

Shifts and trips

worker shifts:

leader shifts:

- Next round of shifts
 - September 16-19
 - October 14-17
 - Hotel:
 - Flight:
- NSTAR 2022 (Mike)
 - October 16-22
 - Hotel:
 - Flight:
 - Registration:
 - Conference fees:
 - Permission from Unit Head:
 - Permission from Dean:

Brandon Brandon Booked Booked?

Booked Need to book Registration in progress Need to pay Obtained Obtained

Poly lab temperatures

• Facilities management has been contacted

Rotation = 0°

Rotation = 90°

 $f(x,y) = \int p(s,\theta) * h(s) \Big|_{s=x\cos\theta + y\sin\theta} d\theta$

$$f(x,y) = \int p(s,\theta) * h(s) \Big|_{s=x\cos\theta + y\sin\theta} d\theta$$

Intensity at the detector plane measured along direction s for a fixed angle θ

Convolution

$$f(x,y) = \int p(s,\theta) * h(s) \Big|_{s=x \cos \theta + y \sin \theta} d\theta$$

Intensity at the detector plane measured along direction s for a fixed angle θ

Convolution

$$f(x,y) = \int p(s,\theta) * h(s) \Big|_{s=x \cos \theta + y \sin \theta} d\theta$$
Ramp filter
Intensity at the
detector plane
measured along
direction *s* for a
fixed angle θ

$$f(x,y) = \int p(s,\theta) * h(s) \Big|_{s=x\cos\theta + y\sin\theta} d\theta$$

~

Tomography: More complicated case

This time using solid cuboid and hollow cylinder.

Tomography: More complicated case Sinograph

¥ASU

Tomography: More complicated case

Without h(s) convolution

Tomography: More complicated case

Without h(s) convolution

With h(s) convolution

- To use prebuilt tomographic reconstruction software (TomoPy) we need to convert data to the hdf5 file format
- Alan has been successful in converting the ROOT data to hdf5 $\textcircled{\circ}$

Original box sinograph converted by Alan to hdf5 and viewed by HDFView

data at /exchange/ [myOutFile.h5 in /home/dugger/Downloads/.]	
Image	
M 📕 🌣 Q Q	
(0,0)	
	0.00E0
	1.57E1
	3.15E1
	4.72E1
	6.29E1
	7.86E1
	9.44E1
	1.10E2
	1.26E2
	1.42E2

Image

(0,0)

