field. The theory described here is very
close in structure to that of Yang and Mills. In this case, however, we believe it
to be the correct description of a phenomenon realized in nature: the strong
interaction.

11.6 FEYNMAN RULES

Up to this point the Lagrangians we have considered might just as well describe
classical fields as quantum ones; indeed, the Maxwell Lagrangian will be found
in any textbook on classical electrodynamics. The passage from a classical field
theory to the corresponding quantum field theory does not involve modification
of the Lagrangian or the field equations, but rather a reinterpretation of the field
variables; the fields are “quantized,” and particles emerge as quanta of the as-
sociated fields. Thus the photon is the quantum of the electrodynamic field, A*;

leptons and quarks are quanta of Dirac fields; gluons are quanta of the eight
SU(3) gauge fields; and W* and Z° are quanta of the appropriate Proca fields.

AF A = pSvriap il aANeiRy eiile Y raahe Lo Meealie UL AN Qi Wps st 2 2RO AARARED

The quantization procedure itself is recondite, and this is not the place to go
into it;® for our purposes the essential point is that each Lagrangian determines
a particular set of Feynman rules. What we need, then, is a prescription for
working out the Feynman rules dictated by a given Lagrangian.

To begin with, notice that .L consists of two kinds of terms: the free La-
grangian for each participating field, plus various interaction terms (L;,). The
former—Klein-Gordon, for spin 0; Dirac, for spin 1; Proca, for spin 1; or some-
thing more exotic, for a theory with higher spin—determines the propagator;
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the latter—obtained by invoking local gauge invariance, or by some other
means—determine the vertex factors:

Free Lagrangian = propagator
Interaction terms = vertex factors

Let us consider the propagators first.
Application of the Euler-Lagrange equation to the free Lagrangian yields
the free field equations:

2
[6“ d, + (%C) ]qb =0 (Klein-Gordon, for spin 0) (11.13)

l:i*y“ ad, — (%)]d/ =0 (Dirac, for spin 1) (11.15)
mc\?
[BM(G“A” — &A*) + (—,;) A”:| =0 (Proca, for spin 1) (11.22)

The corresponding “momentum-space” equations are obtained by the standard
prescription [eq. (7.5)] p, < ih 9d,:

[p* — (mc)’]l¢ = 0 (11.90)
[ — (mAly =0 (11.91)
[(=p* + (mc))g, + p.p)A" =0 (11.92)

The propagator is simply (7 times) the inverse of the factor in square brackets:

I
Spin-0 propagator;: ———; 11.93
pin-0 propagator: —— (11.93)
) i . (7 + mo)
Spin-1 propagator: e = | 7 = (moy (11.94)
Spin-1 propagator: I RAEY) I—g“,, - !:’Az] (11.95)
I,l \I’lb} L \l’f!«b} _l

Note that in the second case this factor is a 4 X 4 matrix, and we want the matrix
inverse; in the third case the factor is a second-rank tensor (7,,), and we want
the tensor inverse (T~"),,, such that T,,(7~")* = ;. (See Problem 11.19.) These
are precisely the propagators we used in Chapters 6, 7, and 10.* Since we ob-
viously cannot set m — 0 in the Proca propagator (11.95), we must go back to
the free field equation (11.22) to work out the photon propagator:

d,(#4" — ¥4*) =0 (Maxwell, for massless spin 1) (11.96)

* Actually, this procedure only determines the propagator up to a multiplicative constant,
since the field equations, (11.90), (11.91), and (11.92), can always be multiplied by such a factor. In
the “canonical” form of these equations the coefficient of mc or (mc)® is taken to be +1, with the
sign matching that of the mass term in L. Other conventions lead to a slightly different set of
Feynman rules, but do not, of course, change the calculated reaction amplitudes.
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As I have remarked before, this equation does not uniquely determine 4*; if we
impose the Lorentz condition

3,4 =0 (7.82)
then (11.96) reduces to
34" = 0 (11.97)
which, in momentum space, can be written
(—P’gu)A” =0 (11.98)
So the photon propagator 1s
Massless spin-1 propagator: —i % (11.99)

To get the vertex factors, first write down iL;,, in momentum space

(ih 8, — p,), and examine the fields involved; these determine the qualitative

structure of the interaction. For example, in the case of the QED Lagrangian
(11.35)

I Line = —H@py"¥)A, (11.100)

there are three fields involved (, , and 4,), and this defines a vertex in which
three lines are joined—an incoming fermion, an outgoing fermion, and a photon.
To obtain the vertex factor itself, simply rub out the field variables:

i 4 .
-1 —qy* = igy"*
hc

(QED vertex factor for negatively charged particle) (11.101)

(In the case of the photon, what we actually rub out is ¥ ~c/4wA4*; the extra factor
is due to our use of cgs units which are, for this purpose, a little cumbersome.)
The same goes for chromodynamics (11.88): The quark-gluon coupling

Line = ~(@bv"M)- A, (11.102)

yields a vertex of the form

with the vertex factor
LN (11.103)

(The strong coupling constant is traditionally defined with a factor of 2: g; =
2V4r/hcq where q is the “strong charge” appearing in the Lagrangian). However,
there are also direct gluon-gluon couplings, coming from the F**+F,_, term in L,
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since F** contains not only the “free” part, A’ — ¢"A¥, but also an interaction
term —2g/hc(A* X A*) [eq. (11.87)]. Squaring it out, we find:

Lo = (8 - ) (A — PA%)- (A, X A) + (A* X A)-(3,A, — 3,A,)]

4
dn(hc)?

2

(A* X A"+ (A, X A,) (11.104)

The first term carries three factors of A¥, and leads to the three-gluon vertex
(9.18); the second term carries four factors of A*, and gives the four-gluon vertex
(9.19). (For some practice in extracting Feynman rules from Lagrangians, see
Problems 11.20 and 11.21.)

11.7 THE MASS TERM

The principle of local gauge invariance works beautifully for the strong and
electromagnetic interactions. In the first place, it gives us a machine for deter-
mining the couplings (in the “old days” the construction of .Lj, was a purely
ad hoc guess). Moreover, as ’t Hooft and others proved in the early seventies,’
gauge theories are automatically renormalizable. But the application to weak
interactions was stymied by the fact that gauge fields have to be massless. Re-
member, the mass term in the Proca Lagrangian is not locally gauge invariant,
and whereas the photon and the gluons are massless, the #’s and the Z 0 certainly
are not. So the question arises, Can we doctor up gauge theory in such a way as
to accommodate massive gauge fields? The answer is yes, but the procedure—
exploiting spontaneous symmetry-breaking and the Higgs mechanism—is dia-
bolically subtle, and it pays to begin by thinking very carefully about how one
identifies the mass term in a Lagrangian.

Suppose, for instance, you were given the following Lagrangian for a scalar
eld ¢:

L = 1(3,0)#¢) + e =" (11.105)

where « is some (real) constant. Where is the mass term here? At first glance
there’s no sign of one, and you might conclude that this is a massless field. But
that is incorrect, for if you expand the exponential, L takes the form

L= 10,0)8"¢) + 1 — o?¢? + 2a'p* —4a® + - -+ (11.106)
The 1 is irrelevant (a constant term in £ has no affect on the field equations),
but the second term looks just like the mass term in the Klein—-Gordon Lagrangian

(11.11), with o2 = 1(mc/h)>. Evidently this Lagrangian describes a particle of
mass

m = V2ah/c (11.107)

The higher-order terms represent couplings, of the form
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XK 2K

and so on. This is not supposed to be a realistic theory, of course—I offer it only
as an example of how the mass term in a Lagrangian may be “disguised.” To
identify it, we expand £ in powers of ¢ and pick out the term proportional to
¢° (in general, it’s the term of second order in the ficlds—¢, ¢, A*, or whatever).

But there is a deeper subtlety lurking here, which I illustrate with the fol-
lowing Lagrangian:

L = $@,008¢) + 3u2¢? — 1x%p* (11.108)

Here u and X are (real) constants. The second term looks like a mass, and the
third like an interaction. But wait! The sign is wrong [compare equation
(11.11)]—if that’s a mass term, then m is imaginary, which is nonsense. How,
then, should we interpret this Lagrangian? To answer this question, we must
understand that the Feynman calculus is really a perturbation procedure, in
which we start from the ground state (the “vacuum”), and treat the fields as
fluctuations about that state. For the Lagrangians we have considered so far, the
ground state—the field configuration of minimum energy—has always been the
trivial one: ¢ = 0. But for the Lagrangian (11.108), ¢ = 0 is not the ground state.
To determine the true ground state, we write £ as a “kinetic” term (3 d,¢ #¢)
minus a “potential” term [inspired by the classical Lagrangian (11.4)]:

L=T-U (11.109)
and look for the minimum of %. In the present case
U(P) = —3u°9” + 130" (11.110)
and the minimum occurs at
d = E£u/X (11.111)

(see Fig. 11.1). For this Lagrangian, the Feynman calculus must be formulated
in terms of deviations from one or the other of these ground states. This suggests
that we introduce a new fieid variabie, 5, defined by

. ¢i§ (11.112)

In terms of 5, the Lagrangian reads
L = @) — w’n” £ phy’ — (N0t + WA (11.113)

The second quantity is now a mass term with the correct sign, and we discover
[comparing eq. (11.11)] that the mass of the particle is

m = V2uh/c (11.114)
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N7 Figure 11.1 Graph of %(¢), equation
(11.110).

Meanwhile, the third and fourth terms represent couplings of the form

(the last term is a constant, signifying nothing).

I emphasize that Lagrangians (11.108) and (11.113) represent exactly the
same physical system; all we have done is to change the notation (11.112), But
the first version is not suited to the Feynman calculus (technically, a perturbation
series in ¢ would not converge, because it is an expansion about an unstable
point); only in the second formulation can we read off the mass and the vertex
factors.

Conclusion: To identify the mass term in a Lagrangian, we first locate the
ground state [the field configuration for which % (¢) is a minimum] and reexpress
L as a function of the deviation, n, from this minimum. Expanding in powers
of n, we obtain the mass from the coefficient of the »* term.

