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Nucleon resonances

γ p → π+ n

• As a three-quark system, the nucleon has a specific 
excitation spectrum comprised of nucleon resonances.

• This nucleon resonance spectrum has been found to have 
many broad overlapping states, making disentangling the 
spectrum difficult. 
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How well do we know the nucleon 
resonance spectrum?

Nucleon resonances are rated using the “star” system:
* Poor evidence of existence
** Fair evidence of existence
*** Likely evidence of existence, or certain and properties need work
**** Existence is certain and properties well explored  
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Resonance status for N* and Δ*

27 N* states: 
• 13 with **** 
• 7 with ***
• 6 with **
• 1 with *

22 Δ* states: 
• 8 with **** 
• 4 with ***
• 6 with **
• 4 with *

Nucleon
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Resonance status for N* and Δ*
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• Are there missing states?
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+

• List of Cascade Baryons predicted by Capstick
and Isgur with mass less than 2.4 GeV/𝑐𝑐2

PDG

Resonance status for Ξ*
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So, where are the resonances?
• Masses, widths, and coupling constants 
not well known for many resonances
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So, where are the resonances?
• Masses, widths, and coupling constants 
not well known for many resonances

• Many models exist to “predict” the 
nucleon resonance spectrum - quark 
model, Goldstone-boson exchange, 
diquark and collective models, instanton-
induced interactions, flux-tube models, 
lattice QCD - BUT…
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So, where are the resonances?
• Masses, widths, and coupling constants 
not well known for many resonances

• Many models exist to “predict” the 
nucleon resonance spectrum - quark 
model, Goldstone-boson exchange, 
diquark and collective models, instanton-
induced interactions, flux-tube models, 
lattice QCD - BUT…

• THE BIG PUZZLE: Most models 
predict many more resonance states 
than have been observed.
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• 8 helicity states: 4 initial, 2 final → 4∙2 = 8
• Amplitudes are complex but parity symmetry reduces independent numbers to 8
• Overall phase unobservable → 7 independent numbers

• HOWEVER, not all possible observables are linearly independent and it turns out 
that there must be a minimum of 8 observables / experiments

Helicity amplitudes for γ + p → p + pseudoscalar
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section

Beam polarization  Σ
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section

Beam polarization  Σ
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section

Beam polarization  Σ

Target asymmetry  T

Recoil polarization P

Double polarization observables
• Need at least 4 of the double 
observables from at least 2 groups for a 
“complete experiment”
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section

Beam polarization  Σ

Target asymmetry  T

Recoil polarization P

Double polarization observables
• Need at least 4 of the double 
observables from at least 2 groups for a 
“complete experiment”

• π0p, π+ n, and  η p will be nearly 
complete
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Linkage between helicity amplitudes and the observables 
for single pseudoscalar photoproduction

Differential cross section

Beam polarization  Σ

Target asymmetry  T

Recoil polarization P

Double polarization observables
• Need at least 4 of the double 
observables from at least 2 groups for a 
“complete experiment”

• π0p, π+ n, and  η p will be nearly 
complete

• K+ Λ will be complete!
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So, finding missing resonances 
requires lots of different 
observables.
Cross sections are not enough!
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Experimental facilities:
• The Thomas Jefferson National Accelerator Facility 

(Jefferson Laboratory = JLab). 

• Racetrack design

• Energies up to 6 GeV   
(prior to upgrade)  

• Continuous Electron Beam Accelerator Facility (CEBAF)

24



CLAS  (1997-2012)

Lest we forget: 
• CLAS was 

very good for 
detecting 
charged 
particles

• CLAS had a 
rather large 
acceptance

25
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Bremsstrahlung photon tagger 
(also deceased)

61 backing counters

• Jefferson Lab Hall B 
bremsstrahlung 
photon tagger had:
• Eγ = 20-95% of E0
• Eγ up to ~5.5 GeV
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photons with 
longitudinally  
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Bremsstrahlung photon tagger 
(also deceased)