M 🚺 🌣 🔍 🤤

Original box sinograph converted by Alan to hdf5 and viewed by HDFView

Just need to add in dummy dimension for slice number

Dataset Selection	n - /exchange/data						
Display As							
○ Spreadshe	eet		Show	v As Char			
TableView:	Default						
⊙ Image	Select palette				•	Valid Range:	min, max
ImageView:	Default				•	Invalid Values:	val1, val2
Index Base							
Bitmask Show Valu	O-based e of Selected Bits ask				○ 1-ba	sed	
Bitmask Show Valu Apply Bitm 31 30 (15 14 (O-based e of Selected Bits ask 29 028 027 026 13 012 011 010) 25 () 24 () 23) 9 () 8 () 7	0 22 0 21 0 2 0 6 0 5 0 4	$\begin{array}{c} 0 \bigcirc 19 \bigcirc 18 \bigcirc 1 \\ \bigcirc 3 \bigcirc 2 \bigcirc 1 \end{array}$	○ 1-ba 7 ○ 16 ○ 0	sed	¢
Bitmask Show Valu Apply Bitm 31 30 0 15 14 0 Dimension and	O-based e of Selected Bits ask 29 028 027 026 13 012 011 010 I Subset Selection)25 ()24 ()23)9 ()8 ()7	$\begin{array}{c} \bigcirc 22 \bigcirc 21 \bigcirc 2 \\ \bigcirc 6 \bigcirc 5 \bigcirc 4 \end{array}$	0 0 19 0 18 0 1 0 3 0 2 0 1	○ 1-ba: 7 ○ 16 ○ 0	sed	
Bitmask Show Valu Apply Bitm 31 30 (15 14 (Dimension and	O-based e of Selected Bits hask 29 028 027 026 13 012 011 010 I Subset Selection) 25 () 24 () 23) 9 () 8 () 7 Transpose -	022 021 02 6 05 04 Start:	0 0 19 0 18 0 1 0 3 0 2 0 1 End:	○ 1-ba: 7 ○ 16 ○ 0 S	tride:	(Max Size
Bitmask Show Valu Apply Bitm 31 30 0 15 14 0 Dimension and	O-based e of Selected Bits ask 29 28 27 26 (13 12 11 0 10 (Subset Selection Height:	25 24 23 9 8 7 Transpose - dim 0 -	0 22 021 02 06 05 04 Start: 0	0 0 19 0 18 0 1 0 3 0 2 0 1 End: 180	○ 1-ba: 7 ○ 16 ○ 0 S	tride:	Max Size
Bitmask Show Valu Apply Bitm 31 30 (15 14 (Dimension and	O-based e of Selected Bits ask 29 028 027 026 0 13 012 011 010 0 I Subset Selection Height: Width:	25 24 23 9 8 7 Transpose • dim 0 • dim 1 •	 22 21 2 6 5 4 Start: 0 0 	0 0 19 0 18 0 1 0 3 2 0 1 End: 180 639	○ 1-bas 7 ○ 16 ○ 0 S 1 1	sed tride: 181 640	Max Size
Bitmask Show Valu Apply Bitm 31 30 (15 14 (Dimension and	O-based e of Selected Bits hask 29 0 28 0 27 0 26 13 0 12 0 11 0 10 I Subset Selection Height: Width: Depth:	25 24 23 9 8 7 Transpose • dim 0 • dim 1 • dim 0 •	 22 21 2 6 5 4 Start: 0 0 0 	0 0 19 0 18 0 1 0 3 0 2 0 1 End: 180 639 0	0 1-bas 7 0 16 0 5 1 1 1	tride: 181 640	Max Size

/exchange/ [myOutFile.h5 in /home/dugger/Downloads/.

0.00E0 1.57E1 3.15E1 4.72E1

6.29E1 7.86E1

Image

(0.0)

M 🚺 🌣 🔍 🤤

Original box sinograph converted by Alan to hdf5 and viewed by HDFView

Just need to add in dummy dimension for slice number

Almost there!

oh 		→					0.00E0 1.57E1 3.15E1 4.72E1 6.29E1 7.86E1 9.44E1 1.10E2 1.26E2 1.42E2
Dataset Selection Display As	n - /exchange/data						
O Spreadshe	eet			Show	As Char		
TableView:	Default						
• Image	Select palette					▼ Valid R	ange: min, max
ImageView:	Default					✓ Invalid	Values: val1, val
ndex Base							
 Show Valu Apply Bitm 31 30 15 14 	e of Selected Bits nask 0 29 0 28 0 27 0 26 0 13 0 12 0 11 0 10 0	$25 \bigcirc 24 \bigcirc$	23 (7 ($22 \bigcirc 21 \bigcirc 20$		$17 \bigcirc 16$ 1 $\bigcirc 0$	
Dimension and	l Subset Selection						
		Transpose	•	Start:	End:	Stride:	Max Size
	Height:	dim 0	•	0	180	1	181
	Width:	dim 1	•	0	639	1	640
	Depth:	dim 0	-	0	0	1	1
		Dims				Reset	
				OK Cance	1		

/exchange/ [myOutFile.h5 in /home/dugger/Downloads/.