11.8 SPONTANEOUS SYMMETRY-BREAKING

The example we have just considered illustrates another phenomenon of im-
portance: spontaneous symmetry-breaking. The original Lagrangian (11.108) 1s
even in ¢: It is invariant as ¢ — —¢. But the reformulated Lagrangian (11.113)
1S not even in %; the symmetry has been “broken.” How did this happen? It
happened because the “vacuum” (whichever of the two ground states we care
to work with) does not share the symmetry of the Lagrangian. (The collection
of aii ground states, of course, does, but to set up the Feynman formalism we
are obliged to work with one or the other of them, and that spoils the symmetry.)
We call this “spontaneous” symmetry-breaking because no external agency is
responsible (as, for example, gravity breaks the three-dimensional symmetry in
this room, making “up” and “down” quite different from ““left” and “right”).
To put it the other way around, the true symmetry of the system is “hidden™
by the arbitrary selection of a particular (asymmetrical) ground state. There are
examples of spontaneous symmetry-breaking in many branches of physics. Take,
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Figure 11.2 Spontaneous symmetry-
breaking in a plastic strip.

for instance, a thin plastic strip (say, a short ruler): If you squeeze the ends
together, it will snap into a curved configuration, but it can just as well buckle
to the left as to the right—both are ground states for the system, and either one
breaks the left-right symmetry (see Fig. 11.2).

But the spontaneously broken symmetry we have just considered was a
discrete symmetry, with just two ground states. More interesting things happen
when we consider continuous symmetries. (Replace the plastic strip in Figure
11.2 with a plastic rod—say, a knitting needle. Then it can buckle in any direction,
not just left or right.*) It is easy to construct a Lagrangian with spontaneously
broken continuous symmetry. For example

L = 33,010 ¢1) + 3(8,:X3b2) + 3uP(@T + ¢3) — INUPT + 93 (11.115)

This is 1dentical to equation (11.108), except that now there are two fields, ¢,
and ¢, and because .L involves only the sum of the squares, it is invariant
under rotations in ¢, ¢, space.t

This time the “potential energy” function is

U = —L1u¥(¢? + ¢3) + 10(¢? + 93 (11.116)
and the minima lie on a circle of radius u/A:
Glain T DFmin = 5°/N (11.117)

(see Fig. 11.3). To apply the Feynman calculus, we have to expand about a
particular ground state (‘“‘the vacuum’)—we may as well pick

¢lmin = #/A; ¢2min = O (11'118)
As before, we introduce new fields, n and £, which are the fluctuations about
this vacuum state

n=¢,—p/A;  E=¢; (11.119)

* A more sophisticated example is the ferromagnet: In the ground state all the electron spins
are aligned, but the direction of alignment is an accident of history. The theory is symmetrical, but
a given piece of iron has to pick a particular orientation, and that breaks the symmetry.

t Group theoretically, it is invariant under SO(2): ¢, — ¢, cos 8 + ¢, sin 8; ¢ — —¢, sin 6
+ ¢ cos 4, for any “rotation angle” 8. (See Problem 4.6.)
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h(u {¢1! ¢2;)

e =& ) . Figure 11.3 The potential function
-~
o, Circle of minima (11.116).

Rewriting the Lagrangian in terms of these new field variables, we find (Problem
11.22):

£ =[5 Gaxom - ] + [ 5 6.@0 |

2
+ [uw + nE?) — % (7 + &4+ 211222)] +uf(dN) (11120

The first term is a free Klein—-Gordon Lagrangian (11.11) for the field n, which
evidently carries a mass

m, = V2uh/c (11.121)

[the same as before, see eq. (11.114)]; the second term 1s a free Lagrangian for
the field £, which is massless:

mg =0 (11.122)
and the third term defines five couplings:
n ¢ n n 3 £ £ 3
: - X X
/ n / £ /n n\ /E E\ /n 2N
(the final constant, of course, is irrelevant). In this form the Lagrangian doesn’t
look symmetrical at all; the symmetry of (11.115) has been broken (or rather,
“hidden”’) by the selection of a particular vacuum state.
The important thing to notice here is that one of the fields (£) is automat-
ically massless. This is no accident. It can be shown (Goldstone’s theorem'?)
that spontaneous breaking of a continuous global symmetry 1s a/ways accom-

panied by the appearance of one or more massless scalar (spin-0) particles (we
call them “Goldstone bosons”).* Well, this is a disaster; we were hoping to use

* Intuitively, this is related to the fact that there is no resistance to excitations in the £ direction.
Flick the bent knitting needle and it will spin freely about the axis, whereas radia/ excitations encounter
a restoring force, and the system oscillates.
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the mechanism of spontaneous symmetry-breaking to account for the mass of
the weak interaction gauge fields, but now we find that this introduces a massless
scalar boson, and there is no such thing on the roster of known elementary
particles.* But hold on, for there is one final incredible twist in the story. It
comes when we apply the idea of spontaneous symmetry-breaking to the case
of local gauge invariance.

11.9 THE HIGGS MECHANISM

The Lagrangian we studied in Section 11.8 can be written more neatly if we
combine the two real fields, ¢, and ¢-, into a single complex field:

so that o*p = ¢ + @3 (11.124)
In this notation (and it is nothing but notation) the Lagrangian (11.115) reads
L = 13,0)*(3"¢) + 1u°(d*0) — 1N (d*9)’ (11.125)

and the rotational (SO(2)) symmetry that was spontaneously broken becomes
invariance under (U(1)) phase transformations:

¢ — e’ (11.126)

This is precisely the kind of symmetry we considered back in Section 11.3,
except that now we are working with scalar fields instead of with spinors. We
can make the system invariant under /ocal gauge transformations

¢ — "¢ (11.127)

by the usual device of introducing a massless gauge field 4*, and replacing the
derivatives in equation (11.125) with covariant derivatives (11.38):

q

D, =8, +i -4, (11.128)
Al o)+ )]
Thus £ 2[(3# A Jor ||+ =)o
E, 20 13k _l 2¢ 13k 2__1_ uv

+2u(¢ @) 4?\(¢ @) l61rF F, (11.129)

Now we simply retrace our steps in Section 11.8, applying them to the
locally invaniant Lagrangian (11.129). Defining the new fields

n=¢r— /A, = (11.130)

* It is hard to imagine that such a particle could have escaped detection. With Aeavy particles
this is always a possibility—maybe you just didn’t have enough energy to produce it—but a massless
particle would surely have shown up somewhere, if only in the form of ““missing” energy and mo-
mentum.
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[compare eq. (11.119)], the Lagrangian becomes (see Problem 11.25):

L= H (,1)(n) — uznz-l + |—1 (aué)(a“é)]
L2 1 L2 J

1 (L8 an] -2 )
e (LB 40— 2L o,6)4¢
+[ 167 F“"+2(hc)\ g AN 7o) 004

9 — sy B[4 : # l 4 : 2 2 p
+ 1L 00,0 — @ + £ (L) ) + 3 (L) € + v
242
— Ay’ + ng?) — i N+ 20787 + 54)} + (%) (11.131)

The first line is the same as before, equation (11.120); it describes a scalar particle
(n) of mass Viuh/c and a massless Goldstone boson (£). The second line describes
the free gauge field 4*, but—mirabile dictu!—it has acquired a mass:

ma = 2\@(2‘-‘—2) (11.132)
AcC

[compare the Proca Lagrangian (11.21)]. The term in curly brackets specifies
various couplings of &, 7, and 4* (see Problem 11.26). It is easy to see where the
mass of 4* came from: The original Lagrangian (11.129) contains a term of the
form ¢*¢A4, A*, which—absent spontaneous symmetry-breaking—would rep-
resent a coupling:

@ A

But when the ground state moves ‘“‘off center,” and the field u/A picks up a
constant [(eq. (11.130)], this piece of the Lagrangian takes the form of the Proca

mass term.
However, we still have that unwanted Goldstone boson (£). Moreover,

S22l AAeLY L1i3

there is a suspicious-looking quantity in .£L:

Y '8 u
21( - ﬁC)(a;g),g( (11.133)

What are we to make of this? If we read it as an interaction, it leads to a vertex
of the form

£

in which the £ turns into an 4. Any such term, bilinear in two different fields,
indicates that we have incorrectly identified the fundamental particles in the
theory (see Problem 11.23). Both difficulties involve the field £ = ¢,, and both
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can be resolved exploiting the local gauge invariance of .L [in the original form
(11.129)] to transform this field away entirely! Writing equation (11.126) in
terms of its real and imaginary parts:

¢ — ¢ = (cos 8 + isin )¢, + id7)
= (¢ cos § — ¢, sin 0) + i(¢, sin 6 + ¢, cos §) (11.134)

we see that picking
0 = —tan(6/1) (11.135)

will render ¢’ real, which is to say that ¢5 = 0. The gauge field 4* will transform
accordingly (11.34), but the Lagrangian will take the same form in terms of the
new field variables as it did in terms of the old ones (that’s what it means to say
that . is invariant). The only difference is that £ is now zero. In this particular
gauge, then, the Lagrangian (11.131) reduces to

1 | 1{qg nu 2
- 2 2 2] [ F¥Fo _( ) #:I
[2 @} n) = w'n 167 Ey 2\hc A A

2 2
piq oy q) 2 NI 24}
—\— +—-|— n— A —=A
+ {X (hC) ‘n(A#A ) > (hc n (A#A ) 1N 4 n

p2\’
Lol 11.136
+(2)\) ( )

By an astute choice of gauge, we have eliminated the Goldstone boson and the
offending term in .[; we are left with a single massive scalar 5 (the “Higgs”
particle) and a massive gauge field 4*.

Please understand that Lagrangians (11.129) and (11.136) describe exactly
the same physical system, all we have done is to select a convenient gauge (11.135)
and rewrite the fields in terms of fluctuations about a particular ground state
(11.130). We have sacrificed the manifest symmetry of (11.129) in favor of a
notation that makes the physical content more transparent, and allows us to
extract the Feynman rules more directly. There is an illuminating way to think
of this: A massless vector field carries two degrees of freedom (transverse polar-
izations); when A* acquires mass, it picks up a third degree of freedom (longi-
tudinal polarization). Where did this extra degree of freedom come from? Answer:
it came from the Goldstone boson, which meanwhile disappeared from the theory.
The gauge field “ate” the Goldstone boson, thereby acquiring both a mass and
a third polarization state.* This is the famous Higgs mechanism, built on the
union of gauge invariance and spontaneous symmetry-breaking.

According to the Standard Model, the Higgs mechanism is responsible for
the masses of the weak interaction gauge bosons (W* and Z°. The details are
still matters of speculation—the Higgs particle has never been seen in the lab-
oratory (presumably it is just too heavy to make with any existing accelerator),t

* We don’t have to adopt any particular gauge. However, if we do not, the theory will contain
a nonphysical “ghost” particle, and it is simplest to eliminate it explicitly from the start.

