$KK\pi$ update

Isobar contributions in low-mass $KK\pi$

Base set of included waves

- Uniform background
- J = 0:
 - $a_0\pi^0$
 - K*+K-
 - $K^* K^+$
- J = 1:
 - $a_0\pi^0$
 - $K^{*+}K^{-}$ (*L*=0, and *L*=1)
 - $K^{*-}K^{+}$ (*L*=0, and *L*=1)

Base set of included waves

- Uniform background
- J = 0: • $a_0 \pi^0$ • $K^{*+}K^{-}$ • $K^{*-}K^{+}$

NOTE: The use of K^*K contributions in low-mass $KK\pi$ came into question during the collaboration meeting

J=1:
a₀π⁰
K^{*+}K⁻ (L=0, and L=1)
K^{*-}K⁺ (L=0, and L=1)

PWA Results for J = 0,1 and background **Isobar fit results**

¥asu

Isobar fit reculte

¥asu

Isobar fit reculte

Isobar fit roculte

Isobar fit reculte

PWA Results for J = 0,1 and background Angular fit results

¥asu

¥asu

¥ASU

¥asu

In low-mass $KK\pi$ region below 1.375 GeV included [1]:

[1] Phys. Lett. B 516 (2001) 264-272

In low-mass $KK\pi$ region below 1.375 GeV included [1]:

- *J*=0
 - $a_0(980)\pi$

[1] Phys. Lett. B 516 (2001) 264-272

In low-mass $KK\pi$ region below 1.375 GeV included [1]:

- *J*=0
 - $a_0(980)\pi$
- J=1
 - $a_0(980)\pi$

In low-mass $KK\pi$ region below 1.375 GeV included [1]:

- *J*=0
 - $a_0(980)\pi$
- J=1
 - $a_0(980)\pi$

• The K^*K was turned off for mass $(KK\pi) < 1.375$

[1] Phys. Lett. B 516 (2001) 264-272

In low-mass $KK\pi$ region below 1.375 GeV included [1]:

- *J*=0
 - $a_0(980)\pi$
- J=1
 - $a_0(980)\pi$

- The K^*K was turned off for mass $(KK\pi) < 1.375$
- No phase space $KK\pi$ included (but explicitly <u>not</u> ruled out)

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

[2] arXiv:2209.11175v1

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

[2] arXiv:2209.11175v1

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

where $(KK)_{S-wave}\pi$ represents the combination

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

where $(KK)_{S-wave}\pi$ represents the combination

- $a_0(980)\pi$
- $(KK)_{S-phsp}\pi$

[2] arXiv:2209.11175v1

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

where $(KK)_{S-wave}\pi$ represents the combination

- $a_0(980)\pi$
- $(KK)_{S-phsp}\pi$

and $(K \pi)_{P-wave} K$ represents a combination of

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

where $(KK)_{S-wave}\pi$ represents the combination

- $a_0(980)\pi$
- $(KK)_{S-phsp}\pi$

and $(K \pi)_{P-wave} K$ represents a combination of

- *K**(892)*K*
- $(K \pi)_{P-phsp} K$

In low mass region between 1.24 and 1.36 GeV, BESIII included [2]:

- *J*=0
 - $(KK)_{S-wave}\pi$
 - $(K \pi)_{P-wave} K$
- J=1
 - $a_0(980)\pi$,

where $(KK)_{S-wave}\pi$ represents the combination

- $a_0(980)\pi$
- $(KK)_{S-phsp}\pi$

and $(K \pi)_{P-wave} K$ represents a combination of

- *K**(892)*K*
- $(K \pi)_{P-phsp} K$

BESIII includes K^*K <u>and</u> phase-space *KK* π contributions at low mass

[2] arXiv:2209.11175v1

• Fit with $(KK)_{S-phsp}\pi J=0$ wave included

32

• Fit with $(KK)_{S-phsp}\pi$ and $(KK)_{P-phsp}\pi J=0$ waves included **Isobar fit results**

• Fit with $(KK)_{S-phsp}\pi$ and $(KK)_{P-phsp}\pi J=0$ waves included **Angular fit results**