TPOL

- Finished processing Spring 2020 data
- Need to package up the script and send to collaboration

Polarizations for spring 2020 (AKA 2019-11) all batches

Polarization values for E_gamma between 8.0 and 8.6 GeV

Beam orientation	Polarization
0 degrees:	0.3525 +/- 0.0077
45 degrees:	0.3535 +/- 0.0066
90 degrees:	0.3536 +/- 0.0074
135 degrees:	0.3721 +/- 0.0066

 $K^+K^-\pi^0$

• Presented results to Open Analysis Discussion meeting on Tuesday:

• Presented results to Open Analysis Discussion meeting on Tuesday:

http://meson.hldsite.com/presentations/dugger/kkpi22-8-30.pdf

• Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.

• Presented results to Open Analysis Discussion meeting on Tuesday:

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was s-channel

• Presented results to Open Analysis Discussion meeting on Tuesday:

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was s-channel
- We should be able to distinguish the J=1 nature through PWA

• Presented results to Open Analysis Discussion meeting on Tuesday:

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was s-channel
- We should be able to distinguish the J=1 nature through PWA
- Will start by assuming *t*-channel prior to searching for *s*-channel contributions (code is currently setup for t-channel).
 VASU

• Convenient to treat potential 3-body decay as two 2-body decays

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

 K^+

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-)$	
Mass (T-Matrix	$(\text{Pole }\sqrt{s})=(890\pm14)-i$	(26 \pm 6) MeV
<i>K</i> *(892) [±] hadı	roproduced mass $m = 891.67$	\pm 0.26 MeV
$\mathit{K}^*($ 892 $)^\pm$ in $ au$	decays mass $m = 895.5 \pm 0.8$	3 MeV
K*(892) ⁰ mas	s $m = 895.55 \pm 0.20$ MeV (S = 1.7)
$K^*(892)^{\pm}$ had	roproduced full width $\Gamma = 51.4$	1 ± 0.8 MeV
$K^*(892)^{\pm}$ in τ	decays full width $\Gamma = 46.2 \pm$	1.3 MeV
<i>K</i> *(892) ⁰ full	width $\Gamma=47.3\pm0.5~\text{MeV}$	(S = 1.9)
		p
K*(892) DECAY MODES	Fraction (Γ _i /Γ) C	onfidence level (MeV/c)
Κπ	$\sim~100$ %	289

	-		, .		
$\zeta^0 \gamma$	(2.46 ± 0.21	$) imes 10^{-3}$		307
$\zeta^{\pm}\gamma$	(9.8 ±0.9) × 10 ⁻⁴		309
$\zeta \pi \pi$	<	7	$\times 10^{-4}$	95%	223

K ₀ (700)	$I(J^P) = rac{1}{2}(0^+)$	
also known as κ ; was $K_0^*(800)$)	
See the review on "Scalar	Mesons below 1 GeV."	
Mass (T-Matrix P	ole \sqrt{s}) = (630–730) – i (260	0–340) MeV
Mass (Breit-Wigne	$er) = 845 \pm 17$ MeV	
Full width (Breit-V	$Vign(\mathbf{r}) = 468 \pm 30 \; MeV$	
K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-)$	
Mass (1-Matrix P	ole \sqrt{s}) = (890 ± 14) - <i>i</i> (26	$b \pm 6$) MeV
$K^*(892)^{\pm}$ hadrop	roduced mass $m = 891.67 \pm 0$	0.26 MeV
$K^*(892)^+$ in τ de	cays mass $m = 895.5 \pm 0.8$ N	/leV
$K^*(892)^\circ$ mass n $K^*(802)^\pm$ hadron	$n = 895.55 \pm 0.20$ MeV (S = reduced full width $\Gamma = E1.4 \pm 1.00$	= 1.7
κ (692) ⁻ hadrop	roduced full width $\Gamma = 51.4 \pm$	
$\kappa (692)^{-1}$ in 7 de $\kappa^{*}(802)^{0}$ full wid	cays full width $I = 40.2 \pm 1.3$	- 1 0)
	$1111 = 47.5 \pm 0.5$ MeV (5	= 1.9)
K*(892) DECAY MODES	Fraction (Γ_i/Γ) Confi	idence level (MeV/c)
Κπ	$\sim~100$ %	289
$\kappa^{0}_{\gamma}\gamma$	$(2.46\pm0.21)\times10^{-3}$	307
$K^{\pm}\gamma$	$(9.8 \pm 0.9) imes 10^{-4}$	309
$K\pi\pi$	$< 7 \times 10^{-4}$	95% 223