1 Many particle physicists are presently campaigning for the construction of a Superconducting
Supercollider (SSC), whose main purpose would be to search for the Higgs particle.
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and the Higgs “potential” [% (¢)] is completely unknown (I used ¥ = —u*(¢*¢)
+ I\Y(¢*¢)? just for the sake of argument). There may in fact be many Higgs
particles, or it may be a composite structure, but never mind: The important
thing is that we have found a way in principle of imparting mass to the gauge
fields,* and that is our license to believe that all the fundamental interactions—
weak as well as strong and electromagnetic—can be described by local gauge
theories.!!
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PROBLEMS

11.1. One advantage of the Lagrangian nrmula_lon is that it does not commit us to
any particular coordinate system—the ¢’s in equation (11.6) could be Cartesian

* In the Standard Model the Higgs particle is a/so responsible for the masses of quarks and
leptons; they are initially taken to be massless, but are assumed to have Yukawa couplings (see
Problem 11.21) to the Higgs particle. When the latter is “shifted,” by spontaneous symmetry-breaking
(11.130), the Yukawa coupling splits into two parts, one of which is a true interaction, and the other
a mass term for the field . This is a nice idea, but it does not help us to calculate the fermion masses,
since the Yukawa coupling constants themselves are unknown. Only when (and if ) the Higgs particle
is actually found will it be possible to confirm all this empirically.
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11.2.
11.3.

114.

11.35.

11.6.

11.7.

coordinates or polar coordinates or any other variables we might use to designate
the particle’s position. Suppose, for example, we want to analyze the motion of a
particle that slides frictionlessly on the inside surface of a cone mounted with its
axis pointing upward, as shown.

Vv

X

(a) Express T and U in terms of the variables z and ¢ and the constants « (the
opening angle of the cone), m (the mass of the particle), and g (the acceleration
of gravity).

(b) Construct the Lagrangian, and apply the Euler-Lagrange equations to obtain
differential equations for z(z) and ¢(¢).

(c) Show that L = (m tan® a)z%¢ is a constant of the motion. What is this quantity,
physically?

(d) Use the result in (c) to eliminate ¢ from the z equation. (You are left with a
second-order differential equation for z(¢); if you want to pursue the problem
further, 1t is easiest to invoke conservation of energy, which yields a first-order
equation for z.)

Derive equation (11.17).

Starting with equation (11.19), show that d,4* = 0, and hence that each component
of A* satisfies the Klein-Gordon equation: 34" + (mc/h)’4” = 0.

As it stands, the Dirac Lagrangian (11.14) treats ¥ and Y asymmetrically. Some
people prefer to deal with them on an equal footing, using the modified Lagrangian

he _ )
L= ITC [y @,.8) — @)Y — (mc* Wy

A nrnnlv tha !:Il]ar=T aoranas anatiat
nyyl_y [ S LWy SVEE N AW § L_Jusl.ul.AEU u\.luul-

equation (11.15) and its adjoint.

The Klein-Gordon Lagrangian for a complex field would be
L = §(3,6y40"9) — F(mc/hY'p*¢

Treating ¢ and ¢* as independent field variables, deduce the field equations for
each, and show that these field equations are consistent (i.e., one is the complex
conjugate of the other).

Apply the Euler-Lagrange equations to (11.33) to find the Dirac equation with
electromagnetic coupling.

Show that the Dirac current (11.36) satisfies the continuity equation (11.25).
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11.8.

11.9.

11.10.
11.11.
11.12.

-
o Itk
- -

- e
[ -]

11.15.

11/GAUGE THEORIES

The complex Klein~Gordon Lagrangian (Problem 11.5) is invariant under the
global gauge transformation ¢ — ¢”¢. Impose local gauge invariance to construct
the complete gauge-invariant Lagrangian, and determine the current density J*.
Check that this current Obeys the continuity equation (11.25).

(a) Suppose the field variables (¢;) are subjected to an infinitesimal global trans-
formation &¢;. Show that the Lagrangian .£(¢;, d,¢;) changes by an amount

o.L
oL = a“{a(a,.@) M"}

In particular, if the Lagrangian is invariant under the transformation in ques-
tion, then 8.£L = 0, and the term in curly brackets constitutes a conserved
current (that is, it obeys the continuity equation). This is the essence of Noeth-
er’s theorem, relating symmetries of the Lagrangian to conservation laws.

(b) Apply Noether’s theorem to the Dirac Lagrangian (11.14), to construct the
conserved current associated with global phase invariance [equation (11.26)].
Compare the electric current (11.36).

(c) Do the same for the complex Klein-Gordon Lagrangian in Problem 11.8.

Derive equation (11.51).
Deduce equation (11.58) from equation (11.57), using (11.54), (11.55), and (11.56).
Suppose we were to define

F¥ = 9“A” — PA*

in Yang-Mills theory.

(a) Find the transformation rule for this F*, under infinitesimal gauge transfor-
mations (11.61).

(b) Determine the infinitesimal transformation rule for £, (11.63), in this case.
Is the Lagrangian invariant?

2
[Answers: (@) F* — P + h—i A X F* + A% X &\ — A” X 9"\
8g
(b) F-F,, = P F,, + -~ (A, X F*)-9,A
C

erive equation {11.66), starting with (11.61) and (11.65).

LAELLY =~ =2 1 E

. Prove that gauge field Lagrangian (11.63) is invariant under finite local gauge

transformations, as follows:
(a) Using expressions (11.58) and (11.65), show that

r-F*' = S(r-F*)S§™!

[Note that 9,(S7'S) = 0= (3,57)8 = =573, 5).]
(b) Show, therefore, that

Tri(r-FXr-FL)]
1s invariant.
(c) Using Problem 4.20(c), show that the trace in (b} is equal to 2F*"-F,,,.

Apply the Euler-Lagrange equations to Lagrangian (11.69). Using the standard
associations (7.71), (7.72), and (7.79), obtain “Maxwell’s equations™ for classical
Yang-Mills theory. [Note that there are three charge densities, three current den-
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11.16.

11.17.

11.18.

11.19.

11.20.
11.21.

11.22.

11.23,

11.24.

11.25.
11.26.

sities, three scalar potentials, three vector potentials, three “electric” fields, and
three “magnetic” fields, in this theory.] (Unlike electrodynamics, your expressions
for the divergence and curl of the E’s and B’s will inevitably involve the potentials.)

Show that any Hermitian 3 X 3 matrix can be written as a linear combination of
the umit matrix and the eight Gell-Mann matrices [eq. (11.76)].

(a) Show that det(e”) = ™™, for any matrix 4. [Hint: Check it first for a diagonal
matrix. Then extend the proof to any diagonalizable matrix (S™'AS = D,
where D is diagonal, for some matrix S)—show that Tr (4) = Tr (D) and
S7leS = eP, so that det(e”) =‘det(e”). Of course, not all matrices are di-
agonalizable; however, every matrix can be brought into Jordan canonical
form (S7'AS = J, where J is diagonal except for some 1’s immediately below
the main diagonal). Take it from there.]

(b) Show that ¢™'* [in equation (11.78)] has determinant 1.

Starting with equation (11.81), derive (11.82) and (11.83).

Confirm that the Proca propagator (11.95) is the inverse of the tensor in equation
(11.92), in the sense explained in the text.

Construct the Lagrangian for ABC theory (Chap. 6).
Give a physical interpretation of the Yukawa Lagrangian:

2
£ = liheby 8.9 = mc] + [ 16,000°4) - 5(%) ¢2] oo,

What are the spins and masses of the particles? What are their propagators? Draw
the Feynman diagram for their interaction, and determine the vertex factor.

Derive equation (11.120).

Suppose we took

U=+ V2, Ya=@- 92

as the fundamental fields, instead of definition (11.119). Express the Lagrangian
(11.120) in terms of ¥, and ;. [Comment. Offthand, it looks as though we have
two massive fields here, and thus escape Goldstone’s theorem. Unfortunately,
there is also a term of the form —u?y,¥,. If you interpret this as an interaction, it
converts ¥, Into ¥», and vice versa, but that means neither one exists as an in-
dependent free particle. Rather, such an expression should be interpreted as an
off-diagonal term in the mass matrix (11.45), indicating that we have incorrectly
identified the fundamental fields in the theory. The physical fields are those for
which M is diagonal, and for which no direct transitions from one to the other
can occur. We have encountered this situation once before, in Section 4.8 of
Chapter 4: We found that K® < K°, and hence that these are not the physical
particle states; instead, the linear combinations K, and K;, in terms of which the

mass matrix is diagonal, are the “true™ particles.]

Generalize the argument following equation (11.115) to three fields (¢, @2, ¢3).
What are the masses of the three particles? How many Goldstone bosons are there
in this case?

Starting from expressions (11.129) and (11.130), derive equation (11.131).

Draw the primitive vertices for all the interactions in curly brackets in equation
(11.131). Circle the ones that survive in equation (11.136).



The Dirac delta function, 8(x), is an infinitely high, infinitesimally narrow spike at the
origin, with area 1 (Fig. A.1). Specifically

0, ifx#0

o, fx = 0} and J:m d(x)dx = 1 (A.1)

o(x) = {

Technically, it’s not a function at all, since its value is not finite at x = 0. In the mathematical
literature it is known as a generalized function, or distribution. It is, if you like, the limit
of a sequence of functions, such as rectangles of height # and width 1/n, or isosceles
triangles of height # and base 2/n (Fig. A.2), or any other shape you might wish to use.

If f(x) is some “ordinary” function (that is, not another delta function—in fact,
just to be on the safe side let’s say that f(x) is continttous—then the product f(x)8(x) is
zero everywhere except at x = 0. It follows that

J(x)(x) = f(0)a(x) (A.2)

(This is the most important fact about the delta function, so make sure you understand
why it is true. The point is that since the product is zero anyway except at x = 0, we may
as well replace f(x) by the value it assumes at the origin.) In particular

| s = 7o) [~ s = 0 (A3

Under an integral, the delta function “picks out” the value of f{x) at x = 0. (Here and
below, the integral need not run from —oo to +o0; it is sufficient that the domain extend
across the delta function, and —e t0 +¢ would do just as well.)

Of course, we can move the spike from x = 0 to some other point, x = a:

0, ifx+#a

0, ifx=a

o(x —a) = { } and J:w Mx —aydx =1 (A.4)
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D

1 6 (x)
]
7
% Area 1
7 el
%%
Jﬁg Figure A.1 The Dirac delta functton (you
//L > must imagine, however, that the curve is

x * infinitely high and infinitesimally narrow).