61 backing counters

• Jefferson Lab Hall B 
bremsstrahlung 
photon tagger had:
• Eγ = 20-95% of E0
• Eγ up to ~5.5 GeV
• Circular polarized 

photons with 
longitudinally  
polarized electrons

• Oriented diamond 
crystal for linearly 
polarized photons
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Circular beam polarization
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• Circular photon beam 
from longitudinally-
polarized electrons

• Incident electron 
beam polarization 
> 85%
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Linearly polarized photons

• Coherent bremsstrahlung from 
50-μ oriented diamond

• Two linear polarization states  
(vertical & horizontal)

•Analytical QED coherent 
bremsstrahlung calculation fit to 
actual spectrum 
(Livingston/Glasgow) 

• Vertical 1.3 GeV edge shown
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FROST target
• Butanol composition: C4H9OH
• C and O are even-even nuclei → No 
polarization of the bound nucleons

• Carbon target used to 
represent bound nucleon 
contribution of butanol
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HD-ICE target

• Deuteron target

A.M. Sandorfi



33

Outline

• Motivations

• Helicity amplitudes

• Experimental facilities

• Reactions and results



34

Pion photoproduction
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Isospin combinations for 
reactions involving π0 and π+
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• Differing isospin compositions for N* and Δ+ for the π0 p and π+ n final states

• The π0 p and π+ n final states can help distinguish between the Δ and N*
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Isospin photo-couplings
• Using both proton and neutron targets allows decomposition of 

iso-singlet and iso-vector photo-couplings C0, C1

γp→nπ+: [ ] *
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Observable: σ
Reaction: γ n → p π-

G13

P.T. Mattione, et al., (CLAS Collaboration), Phys. Rev. C 96, 035204 (2017)

• First-ever determination of the 
excited neutron multipoles for: 
N(1440)1/2+, N(1535)1/2-, 
N(1650)1/2-, and N(1720)3/2+
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Observable: Σ

Experiments:
• g8b → proton reactions
• g13 → neutron reactions

Configuration:
• Linear photon polarization
• No target polarization
• No recoil polarization

Reactions:  γ p → p π0 and γ p → n π+
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Σ for γ p → p π0
G8b

RED: SAID fit 

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)
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Σ for γ p → n π+
G8b

RED: SAID fit 

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)

• Data for both reactions more than doubled the world 
database 
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Σ for γ p → n π+
G8b

RED: SAID fit 

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)

• Largest change from fits to prior Σ data for pions found in 
resonance couplings of Δ(1700)3/2- and Δ(1905)5/2+
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Observable: G

Configuration:
• Linear photon polarization
• Longitudinal target polarization
• No recoil polarization

Reactions:  γ p → p π0 and  γ p → n π+

Experiment:
• g9b: FROST
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G for γ p → p π0 G9b: FROST

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B817, 136304 (2021)

SAID: Solid black lines
Bonn-Gatchina: Dotted lines of various colors 
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G for γ p → n π+ G9b: FROST

Bonn-Gatchina analysis (dotted) sees important contribution from 
N(2190)7/2- and Δ(2200)7/2-

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B817, 136304 (2021)
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Observables: T and F

Configuration:
• Circular photon polarization
• Transverse target polarization
• Unpolarized photon (by adding circular beams)
• No recoil polarization

Reaction:  γ p → n π+

Experiment:
• g9b: FROST
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T for γ p → n π+

• Early stage results

• CLAS results agree well with 
previous data

G9b: FROST

(new)

(new)

(new)
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F for γ p → n π+

• Early stage results
• Predictions get worse 

at higher energies

G9b: FROST
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Observable: E

Configuration:
• Circular photon polarization
• Longitudinal Target polarization
• No recoil polarization Experiments:

• g9a: FROST → proton reactions
• g14: HDICE → neutron reactions

Reactions:  γ p → n π+ , p π0 and  γ n → p π-
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E for γ p → p π0

• Sample of results taken 
from analysis note

• Blue lines: SAID 

• Magenta lines: MAID

PRELIMINARY PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY
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“Isospin filters”
• The ηp, ωp and K+Λ systems have isospin ½ and limit one-
step excited states of the proton to be isospin ½. The final 
states ηp, ωp, and K+Λ act as isospin filters to the resonance 
spectrum.