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256

K*(892)

 $I(J^P) = \tfrac{1}{2}(1^-)$

Mass $(T-Matrix Pole \sqrt{s}) = (890 \pm 14) - i (26 \pm 6) \text{ MeV}$ $K^*(892)^{\pm}$ hadroproduced mass $m = 891.67 \pm 0.26 \text{ MeV}$ $K^*(892)^{\pm}$ in τ decays mass $m = 895.5 \pm 0.8 \text{ MeV}$ $K^*(892)^0$ mass $m = 895.55 \pm 0.20 \text{ MeV}$ (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8 \text{ MeV}$ $K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3 \text{ MeV}$ $K^*(892)^0$ full width $\Gamma = 47.3 \pm 0.5 \text{ MeV}$ (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Κπ	$\sim~100$	%	289
$\kappa^0\gamma$	(2.46±0.21)	$\times 10^{-3}$	307
$\kappa^{\pm}\gamma$	(9.8 ±0.9)	× 10 ⁻⁴	309
$K\pi\pi$	< 7	× 10 ⁻⁴ 95%	223

MeV

K*(700)

$$I(J^P) = \tfrac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$
See the review on "Scalar Mesons below 1 GeV."
Mass (T-Matrix Pole \sqrt{s}) = (630–730) – i (260–340)
Mass (Breit-Wigner) $=$ 845 \pm 17 MeV
Full width (Breit-Wigner) $=$ 468 \pm 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-)$	
Mass (T-Matrix P	Pole \sqrt{s}) = (890 \pm 14) $ i$ (26	$5 \pm$ 6) MeV

 $K^*(892)^{\pm}$ hadroproduced mass $m = 891.67 \pm 0.26$ MeV $K^*(892)^{\pm}$ in τ decays mass $m = 895.5 \pm 0.8$ MeV $K^*(892)^0$ mass $m = 895.55 \pm 0.20$ MeV (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8$ MeV $K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV $K^*(892)^0$ full width $\Gamma = 47.3 \pm 0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Κπ	$\sim~100$	%	289
$K^0\gamma$	(2.46±0.21)	$\times 10^{-3}$	307
$\kappa^{\pm}\gamma$	(9.8 ± 0.9)	$\times 10^{-4}$	309
$K\pi\pi$	< 7	× 10 ⁻⁴ 95%	223

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i$ (20–35) MeV ^[*i*] Mass $m = 990 \pm 20$ MeV ^[*i*] Full width $\Gamma = 10$ to 100 MeV ^[*i*]

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

φ(1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

φ(1020)

$$\label{eq:mass_mass_star} \begin{split} \text{Mass}~m &= 1019.461 \pm 0.016~\text{MeV} \\ \text{Full width}~\Gamma &= 4.249 \pm 0.013~\text{MeV} \quad (\text{S} = 1.1) \end{split}$$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i$ (20–35) MeV ^[i] Mass $m = 990 \pm 20$ MeV ^[i] Full width $\Gamma = 10$ to 100 MeV ^[i]

 $a_0(980)$

 $\phi(1020)$

 $I^{G}(J^{PC}) = 1^{-}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV}^{[i]}$ Mass $m = 980 \pm 20 \text{ MeV} [i]$ Full width $\Gamma = 50$ to 100 MeV ^[i]

Mass m = 1019.46 k 0.016 MeV

IG(JPC

$$I^{G}(J^{PC}) = 0^{+}(0^{+})^{+}$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV}^{[i]}$ Mass $m = 980 \pm 20 \text{ MeV}^{[i]}$ Full width $\Gamma = 50$ to 100 MeV ^[i]