(see Fig. A.3). Equation (A.2) generalizes to
f(x)d(x — a) = fla)d(x — a) (A.5)

and equation (A.3) generalizes to
[” i - e = fia (A.6)

Now, how would we interpret the expression 3(kx), if k is some nonzero (real)
number? Suppose we multiply by an “ordinary” function f{x) and integrate:

[* reostinsa

We may change variables, letting y = kx, so that x = y/k, and dx = 1/k dy. If kis positive,
the integration still runs from —co to +oo, but if k is negative, then x = oo implies
¥y = —oo, and vice versa, so the order of the limits is reversed. Restoring the “proper”

order costs a minus sign. Thus

] S+ d 1
[ roostenas == [ qomsn L =100 - s )

(The lower signs apply when k is negative, and we can account for this neatly by putting
absolute value bars around the k, as indicated.) In this context, then, §(kx) serves the

same purpose as (1/]k|)8(x):
[+ 8] [+ 8] 1
J[QO S(x)8(kx)dx = J’: ~ f(x)[m B(x):lldx (A.8)

A T, (x)
R, (x)

Ay (x} T, {x)

-
1 X

11 X -1 _1 1
4 2 2 2

Figure A.2 Two sequences of functions whose limit is 3(x).
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J\ _

a X

Figure A.3 “Graph” of 6(x — a).

Because this holds for any f{x), it follows that the delta function expressions are equal:*

|

6(kx) = — 8(x) (A.9)

|kl
What we have just analyzed is really a special case of the general form d(g(x)),
where g(x) is some function of x. 5(g(x)) has spikes at the zeros, x1, x2, X3, . . ., of g(x):
g(xi)=0 (l= ls 25 3s'°°3n) (A-IO)

In the neighborhood of the ith zero, we may expand g(x) as a Taylor series:
g(x) = g(x) + (x — x)g'(x) + Hx — xYg"(x) + + - =(x — x)g'(x)  (A11)
In view of equation (A.9), the spike at x; has the form
1
lg'Cxa)l

The factor |g'(x;)| ™" tells us the “strength” of the delta function at x;. Putting this together
with the spikes at the other zeros, we conclude

¥g(x)) = dx—x) (x=x) (A.12)

n

5(g(X)) = ,'=21 Ig’(xl)l

Thus any expression of the form 3(g(x)) can be reduced to a sum of simple delta functions.}

o(x — x;) (A.13)

EXAMPLE A1
Simplify the expression 4(x? + x — 2).

Solution. Here g(x) = x*> + x — 2 = (x — 1)Xx + 2); there are two zeros, at x; =
1 and x, = —2. Differentiating, g'(x) = 2x + 1, so £'(x;) = 3 and g'(x;) = —3. Thus

S(x2+ x—2)= 180 — 1)+ $6(x + 2)

* You ought to ponder that last step for a moment. Ordinarily, the equality of two integrals
certainly does not imply equality of the integrands. The crucial point here is that the integrals are
equal for any f(x). Suppose the delta function expressions 8(kx) and (1/|k[)3(x) actually differed, say,
in the neighborhood of the point x = 17. Then I would pick a function f{x) that was sharply peaked
about x = 17, and the integrals would not be equal. Since, on the contrary, the integrals must be
equal, it follows that the delta function expressions are themselves equal. [Well, technically they
might still differ at isolated points, provided these contribute nothing to the integral. But we can
silence this objection by noting that both sides of equation (A.9) are clearly zero except at x = 0.]

+ Equation (A.13) is exact, notwithstanding the truncated Taylor series (A.11) I used in its
derivation. At x;, the “extra” terms are zero, since they contain powers of (x — x;).
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It is an easy matter to generalize to three (or more) dimensions:
3(r) = 5(x)3(»)d(z) (A.14)

This three-dimensional delta function is zero everywhere except at the origin, where it
blows up. The triple integral over 8%(r) is 1:

f 3(0)d%r = f 5COS(N8(2)dx dy dz = 1 (A.15)
and f SO — ro)d’r = fixy) (A.16)

For example, the charge density (charge per unit volume) of a point charge g located at
the point r, can be written

p(r) = g 8°(r — 1y

PROBLEMS

Al () [ @2x*+7x+ 3)d(x — 1)dx = ?
(b) 5 In (1 +x)8(x — x)dx = ?

A.2. Use equation (A.13) to simplify the expression §(Vx?> + 1 — x — 1).
A.3. Use equation (A.13) to simplify the expression 8(sin x). Sketch this function.

Ad. Let f(y) = [} 8(y — x(2 — x))dx. Find f(), and plot it from y = =2 to y = +2.
dZ
AS. f_5 | x“,:d—x-z- o(x — 3)]dx = ? [Hint: Integrate by parts.]

A.6. Evaluate [ r-(a — r)o’(r — b)d%, ifa = (1, 2, 3), b = (3, 2, 1), and the integration
1s over a sphere of radius 1.5 centered at (2, 2, 2).



Appendix B

Decay Rates and
Cross Sections

B.1 Decays
Suppose particle 1 decays into particles 2, 3, 4, ..., n:
1—2+3+4+---+n

The decay rate is given by the formula

S d? cd? d’p,
i = oA MR o7
2hm, |LQ#)2E, JL(27)°2F; (2n)2FE,

X Q)8 pr—p2—p3— 00 — D) (B.1)
where p; = (E;/c, p;) is the 4-momentum of the ith particle (which carries mass m;, so
that £2 — p2c? = m?c*). The decaying particle is presumed to be at rest: p; = (mc, 0).
S is a product of statistical factors: 1/j! for each group of j identical particles in the
final state.

Two-Body Decays If there are just fwo particles in the final state, the integrals can be
performed explicitly. The total decay rate is

Sip}
r-——"2 P (B.2)
81rﬁmtc
Where |p| is the magnitude of either outgoing momentum
¢
Ip| = T Vi + mi 4+ mb — 2mim3 — 2mim3 — 2mim; (B.3)
t

In particular, if the outgoing particles are massless, then |p| = m,c/2, and
AY o

= —— m B.4
l16mhm, | (B-4)

r
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B.2 Cross Sections

Suppose particles 1 and 2 collide, producing particles 3, 4, ..., a:

+2—-3+4+ -0+

s

1
1 r

-

The cross section is given by the formula

da = [P hS [edm Todn ), [odn ]l
Vi paf — (mmac?) L@o)2E; JL2n)2E, (27)2E,

X 2u)Y 8%py Y P2r— D3 —DPa— - — D) (B.5)

where (as before) p; = (E:/c, py) is the 4-momentum of particle | (mass m;), E; =
cYmic? + p?, and S is a statistical factor (1//! for each group of j identical particles in the
final state).

Two-Body Scattering If there are just twe particles in the final state, the integrals can
be performed explicitly.
(a) In the center-of-momentum frame. Here

V(o p2) — (mumac®? = (E, + E))pil/c (B.6)
do e\t SIm?  |p/
_ = — _ '7
and e (8w) (E, + E»? |pd ®.7)

where |p,| is the magnitude of either incoming momentum, and |p/| is the magnitude of
either outgoing momentum. In particular, for elastic scattering (4 + B— A + B), |pd =
lpd, so [letting E = (E, + E)/2]:

d he\? S|P
dQ 167 E
(b) In the lab frame (particle 2 at rest). Here
V(p1- p2) — (mumac? = muclp| (B.9)
In the case of elastic scattering (4 + B — A + B), the differential cross section is
d h\ 3S|Mm P
ao _ (_) p3S|M| (B.10)
d  \87/ mylplllpsl(E, + mac?) — |p,|E; cos 0|
If, in particular, the incident particle is massless (m; = 0), this reduces to
@:lﬂu&\2sl.jﬁlz /11N
40 \8amyeE,) " R
If the target recoil is negligible (m,c* > E)), then (B.10) reduces to
do Aoy
— = M[? B.12
If the outgoing particles are massless (m; = ny = 0), (B.5) yields
d A\ S|t )?
e _(n) M Fip B.13)
dQ 87T m2]p1|(E1 + myc- — {pllc COS 0)



Appendix C

Pauli and Dirac Matrices

C.1 Pauli Matrices

These are three Hermitian, unitary, traceless 2 X 2 matrices:

=(0 1) =(0 -—i) =(1 0) ci
““\o YT o FTV - &

(Often we use numerical indices: oy = o, 0; = o,, 03 = 0., ¢ 18 not part of a 4-vector,
and we do not distinguish upper and lower indices: o, = ¢!, 0, = ¢, 03 = 0°.)
(a) Product Rules.

O','O'j = BU + ifijkak (C.2)

(A 2 X 2 unit matrix is implied in the first term, and summation over k in the second).
Thus, in particular:

k=0, =0l=1 (C.3)
o, = Ig. T oex_ = Fer Toex. = Fer ™ AN
XV y FYzy Yyvz VX VzVx LUy 1)
[o:, 0j] = 2ie; 0% (commutator) (C.5)
{0/, 0;} = 26 (anttcommutator) (C.6)

and for any two vectors a and b,
(a-o)b-g) =a-b+ioc-(aXb) (C.7)

(b) Exponentials.

e®*=cosf +if-gsin g (C.8)
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C.2 Dirac Matrices

These are four unitary traceless 4 X 4 matrices:

0=(1 0). l,z(o a") co
Yo )7 T\ o ©)

(Here 1 is the 2 X 2 unit matrix, and 0 is the 2 X 2 matrix of zeros; o' are the Pauli
matrices. Lowering indices changes the sign of the “spatial” components: yo = Y, v =
—+".) We introduce as well the auxiliary matrices

¥ = iy (C.10)
0
0
i
o = 5 (,Y#..YP — ,Y’nyﬂ) (C12)

For any 4-vector a*, we define the 4 X 4 matrix & as follows:

a=a,y* (C.13)
(a) Product Rules. In terms of the metric

1 0 0 0

,_ [0 -1 0o o
“=lo o0 -1 o (C.14)

0 0 0 1

(note that g*’g,, = 4), we have:

vy Y = 287 ab+ Ba'=2a-b (C.15)
Yy =4 (C.16)
VY'Y = =27 VY = A (C.17)
v = 487, vy @By = da-b (C.18)
VYV = =2y, v Byt = —2ebd (C.19)

(b) Trace Theorems. The trace of the product of an odd number of gamma matrices
is zero.