γ p → π+ n γ p → η p
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Σ for η G8b

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 771, 213-221 (2017)

• Fit to Julich Bonn model (black line) with presence of  N(1900)3/2-

(solid) and without (dashed)

• The inclusion of the N(1900)3/2+ was found to be important by 
Bonn-Gatchina for KΛ and KΣ photoproduction
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Σ for η′ G8b

• Fit to Bonn-Gatchina model 
(blue lines) indicates presence 
of  N(1895)1/2-, N(2100)1/2+, 
N(2120)3/2- and strong presence 
of  N(1900)1/2-

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 771, 213-221 (2017)



55

Σ for ω

G8b

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 773, 112-120 (2017)
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Σ for ω

G8b
G9a: FROST

P. Roy, et al., (CLAS Collaboration), Phys. Rev. C 97, 055202 (2018)

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 773, 112-120 (2017)
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G13
Beam asymmetries for γ n → K+ Σ-

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B 827, 136985 (2022)

Red:     Full solution (Bonn-Gatchina)
Black:  Contribution of N(1720)3/2+ removed
Green: Contribution of N(1720)3/2+ and Δ(1900)1/2- removed
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Observable: T, F, P and H
Configuration:
• Circular photon polarization
• Transverse target polarization
• Unpolarized photon (by adding circular beams)
• No recoil polarization

Experiment:
• g9b: FROST

Reaction:  γ p → pω 
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F, P and H for ω

• Red : Wei
• Blue : Bon-Gatchina, where dashed = old
• Indicates notable contributions from 

N(1875)3/2-, N(2120)3/2- and N(1880)1/2+

P. Roy, et al., (CLAS Collaboration), Phys. Rev. Lett. 122, 162301 (2019)
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Observable: E

Configuration:
• Circular photon polarization
• Longitudinal Target polarization
• No recoil polarization

Reactions:  γ p → p ω, p η and γ n → K+ Σ-

Experiment:
• g9b: FROST
• g14: HD-ICE
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E for η

I. Senderovich, et al., (CLAS Collaboration), Phys. Lett. B 755, 64-69 (2016)

• Fit to Julich-Bonn model (red lines) does not 
indicate the need for a narrow resonance ~1.7 
GeV

• Structure near ~1.7 GeV appears to be 
interference of E0

+ and M2
+ multipoles   

G9a: FROST
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E for γ n → K+ Σ-

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B 808, 135662 (2020)

G14: HD-ICE

Red:    Bonn-Gatchina prior to fit
Blue:   Full fit including “missing” D13
Black: Full fit without D13
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Self-analyzing reaction K+ Y (hyperon)

• The weak decay of the hyperon allows the extraction of the 
hyperon polarization by looking at the decay distribution of the 
baryon in the hyperon center of mass system: 

( )θαθ cos1)(cos 2
1

YPI +=

where I is the decay distribution of the baryon, α is the weak decay 
asymmetry (αΛ= 0.642 and αΣ0 = -⅓ αΛ), and PY is the hyperon 
polarization.

• We can obtain recoil polarization information without a recoil 
polarimeter and the reaction is said to be “self-analyzing”
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Observables: Σ, T, Ox , Oz

Experiments:
• g8b → proton reactions
• g13 → neutron reactions

Configuration:
• Linear photon polarization
• Recoil polarization self analyzed
• No target polarization

Reaction:  γ p → K+Λ,  K+Σ
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Σ ,T for γ p → K+ Λ
G8b

• Blue lines 
represent fits to 
Bonn-Gatchina
model

• Other lines 
represent various 
predictions 

C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)
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Ox , Oz for γ p → K+ Λ
G8b

• Blue lines 
represent fits to 
Bonn-Gatchina
model

• Other lines 
represent various 
predictions 

C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)
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Σ ,T for γ p → K+ Σ0
G8b

• Blue lines 
represent fits to 
Bonn-Gatchina
model

• Other lines 
represent various 
predictions 

C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)
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Ox , Oz for γ p → K+ Σ0
G8b