Tr(l)=4 (C.20)
Tr (y*y*) = 4g*, Tr(a¥) = da-b (C.21)

Tr o 4 ;w Ao __ ,ua (2
(vvvv)dg"b Adig Ag“a)‘db ) (C.22)

ir{abed) = ala- a-

Since v° is the product of an even number of v matrices, it follows that Tr(v*y*) =
and Tr (Y*¥*y’y") = 0. When 7° is multiplied by an even number of v’s, we find

Tr(v>) =0 (C.23)

Tr(v’v*y") = 0, Tr(y’al) =0 (C.24)

Tr (Y y*y'y™y°) = 4ie™, Tr (Y abed) = 4ie**a,b,c\d, (C.25)

where ¢ = —1, if uvAo is an even permutation of 0123, +1 for an odd permutation,

and 0 if any two indices are the same. Note that

e, = (5287 — 527) (C.26)

,uvxf



Appendix D

Feynman Rules (Tree Level)

D.1 External Lines

Spin O: (nothing)

Incoming particle: u
Incoming antiparticle: v

_—
opin 7 Outgoing particle: #
Outgoing antiparticle: v
T incoming: ¢
Spin 1: {ou tgoing: ¢4"
D.2 Propagators
. I
Spin 0: —
gc — (mc)
- (g + mc)
Spin i:
pin 3 7 — (mc)2
—ig,,
Massless: ‘g“
: q
Spin 1: . 2
Macc-n o —l{g‘"’ — q.qu-'/(mC) ]
L g* — (mc)?
D.3 Vertex Factors
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igw cos B, [ga(a ~ @),
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The weak coupling constants are related to the electromagnetic coupling constant:
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There are also “mixed” couplings of the photon to the W and Z:
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A: see Conservation laws; Baryon number
ABC theory, 201-213
Abelian, 106, 354
See also Gauge invariance; Groups
Accelerator, 4
Adjoint, 223, 228
Allowed energies, 148
a: see Fine structure constant
ag, 61,77, 165, 279, 294
a.,., 76, 302, 309
« particle: see Particles
Amplitude, 119, 189, 194-195, 200-201,
229, 231
Anderson, C. D., 18, 20, 29
Angular momentum, 103
addition, 109-113
eigenfunctions: see Spherical harmonics
eigenvalues, 140
matrices: see Spin matrices
orbital, 107-109, 153, 252
spin, 103, 107-109, 116, 252
Annihilation; see Pair annihilation
Anomalous magnetic moment
electron, 17, 153, 156, 232

proton, 156-157

Anticommutator, 139, 216

Antielectron: see Positron

Antineutrino, 24, 26-28, 124-125

Antineutron, 21

Antiparticle, 3, 18-22, 36-37, 135, 217, 220-
221

Antiproton, 21, 30-31, 96-97

Antisymmetric state, 112, 118, 174-180

Antisymmetric tensor, 100, 224

Antisymmetrization, 231
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Index

Associated Laguerre polynomial, 149

Associated Legendre function, 147

Associated production, 32-33

Asymptotic freedom 62-64, 164-1635, 209,
279, 292-295

Axial vector, 126-127, 224, 302-303, 324

B: see Beauty
B meson, 44, 79, 167
b quark, 44, 122
Bare: see Charge; Coupling constant; Mass
Barn, 200
Baryon, 17, 29, 34, 36
decuplet, 34-36, 38, 111, 179
magnetic moment, 180-182
mass, 182-184
number: see Conservation laws
octet, 33, 39, 111, 179-180
Beautiful baryon, 44
Beautiful meson, 44
Beauty, 44, 47
Beta decay, 22-24, 27, 46, 52, 56, 301, 309-
314

8 particle: see Electron
Bethe, H. A,, 155, 159, 208

Bevatron, 21, 96

Bhabha scattering, 57-59, 78, 232, 234
Bilinear covariants, 222-225

Bispinor: see Dirac spinor

Bjorken, J. D., 42, 269

Bjorken scaling, 269-273, 294-295
Bohr, N,, 13, 23, 149, 151

Bohr energies, 148, 186

Bohr magneton, 153



INDEX

Bohr model, 13
Bohr radius, 149
Bohr theory, 149-151
Boson, 109, 175
Bottom: see Beauty
Bottomonium, 143-144, 167-168
See also T meson
Bound state, 2, 39, 42, 52, 143-188
Branching ratio, 72, 190, 316
Brookhaven, 32, 42, 132
Breit frame, 102
Brick wall frame; see Breit frame
Broken symmetry, 336
See also Gauge invariance
Bubble chamber, 35

C: see Charm; Charge, conjugation
¢ quark, 42-44, 122
Cabibbo, N., 70, 317
Cabibbo angle, 301, 314, 317-321
Cabibbo theory, 317-322
Callan~-Gross relation, 270-273
Casimir’s trick, 236-238, 253
Center of momentum, 96-98
Central potential, 146
Centrifugal barrier, 147, 159
CERN, 6, 40, 44, 46, 67, 323-325, 327
Chadwick, J., 14
Charge

bare, 63, 249

conjugation, 103, 128-130, 134-135, 162,

222,252
conservation: see Conservation laws
effective, 63, 249
electric, 47, 60, 118
independence, 117
renormalization, 246-250
weak, 65
See also Coupling constant

Charged weak interactions, 301-304
Charm d.')_AA /.17 16§

SRifaR Rddy AN

Charmed baryons 43-45
Charmed mesons, 43-44
Charmonium, 44, 143-144, 162-169
See also y meson
Chiral states, 330-333
Chromodynamics, 55-56, 355-357
See also Quantum chromodynamics
Clebsch—-Gordan ceefficients, 111-112
Cioud chamber, 7, 20
CM: see Center of momentum
Coleman-Glashow formula, 53
Colliding beams, 6, 46, 98-99
Collisions, 91-93
Color, 41-42, 6061, 64, 74, 261-262, 279
factor, 164, 285-289, 291
octet, 280, 285-286
sextet, 288
singlet, 178, 188, 280-281, 284-286, 289,
291, 298
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SU(3), 178, 281, 355-356
triplet, 287-288
Colorless particle, 41, 64-65, 280-281
See also Color, singlet
Commutator, 139
Completeness, 217, 221, 229, 237
Compton, A. H., 15
Compton
scattering, 15-16, 58, 78, 102, 232, 235-
236
wavelength, 15, 63
Confinement, 40, 42, 64-65, 286, 289, 295-
296
Conservation laws, 72-76, 79, 103, 105
angular momentum, 105
baryon number, 29-31, 72-74, 77, 118
charge, 32, 72-73, 105, 128, 226, 313
color, 74
electron number, 27, 47, 74, 317
energy, 51-52, 60, 91-92, 105, 203, 230
flavor, 67, 74-75
isospin, 117-120
lepton number, 26-27, 31
mass, 91-92
momentum, 91-92, 105, 203, 230
muon number, 27, 74, 317
parity, 125-128
quark number, 74
strangeness, 32-34, 74-75, 118
tau number, 47, 74, 317
Conserved current, 313
Continuity equation, 226, 347
Contraction of indices, 87
Contraction theorems, 239
Contravariant four-vector, 85, 214
Cosmic rays, 4, 18-20, 29, 100
Coulomb force, 57
Coulomb gauge, 227-229, 281, 302
Coulomb potential, 148, 164, 194, 285, 287
Coupling constant, 61, 202
bare, 249
dimensions, 230
effective, 63, 209-210

(w7 3 leil 0]} Ul LV

electromagnetlc 62-63, 230, 336, 359
renormalized, 247-248, 292
running, 62, 77, 209-210, 249, 292, 294-
295
strong, 61, 77, 279, 359
weak, 77, 302, 309, 324, 335-337
See also Charge
Covariant derivative, 349, 352, 356, 365
Covariant four-vector, 85-86, 214, 251
Cowan, C. L., 26
CP violation, 130-134, 321
Cronin, J. W, 132-133, 135
Crossing symmetry, 21-22, 58
Cross section, 119, 189-194, 378
See also Golden rule, for scattering
A+ A— B+ B, 204-206
hard sphere, 193
Mott, 241
nucleon-nucleon, 119
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Cross section (Continued)
pair annihilation (QCD), 292
pair annihilation (QED), 164, 187, 245,
261
pion-nucleon, 119-120, 140
Rutherford, 194, 241
two-body, 199-201
Current
charged weak, 332
color, 357
conserved, 226, 313
electromagnetic, 225-227, 333, 335-336,
349
weak hypercharge, 334-335
weak isospin, 334-335
Yang-Mills, 354
Cutoff, 208, 247
CVC hypothesis, 313
Cyclotron formula, 7

D meson, 44, 76, 79, 166
D, meson: see F meson
d quark, 37, 122
D’Alembertian, 227
Davis, R., 26
De Broglie wavelength, 6
Decay rate, 189-190, 195-198, 377
kaon, 318
muon, 304-309
neutron, 311-312
pion, 316
positronium, 164, 245-246
quarkonium, 292
two-body, 197-198
Decays, 2, 3, 72-76, 93-94, 241
Decuplet: see Baryon, decuplet
Deep inelastic scattering, 40, 48, 257-258,
266-273
Degeneracy, 149
Delbruck scattering, 78
A, 31, 34,69, 120

Talta finetinn: cop Nivan A
Arviia LULILLIULL, ACC B/l W

Density of states, 194
See also Phase space
DESY, 67
Detailed balance, 21-22, 134
Detectors, 7
Deuteron, 118, 143
Differential cross section, 192, 200, 245
Differential decay rate, 195
Dimensions
amplitudes, 200-201
coupling constants, 202, 230
fields, 347
Dipole function, 267
Dipole moments: see Electric dipole moment;
Magnetic moment
Diquarks, 289
Dirac, P. A. M, 18, 208-209, 214-215
Dirac delta function, 157, 195-196, 203,
230-231,373-376

INDEX

Dirac equation, 18, 213-222
momentum space, 218, 228

Dirac matrices, 215, 380
See also Gamma matrices

Dirac sea, 18-21, 217

Dirac spinor, 216, 226

Disconnected diagram, 207

Discrete symmetry, 103

Dot product, 86

Down quark; see d quark

Downness, 47

Drell-Yan process, 295

Dresden, M., 201

Effective charge: see Charge
Effective mass; see Mass
Eigenfunction, 146
Eigenvalue, 114, 146
Eigenvector, 114
Eight-baryon preblem, 121
Eightfold Way, 33-39, 107, 121-122
Einstein, A., 14-15, 76
Einstein summation convention, 64
Elastic collision, 91-92
Electric dipole moment, 135
Electric form factor, 267
Electrodynamics, 55-56, 225-228

See also Quantum electrodynamics
Electromagnetic current: see Current
Electromagnetic decay, 241
Electromagnetic field, 225
Electromagnetic force, 55-56
Electromagnetic potential, 226
Electron, 4, 11-12, 230
Electron number: see Conservation laws
Electron—-deuteron scattering, 278
Electron—electron scattering: see Moller scat-

tering

Electron—-muon scattering, 232-233, 238-240
Electron-neutron scattering, 276, 278
Electron-positron scattering

lagts Rhahha ¢ 3
elastic: see Bhabha scattering

inelastic, 257-262, 327-330
Electron-positron annihilation: see Pair anni-
hilation
Electron-proton scattering
elastic, 262-267, 269
inelastic, 266-269
Electroweak force, 3, 46, 56, 322, 330-337
See also GWS theory
Electroweak interference, 326, 330
Elementary particles, 1
See also Particles
Energy
conservation: see Conservation laws
kinetic, 90-92, 152
operator, 145; see also Hamiltonian
relativistic, 87-91, 152
rest, 90
Energy-momentum four-vector, 89
n meson, 38-39, 170
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7 meson, 38-39, 170, 172, 188
Euler-Lagrange equation, 344-3435
Exchange of particles, 16, 57, 61

See also Mediator
Exclusion principie: see Pauii
Exotic atom, 159
Exotic particle, 53
Expectation value, 151-152, 186
External line, 58-60, 229-231, 282-283

F meson, 44 (now called D)
Faddeev-Popov ghost, 282
Family: see Generation
Fermi, E., 23, 56, 120
Fermi constant (Gg), 307-309
Fermi’s Golden Rule: see Golden Rule
Fermi theory of beta decay, 23-24, 44, 46,
56, 307-308
Fermion, 109, 175
Feynman, R. P., 3, 21, 27, 56, 155, 203, 208
Feynman calculus, 59, 189-212, 361-362
Feynman diagram, 55, 57, 59, 189, 194, 201,
203
Feynman rules, 3, 59, 194, 213, 357-360,
381-384
ABC theory, 201-204
GWS, 336-337
QCD, 279-284
QED, 213, 228-231, 255
weak interactions, 302, 317-318, 322
Feynman-Stiickelberg interpretation, 21
Field strength tensor, 225
Fifth force, 296
Fine structure, 151-155
Fine structure constant, 9, 59, 148, 152, 230,
249, 294, 309
Flavor, 41-44, 47, 53, 64, 116-122, 279, 280
Flavordynamics, 55-56, 67
Form factor, 266-269, 312, 315
Four-momentum, 89
Four-vector, 84-87
Four-velocity: see Proper velocity
Ji-value, 312
Fundamental representation, 121, 171

G see G-parity
Gr: see Fermi constant
Gamma matrices, 216, 224, 238-239, 380
Gamma rays: see Photon
Gauge fields, 348-349, 352, 356
Gauge invariance, 253 298
abelian, 354
broken, 362-365
global, 348, 350, 352, 354
local 348-350, 352, 354, 365-367
nonabelian, 354-355
Gauge theory, 210, 343-371
Gauge transformation, 105, 226-227, 348-
349
Gell-Mann, M., 32-34, 36-37, 56, 131-132
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Gell-Mann matrices, 282, 355
Gell-Mann-~Nishijima formuta, 118, 140, 334
Gell-Mann-Okubo mass formula, 52
Generation, 47-48, 317, 321-322
Ghost particle, 228, 282, 367
GIM mechanism, 44, 70-71, 301, 319-320,
322
Glashow, S. L., 42-44, 56, 70, 322-323, 330
Global gauge transformation, 348, 352, 354
Glueball, 48, 61
Gluon, 48, 55-56, 60-61, 260, 275, 279-281
octet, 280
Gluon-gluon coupling, 61, 282-284, 291,
299, 359-360
Golden Rule, 189, 194-201, 305
for decays, 195, 305
for scattering, 198-199
Goldstone boson, 364, 366-367
Goldstone’s theorem, 364, 371
G-parity, 129-30
Grand Unification, 31, 76-77
Gravitational force, 55
Graviton, 16, 48, 55-56
Greenberg, O. W, 41
Ground state
baryon, 176
hydrogen, 186
See also Vacuum
Group theory, 103, 106
Groups, 106
abelian, 106
continuous, 106
finite, 106
infinite, 106
O(n), 106, 137
SO(3), 107
SO(n), 106-107, 137
SU(2), 107, 121, 352
See also Isospin
SU(2) X U(1), 334-337, 355
SU@3), 103, 107, 121
See also Eightfold Way; Color, SU(3)
SU(6), 103, 121
SU(n), 106, 137
U(n), 106
GUTs; see Grand Unification
GWS (Glashow/Wemberg/Salam) theory, 3,

1N AN o X0 Tl 0 ¥~
"HJ "Q'O, JU UU IU L1U, JUl, JLL'.)LJ,

330—337
Gyromagnetic ratio, 153, 156

Hadron, 28, 33, 143

See also Baryon; Meson
Hadron production, 257-262
Half-life, 72, 211, 312
Hamiltonian, 146, 151-153, 158, 160, 252
Hard-sphere scattering, 191-193
Heaviside-Lorentz units, 9, 230, 249, 347
Heavy lepton, 44
Heavy quark, 165, 172
Helicity, 27, 124, 221, 330-333, 339
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Heisenberg, W., 116
See also Uncertainty principle
Hermitian conjugate, 220, 223
Hermitian matrix, 351, 355
Hidden symmetry, 364
Higgs mechanism, 76, 330, 343, 354, 360,
365-368
Higgs particle, 48, 367
Higher-order processes, 58, 63, 202, 206-210,
246-250, 281, 292-294
Hole theory, 20-21
t'Hooft, G., 210, 323, 360
Hydrogen, 143, 148-159
Hypercharge, 34, 334-335
See also Weak hypercharge
Hyperfine splitting
in baryons, 182-184
in hydrogen, 156-159
in mesons, 172
in positronium, 161

Identical particles, 1, 41, 175-176
Impact parameter, 191
Inclusive cross section, 267-269
Indistinguishable particles, 1
Inertial frame, 81
Infinite momentum frame, 272
Intermediate vector boson, 46, 56, 335
See also W Z
Internal line, 58-6C, 202, 229
Internal momenta, 203, 231
Internal quantum number, 128
Internal symmetries, 103, 105, 116-120
Intrinsic angular momentum: see Angular
momentum, spin
Intrinsic parity: see Parity
Intrinsic strength of weak force, 76, 309
Intersecting storage rings, 6
Invariance, 105
See also Symmetry
Invariant, 85, 88-89, 94, 97, 281
Inverce heta ﬂpnay’ 26 103

Inversion, 125-126

Ionization, 7

Irreducible representation, 107

Isospin, 103, 116120, 335
See also Weak isospin

JI: see \ meson
Jets, 48, 258-260

K meson, 29-38, 128, 131-133, 318

Kaon: see K meson

Ket, 3, 109

Klein-Gordon equation, 213-215, 227

KM matrix: see Kobayashi-Maskawa matrix

Kobayashi-Maskawa matrix, 70-71, 133,
301, 321-322, 325

Kronecker delta, 139

INDEX

Lagrangian, 343-347

classical, 343-344

Dirac, 345-346

Higgs, 367

Klein-Gordon, 345

Maxwell, 347

Proca, 346-347

QCD, 357

QED, 350

Yang-Mills, 354

Yukawa, 371
Lagrangian density, 344, 347

See also Lagrangian
Lamb, W. E,, 32, 154
Lamb shift, 17, 154-156, 161, 209, 249, 294
A (scale parameter in QCD), 295
A baryon, 29, 32-35, 70
A matrices; see Gell-Mann matrices
Laplacian, 146
Lederman, L. M., 28, 132
Lee, T. D, 56, 122, 128
1eft-handed doublet, 334-335
Left-handed state, 27, 124, 330-334
Lepton number, 26-27

See also Conservation laws
Leptonic decay, 318
Leptons, 17-18, 28, 65-67

families, 47

table, 28, 47

weak interactions, 301-304, 317

See also Electron; Muon; Neutrino; Tau
Levi—-Civita symbol, 139, 239, 254, 303
Lifetime, 42, 52, 72-73, 75-76, 132, 189-190

A particle, 204

muon, 307

neutron, 312-314

pion, 316

positronium, 164, 187, 246

See also Decay rate
Light quark baryons, 172-184
Light quark mesons, 143, 168~172
Lightlike four-vector, 86
Linear-plus-coulomb potential, 165-167
Local gauge invariance, 3, 343, 348-350, 352,

360
Local gauge transformations, 348, 365
Logarithmic divergence, 208, 247
Longitudinal polarization, 301
Loop diagram, 207-210, 231, 246, 255, 281-
282, 292-294

Lorentz condition, 226-229, 281, 301-302

I orentz contraction 83

Aiira VA vl WAsiati e fany U

Lorentz invariance, §5-86, 97
Lorentz transformations, 8§1-84
Lowering operator, 140
Luminosity, 194, 245-246

Magnetic form factor, 267
Magnetic moment, 153
anomalous: see Anomalous magnetic mo-
ment
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baryons, 180-182

electron, 17, 153, 156
proton, 156-157
Mandelstam variables, 102
Marshak, R. E,, 18
Mass formulas
baryons, 182-184
Coleman—-Glashow, 53
Gell-Mann-Okubo, 52
mesons, 172
pion, 51
quarkonium, 165
Wand Z, 325
Mass
bare, 122
constituent, 122
current, 122
effective, 121-122, 209-210
matrix, 351, 371
neutral kaon, 132, 135
origin, 368
physical, 209
relativistic, 90, 92
renormalized, 209, 247
running, 209
shelt, 60
term, 360-362
Massless particle, 90
Matrix element, 194
See also Amplitude
Matter-antimatter asymmetry, 22, 134
Maximal parity violation, 123, 133, 303
Maxwell, J. C., 56, 76
Maxwell Lagrangian, 347
Maxwell’s equations, 225-228
Mechanics, 2
Mediator, 16, 47-48, 55-57, 61, 301, 308-
309
See also Gluon; Graviton; Intermediate
vector boson; Photon; Pion; W, Z
Meson, 17-18, 29, 31, 33-34, 36, 38-39, 128,
168-72
mass, 171-172
nonet, 36, 38-39, 128, 169
octet, 34
Metric, 85, 216
Millikan, R. A, 15, 39
Minkowski metric: see Metric
Minimal coupling, 350
Mixing
Cabibbo, 70-71, 74, 317-322
Kobayashi-Maskawa, 70-71, 321-322, 325
neutral mesons, 170-171
Moller scattering, 57-58, 232-233
Momentum
conservation: see Conservation laws
four-vector, 89
operator, 144, 214
relativistic, 87-91
space, 218, 228-229, 358
Mott scattering, 232-233, 240-241, 265, 270,
309, 313
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Multiplets, 117-118