• Blue lines 
represent fits to 
Bonn-Gatchina
model

• Other lines 
represent various 
predictions 

C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)
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Ox , Oz for γ p → K+ Σ0
G8b

• Indicates some 
evidence for 
additional N*(3/2+) 
and N*(5/2+) 
resonances of 
undetermined 
mass

C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)
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Ξ photoproduction
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σ for γ p → K+ K+ Ξ-

• All data from CLAS 
(G11, and G12)

• First total cross 
sections or 
photoproduction of 
these states above 
W=2.8 GeV

J.T. Goetz, et al., (CLAS Collaboration), Phys. Rev. C 98, 062201(R) (2018)
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Configuration:
• Circular photon polarization
• Recoil polarization self analyzed
• No target polarization

Reaction:  γ p → K+K+Ξ-

Observables: P, Cx , Cz
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P, Cx,Cz for γ p → K+ K+ Ξ-

• First-time measurement

• Coupling:
• ps = pseudoscalar
• pv = pseudovector

• Green dotted includes 
Σ(2030) contribution

J. Bono, et al., (CLAS Collaboration), Phys. Lett. B 783, 280-286 (2018)
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pΛ elastic scattering: pΛ → pΛ 

J. Rowley, et al., (CLAS Collaboration), Phys. Rev. Lett. 127, 272303 (2021)

• Black circles: previous world data 
(bubble chambers)

• Blue squares: CLAS results

• Momentum range important to 
neutron star physics
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σ Σ T P E F G H Tx Tz Lx Lz Ox Oz Cx Cz

Proton target

pπ0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

nπ+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pη ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pη’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pω ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K+Λ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K+Σ0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K0Σ+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✔ ✔

“Neutron” target

pπ- ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K+Σ- ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K0Λ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K0Σ0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Status of meson photoproduction  

✔ - published ✔ - acquiredNot shown in table: 
• ππ photoproduction observables or 
• Ξ states
• pΛ scattering
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Changes to PDG from 1996 to 2018 

D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)
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Changes to PDG from 1996 to 2018 

20 N* states

D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)
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Changes to PDG from 1996 to 2018 

27 N* states20 N* states

D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)
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Changes to PDG from 1996 to 2018 

27 N* states20 N* states

Along with additional new states, “old” states have been  
measured better and PDG properties have changed

D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)
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Changes to PDG from 1996 to 2018 

States have been  measured better and PDG properties 
have changed

D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)
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Frost target

• Brute force polarization requires large magnet

• Instead use “trick” (Dynamic Nuclear Polarization):
• Dope butanol with paramagnetic radical TEMPO
• Polarize unpaired TEMPO electrons to 99.999% 

with B = 5 T and T = 0.3 K
• Transfer electron polarization to free protons with 

microwaves at ~140 GHz
• Remove microwaves
• Cool to T = 3 mK and use B=0.5T holding field
• Put target in CLAS and run experiment
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Performance: target polarization

• Frozen spin butanol (C4H9OH)

• Pz ≈ 80%

• Target depolarization: τ ≈100 days

• For g9a (longitudinal orientation) 10% of allocated time was used 
polarizing target

• For g9b (transverse orientation) 5% of allocated time was used 
polarizing target    
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Slide from Chris Keith

Frost target
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Slide from Chris Keith

Frost target
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Slide from Chris Keith

Frost target
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Slide from Chris Keith

Frost target
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Slide from Chris Keith
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Low-lying Resonance States

Lattice QCD 
is consistent 
with non-
relativistic 
quark model 
for number of 
low-lying 
states

Negative parity Positive parity

Missing 
resonances
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γ p → p π+ π-

Circular beam and 
longitudinal target: 
δl = Λx = Λy = 0

Next slides
G9a: FROST
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Pz for p π+ π-
G9a: FROST
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Pʘ for p π+ π-
G9a: FROST
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Observable

Configuration:
• Linear photon polarization
• Longitudinal Target polarization
• No recoil polarization

Experiment:
• g9a: FROST
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• The sings in will give interference terms
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