Multiplicative quantum number, 127, 129
Muon, 4, 18-19, 24-25, 27, 66, 100, 304-
309
Muon number, 27, 47
See also Conservation laws
Muonium, 159-160, 168

N: see Nucleon
n: see Neutron
Neddermeyer, S., 18
Ne’eman, Y., 33
Negative energy states, 18, 217-218, 221
Neutral weak interactions, 65-67, 322-324,
326
Neutrino, 14, 19, 22-28, 124-125
Neutrino-electron scattering, 303, 323-327
Neutrino-nucleon scattering, 323-324
Neutron, 14, 24, 27, 68, 116, 135, 309-315
Ninth gluon, 280-281, 296, 356
Noether’s theorem, 103, 105, 117, 370
Nonabelian gauge, 354-355
Nonet: see Meson, nonet
Nonleptonic decay, 318-319
Normalization
Dirac spinor, 218, 220-221, 225, 229
Pauli spinor, 113
polarization vector, 229
wave function, 145
November Revolution, 41-45, 166
Nucleon, 116
See also Neutron; Proton
Nucleon-nucleon scattering, 118-119
Nucleus, 12-14

O(n): see Groups
Octet, 35
See also Baryon, octet; Color, octet; Gluon,

octet, Meson, octet

Q-, 34-36, 52-53, 70

w, 170, 172

Orthogonal matrix, 107

Orthogonal polarization vectors, 229

Orthogonal spinors, 228, 251

QZI rule, 75-76, 79, 166-167, 294

P: see Parity, operator
Pair annihilation, 58, 161-162, 215, 232,
241-245, 257-262, 289-292
Pair production, 58, 215, 232
Pais, A., 32, 131-132
Parity, 103, 122-128, 130-131, 134, 223-224
baryon, 127
conservation, 125, 127-128
intrinsic, 127
invariance, 122-123
meson, 127-128
operator, 125-127, 224
particle and antiparticle, 127, 252
photon, 127
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Parity (Continued)
quarks, 127
violation, 123, 131
Particle Data Booklet, 50, 111
Particles
a, 12-13, 141
antineutrino, 24, 26-28, 124-125
antineutron, 21
antiproton, 21, 30-31, 96-97
B meson, 44, 79, 167
b (beauty or bottom) quark, 44, 122
B: see Electron
¢ (charm) quark, 42-44, 122
D meson, 44, 76, 79, 166
d (down) quark, 37, 122
A, 31, 34, 69, 120
deuteron, 118, 143
electron, 4, 11-12, 230
n, 38-39, 170
7, 38-39, 170, 172, 188
F meson, 44 (now called D))
v: see Photon
gluon, 48, 55-56, 60-61, 260, 275, 279~
281
graviton, 16, 48, 55-56
J or J/y meson: see  meson
K meson
charged, 29, 31-38, 128, 318
neutral, 29-30, 32-38, 131-133
kaon: see K meson
A, 29, 32-35, 70
A, 44-45
muon, 4, 18-19, 24-25, 27, 66, 100, 304-
309
neutrino, 14, 19, 22-28, 124-125
neutron, 14, 24, 27, 68, 116, 135, 309-314
nucleon, 116
Q, 34-36, 52-53, 70
w meson, 170, 172
¢ meson, 75, 170, 172, 262-263
photon, 14-17, 47, 55-57, 225-230
7 meson; see Pion
pion, 18-19, 24-25, 27, 51, 68, 124125,
211, 314-317
positron, 14, 20-21, 217, 230
proton, 4, 13, 29-34, 39-40, 77, 116, 262~
275
Y mesot, 42, 44, 75, 144, 262-263; se
also Charmonium
p meson, 170, 172
§ (strange) quark, 37, 122
%, 31-33, 182-184
t (top or truth) quark, 44, 47, 122
1 lepton, 44, 47, 261
u (up) quark, 37, 122
T meson, 44, 79, 144, 167-169, 262-263
W, 44-47, 55-56, 301
=, 31, 33, 35, 78, 182-184
Z, 6, 46—47, 55-56, 301, 340
Parton model, 269-273
Partons, 42, 270
See also Gluon; Quark
Pauli, W, 23, 125, 208, 215

INDEX

Pauli matrices, 115, 139, 216, 334, 351, 379
Pauli principle, 1, 3, 18, 41, 174-176
PCAC hypothesis, 313, 319
Perturbation theory, 59
nonrelativistic, 143, 151
relativistic: see Feynman calculus
Perturbative QCD, 279, 295
Phase transformation: see Gauge transforma-
tion
Phase space, 194-195
¢ meson, 75, 170, 172, 262-263
Photoelectric effect, 15
Photon, 14-17, 47, 55-57, 225-230
Pion, 18-19, 24-25, 27, 51, 68, 124-125,
211, 314-317
Pion decay constant, 315-316
Planck, M., 14
Planck formula, 14, 90, 149
Planck’s constant, 14, 108
Plane waves, 218, 227
Polar vector, 126-127
Polarization, 62-63, 227-229
Polarization vector, 227-229
Positron, 14, 20-21, 217, 230
Positromum, 143, 159-64, 245-246
Potential
Coulomb, 148, 164, 194, 285, 287
four-vector, 226-228
interquark, 165-167, 279, 284-289
linear-plus-coulomb, 165-167
scalar, 226
vector, 226-228
Potential energy term, 361, 363
Powell, C. F., 18-19, 24-25, 29, 31
Primitive vertex: see Vertex
Proca equation, 213, 346
Projection matrix, 339
Propagator, 203, 357
electron, 230
gluon, 283
modified, 247
photon, 230
quark, 283
spin zero, 203, 358
spin one-half, 203, 358
spin one, massive, 302, 358
spin one, massless, 230, 359
unstable particle, 329
W and Z, 302, 325, 329
Proper time, 87
Proper velocity, 88
Proton, 4, 13, 29-34, 39-40, 77, 116, 262-
275
Pseudoscalar, 126-127, 223-224
Pseudoscalar mesons, 34, 110, 169-172
Pseudovector: see Axial vector
Y meson, 42, 44, 75, 144, 262, 263
See also Charmonium

0: see Charge, electric
Quantum chromodynamics (QCD), 3, 55-56,
60-65, 164, 279-299, 355-357



INDEX

Quantum electrodynamics (QED), 3, 18, 55—

60, 63, 153, 155, 213-255

Quantum field theory, 2, 3, 10, 16, 21, 135,

175, 189, 213, 343, 357

Quantum mechanics, 2, 3, 143-148, 189
Quark

confinement: see Confinement

distribution functions, 273-276

masses, 53, 122

model, 37-44

number, 74

search, 39-40

table, 47, 122

weak interactions, 317-322

See also particles
Quark—quark interaction, 284-289
Quarkonium, 160, 162-169

See also Bottomonium; Charmonium
Quasi-bound state, 162-163, 166

R, 261-263

Rabi, 1. L, 29, 149

Radial equation, 147

Radiative corrections, 155

Raising operator, 140

Range, 17, 51-52

Reactor, 4, 26

Real particle, 59-60

Reduced mass, 160

Reflection, 125-126

Regularization, 208

Relativistic correction, 151-152

Relativistic mechanics, 2, 87-99

Relativity, 3, 8§1-82

Reines, F., 26

Renormalization, 156, 209-210, 246-250,
360

Representation, 107, 116

Resonance, 120, 140, 191, 262-263

p meson, 170, 172

Richter B., 42

P l.,...fl,. atnta VT 194 221 12270
x\.lsul.-uauucu slatec, &7, L"f, J21=330

Rochester, G. D., 29- 30
Rosenbluth formula, 266, 268-269
Rotation, 105-106
Rotation group, 107
See also Groups
Rotation matrix, 115, 137, 139
Rubbia, C., 46, 327
Running coupling constant: see Coupling
constant
Rutherford, E., 12-13, 249

Rutherford scattering, 12-13, 40, 193-194,

232-233, 240-241, 309, 313
Rydberg formula, 151

S: see Strangeness
s (strange) quark, 37, 122
Salam, A., 56, 323, 330
Scalar, 87, 224

See also Invariant

391

Scalar product, 86
Scaling: see Bjorken scaling
Scattering, 2

See also Bhabha scattering; Collisions;

AiEdaNSR

Compton; Cross sections; Electron-
muon scattering; Electron—positron scat-
tering; Electron-proton scattering;
Golden Rule; Moller scattering; Mott
scattering; Neutrino-electron scattering;
Rutherford scattering
Scattering amplitude, 119
See also Amplitude
Scattering angle, 191-192
Schrodinger equation, 143-148, 213-214,
217
Schwinger, J. S., 56, 153, 155, 208
Screening, 62-64, 249, 294
Sea: see Dirac sea
Sea quarks, 275-276
Semileptonic decay, 67, 318-319
Separation of variables, 145~146
Sextet, 288
2, 31-33, 182-184
Simultaneity, 82
Singlet, 112, 118, 158-159
See also Color, singlet
SLAGC, 5, 8, 40, 258, 273, 327
Slash notation, 235-236, 238
SO(n): see Groups
Solar neutrinos, 26
Spacelike four-vector, 86
Spectator quark, 68, 70
Spectrum, 148, 150-151, 155, 162-163, 167
Spherical harmonics, 147-148, 186
Spin: see Angular momentum
Spin §, 113-116
Spin matrices, 113-115, 139, 221
Spin and statistics, 175
Spin-averaged amplitude, 236
Spin-orbit coupling, 151, 153-154, 157
Spin-spin coupling: see Hyperfine structure
Spinor, 113-115
See also Dirac spinor
Spontaneous symmetry-breaking, 323, 343,
360, 362-365
Stable particle, 72-73
Standard Model, 3, 46-48, 121-122, 322,
325, 350, 367-368
State, 3
Statistical factor, 195
Stevenson, E. C., 18
Storage rings, 5
Strange particles, 28-33
Strangeness, 32-34, 37-39, 47, 118
Street, J. C., 18 ~
Strength, 55, 76, 78
Strong force, 17, 32-33, 55-56, 279
Structure constants, 282, 297
Structure functions, 264-276
See also Quark, distribution functions;
Form factor
Stiickelberg, E. C. G., 21, 29
Subparticles, 48, 53
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Sum rules, 276, 278
Supermutltiplet, 36, 43, 121, 171-80
See also Baryon, decuplet; Baryon, octet;
Meson, nonet
Su(n). see Groups
Symmetric state, 112, 118, 174
Symmetric tensor, 100
Symmetry, 103-141
See also Gauge invariance; Groups; Invari-
ance

T: see Time reversal
t quark, 44, 47, 122
7 lepton, 44, 47, 261
7 number, 47
See also Conservation laws
70 puzzle, 128
TCP theorem, 3, 135
Tensor, 86-87
fc: see Cabibbo angle
f,,: see Weak mixing angle
Thomas precession, 153
Thomson, J. J., 11-12
Three-jet event, 258-260
Threshold, 22, 96-97, 101, 261-263
Time dilation, 83
Time reversal, 103, 134-135
Timelike four-vector, 86
Ting, C. C,, 42
Top, 44, 47
Top quark: see [ quark
Toponium, 167
Total cross section, 193
Trace, 237-239
Trace theorems, 238-239, 380
Transformation
Dirac spinor, 222-223
four-vector: see Lorentz transformations
tensor, 86-87
See also Charge, conjugation; Parity; Time
reversal
Transition probabihty, 3
Translation, 105
Transverse gauge: see Coulomb gauge
Transverse polarization, 228
Tree-level diagraim, 206, 249, 2
Triangle function, 101
Triplet, 112, 118, 158-159
Truth, 44, 47
Two-jet event, 258-259
Two-neutrino hypothesis, 27-28

[*de]
0L

u quark, 37, 122
Un): see Groups
Uncertainty principle, 51-52, 73
Unification, 31, 76-78, 330-337
See also: Electroweak force; Grand Unifi-
cation; GWS theory

INDEX

Unitary matrix, 106, 351
Units, 8, 9, 200-201, 230, 347
Up quark: see u quark
Ubpness, 47

T meson, 44, 79, 144, 167-169, 262-263

V-A interaction, 303, 324, 330
V-events, 29
Vacuum, 362-364
Vacuum polarization, 63, 156, 246, 293
Valence quarks, 275276
Vector, 224
Vector interaction, 302-303, 309, 313, 324,
330, 332
Vector meson, 110, 169-172
Vector potential, 226-228
Velocity addition rule, 83, 88
Vertex, 73
ABC, 201
QCD, 60-61, 280, 282-283, 359
QED, 56-57, 230, 359
weak, 65-67, 69-71, 302, 317, 322, 336-
337
Vertex factor: see Feynman rules; Vertex
Virial theorem, 144
Virtual particle, 58-60, 78, 257-258

W boson, 46-47, 48, 55-56, 301
Ward identity, 250
Wave function, 3, 145, 176, 214, 347
Weak force, 32, 55-56, 123, 301-341
Weak hypercharge, 333-335
Weak interaction, 65-72
charged, 65, 67, 301-304, 317-322
neutral, 66, 69, 322-330
Weak isospin, 333-335
Weak mixing angle, 324, 336
Weinberg, S., 56, 323, 330
Weinberg angle: see Weak mixing angle
Weyl, H., 125, 350, 354, 356
Work function, 15
Wu, C. S., 123

=, 31, 33, 35,78, 182-184

Yang, C. N, 56, 122, 128, 350

Yang-Mills theory, 350-355

Yukawa, H., 17-18, 47, 56

Yukawa coupling, 368

Yukawa meson, 14, 17-18, 47, 51, 65
See also Pion

Z boson, 6, 46-47, 55-56, 301, 340
Zweig, G., 37






PAULI MATRICES

B (0 1) . B (0 —f) ) _ (1 0)
T 1 0 B a2 l 0 » a3 0 —1
Gi0; = 6,'}' + iéijkO'k,' [O’,‘, O’j] = 21.6,'_,.'!;0']‘,' {Ui! O'j-} = 25”
(a-o)b-oc)=a-b+ ic-(aXb) e =cosf+if-osinb

DIRAC MATRICES

I 0 0 o 0 1
o _. : i *; 5=i°'23=( )
K (0 —1) 7 (—0';- 0) VEHYYY T o

1 06 0 O
goa¥l — Ky, wo_ 0 -1 0 0
0 0 0 -1

Product rules and trace theorems: see Appendix C.

DIRAC EQUATION

thy"dy —mey =0
(F— mou=0; (F+mcyw=0
u(p—meo)=10; g+ me)=20
Y=yt T=9Th% %=

FEYNMAN RULES
EXTERNAL LINES
Spin O: (Nothing)

Incoming particle: u
Incoming antiparticle: ¥

Spin 4: Outgoing particle: &
Outgoing antiparticie: v
Soin 1 {Incoming: €
pirt & Outgoing: €*”
PROPAGATORS
Spin O: L
C g (mey
I ilg + mc)
Spin ;3: SCRPENEY)
q° — ncy
—ig,,
Massless: q‘g“
Spin 1:

—ilg. — g.a/(mcy]
g* — (mc)?

Massive:

Vertex factors: see Appendix D.



- PHYSICAL CONSTANTS AND CONVERSION FACTORS

Speed of light

Planck’s constant

Electron charge (magnitude)
Electron mass

Proton mass

Fine structure constant
Classtcal electron radius
Electron compton wavelength
Bohr radius

Bohr energies

1A=10"m

Ifm=10"m

1 barn = 1072 m?

leV = 1.60219 X 107°J

1 MeV/c? = 1.782676 X 10730 kg
1 C =2.997925 X 10° esu

c=2.9979 X 10®* m/s

A =h2x = 1.0546 X 107* J s = 6.5822 X 1072 MeV s
e=1.6022X 107 C =4.8032 X 107 %esu

m, = 0.511003 MeV/c? = 9.10953 X 107 kg

m, = 938.280 MeV/c? = 1.67265 X 107 kg

a=e*he=1/137.036

re = e*/m.ct=28179 X 100" m

Ae = h/mec=2.4263 X 107? m

a= he*m,=529177 X 10" m

E, = —m.é*/(2h*n®) = —a’m.c}2n® = —13.6 eV/n?



PARTICLE DATA

(Mass in MeV/c?; Lifetime in Seconds; Charge in Units of Proton Charge.)

QUARKS (Spin })

Flavor Charge Mass (speculative)
Bare Effective
In baryons In mesons
. . d -1 7.5
Fi { }
irst generation u +3 42 363 310
. $ -1 150 538 483
Second
nd gencration { ¢ +1 1100 1500
. . b -1 4200 4700
ht
Third generation { ‘ +3 523,000
LEPTONS (Spin })
Lepton Charge Mass Lifetime Principal decays
. . e -1 0.511003 o0 —
First generation { e 0 0 o _
. " —1 105.659 2.197 X 107 ev, 7,
Second gencration { v, 0 0 o el
. . T -1 1784 3.3x10™13 uv,p,, ev.,, pv,
Third generation { . 0 0 o -
MEDIATORS (Spin 1)
Mediator Charge Mass Lifetime Force
gluon 0 0 oo strong
photon (v) 0 0 oS electromagnetic
w* +1 81,800 unknown (charged) weak } electroweak
z° 0 92,600 unknown {neutral) weak




BARYONS (Spin })

Baryon Quark content Charge Mass Lifetime Principal decays
N (P uud +1 938.280 o0 —_
1n udd 0 939.573 900 pev,
A uds 0 1115.6 2.63%x 1071 px_, na°
=t uus +1 1189.4 0.80 X 1071¢ pr°, nxt
=0 uds 0 1192.5 6% 1072 Ay
z- dds —1 1197.3 1.48 X 10710 nw”
S uss 0 1314.9 2.90 X 1071° Ax®
o dss -1 1321.3 1.64 X 1071 An™
by udc +1 2281 2x 1078 not established
BARYONS (Spin 3)
Baryon Quark content Charge Mass Lifetime Principal decays
A uuu, uud, udd, ddd | +2,+1,0, -1 1232 06X10™ | Nr
z* uus, uds, dds +1,0, -1 1385 2X 1078 | Am Zx
* uss, dss 0, -1 1533 TX1078 | Ern
Q" ss8 -1 1672 0.82 X 1071 AK ,Z%, ="
PSEUDOSCALAR MESONS (Spin 0)
Meson Quark content Charge Mass Lifetime Principal decays
x* ud, du +1,-1 1 135.569 2.60 X 107® o,
x° (uit — ddy/V2 0 134.964 8.7% 107" vy
K* us, su +1, —1 493.67 1.24 X 107® py,, wal, Tttt
- K%0.892 X107 | x*x~, x%°
0 ] & ’
K ) K dg, Sd 09 O 497.72 { K(I), 5.18 X 10—8 TV, TUY,, TAT
7 (uii + dd — 255)/V6 0 548.8 7X 107" vy, 2770, xtrx®
7 (uil + dd + s5)/V3 0 957.6 3% 1072 Y
D* cd dc +1,—1 | 1869 9x 107 Kan
D° D° Cu, uc 0,0 1865 4% 10713 Knrn
F* (now D}) | ¢5, 5¢ +1,—1 | 1971 3X 107" not established
B* ub, bu +1, -1 ] 5271 1 0
B, B° db, bd 0,0 | 5275 14 x10 b+2
e o 0 2981 6Xx107% KKr, nom, n'ax
VECTOR MESONS (Spin 1)
Meson Quark content Charge Mass Lifetime Principal decays
p ud, diz, (ua — ddyV2 | +1,—1,0 770 | 04%x1073 | =
K* us, s, ds, sd +1,-1,0,0 892 1X108 | Kr
w (uit + ddy/V2 0 783 7% 1078 | wtax® 2%
¢ 5§ 0 1020 20X 1073 | K*K-, K°K°
J cc 0 3097 I X 107%° ete, ptu, 5m, I
D+ cd, de; cii, ut +1,-1,0,0 | 2010 | >1X1072 | Dm, Dy
T bb 0 9460 2X 1072 | 7wt ete




