

Data and cuts

Dataset:

• Spring 2018 data

Restrictions:

- Incident photon timed to be within central peak
- Only best Confidence Level (*CL*) per event kept
- *CL* must be above 10⁻⁴
- Kaons must be forward directed (seen in TOF)
- Kaons must have momentum < 3 GeV
- Missing mass within 3 standard deviations of central peak
- $0.12 \text{ GeV} < \text{Mass}[\pi^0] < 0.15 \text{ GeV}$

Q-factors to separate $\varphi \pi$ from $K^+K^-\pi^0$ and $a_0\pi^0$ events

Additional E_{γ} cut

For now, only using events with E_{γ} below 7.5 GeV

SU

Monte Carlo peak fits

• Each mass spectrum was fit to voigtian line shape

SU

Results of Monte Carlo peak fits

- Reconstructed masses are systematically high by about 2 MeV
- Gaussian broadening (σ) of Voigtian line shape is about 9.45 MeV

Intensity (Justin Stevens)

$$\begin{split} I(\Phi,\Omega,\Omega_{H}) &= 2\kappa \sum_{k} \\ \left\{ (1-P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Re(Z) \right|^{2} \right] + \\ (1+P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Re(Z) \right|^{2} \right] \right\} \end{split}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

where $Z_m^i(\Omega, \Omega_H) = e^{-i\Phi} X_m^i(\Omega, \Omega_H)$ is the phase-rotated decay amplitude and Φ is the angle between the production plane and the photon polarization

$a_0(980)$ mass parameterization

 $a_0(980)$

Using $a_0(980)$ isobar as parameterized by BESIII:

The ordinary intermediate resonance is parametrized by a relativistic Breit-Wigner (BW) propagator with a constant-width

$$BW(s) = \frac{1}{M^2 - s - iM\Gamma},\tag{4.2}$$

where s is the invariant mass squared of resonances, M and Γ are the corresponding mass and width. For $a_0(980)^0$ with mass near $K\bar{K}$ threshold, we use dispersion integrals to describe its lineshape

¥ASU

The BESIII Collaboration, arXiv:2209.11175v1

 $a_0(980)$

The $a_0(980)$ amplitude is constructed using the following denominator:

$$D_{\alpha}(s) = m_0^2 - s - \sum_{ch} \Pi_{ch}(s), \tag{4}$$

where m_0 is the $a_0(980)$ mass and $\Pi_{ch}(s)$ in the sum over channels is a complex function, with imaginary part

$$\mathrm{Im}\Pi_{ch}(s) = g_{ch}^2 \rho_{ch}(s) F_{ch}(s), \qquad (5)$$

while real parts are given by principal value integrals,

$$\operatorname{Re}\Pi_{ch}(s) = \frac{1}{\pi} P \int_{s_{ch}}^{\infty} \frac{\operatorname{Im}\Pi_{ch}(s')ds'}{(s'-s)}.$$
 (6)

M. Ablikim et. al. (BESIII Collaboration), Phys. Rev. D 95, 032002 (2017)

 $a_0(980)$

In the above expressions $\rho_{ch}(s)$ is the available phase space for a given channel, obtained from the corresponding decay momentum $q_{ch}(s)$: $\rho_{ch}(s) = 2q_{ch}(s)/\sqrt{s}$. The integral in Eq. (6) is divergent when $s \to \infty$, so the phase space is modified by a form factor $F_{ch}(s) = e^{-\beta q_{ch}^2(s)}$, where the parameter β is related to the root-mean-square (rms) size of an emitting source [20]. We use $\beta = 2.0[\text{GeV}/c^2]^{-2}$ corresponding to rms = 0.68 fm, and we verify that our results are not sensitive to the value of β . The integration in Eq. (6)

M. Ablikim et. al. (BESIII Collaboration), Phys. Rev. D 95, 032002 (2017)

FIG. 4. Line shapes of (a) Im $\Pi(s)$ and (b) Re $\Pi(s)$ for the $K\bar{K}$ and $\eta'\pi$ production with arbitrary normalization.

I used Mathematica to perform the principal value integrals

GlueX

BESIII

Isobar fits

Included waves

- Uniform background
- J = 0:
 - $a_0\pi^0$
 - K*+K-
 - $K^* K^+$
- J = 1:
 - $a_0\pi^0$
 - $K^{*+}K^{-}$ (*L*=0, and *L*=1)
 - K^*-K^+ (*L*=0, and *L*=1)

¥asu

PWA Results for J = 0,1 and background

Isobar fit reculte

¥asu

PWA Results for J = 0,1 and background

Isobar fit reculte

¥asu

¥asu

¥asu

Simultaneous fit

J=0 Gray: η(1295) Cyan: η(1405) Yellow: η(1475)

J=1 **Red:** *f*₁(1285) **Blue:** *h*₁(1415) **Green:** *f*₁(1420) **Brown:** *f*₁(1510)

- Dashed-dotted line is estimated leakage of *J*=1 into *J*=0
- Used parameters (centers and widths) of Breit-Wigners
 from the above fit to lock down those parameters for massdependent fit

Leakage study

- J = 0:
 - $\eta(1295)$ -Not included
 - $\eta(1405) \rightarrow a_0 \pi^0, K^* K$
 - $\eta(1475) \rightarrow a_0 \pi^0$
- J = 1:
 - $f_1(1285) \rightarrow a_0 \pi^0, K^*K$
 - $h_1(1415) \rightarrow K^* K$ (Note: $h_1 \rightarrow a_0 \pi^0$ not allowed)
 - $f_l(1420) \rightarrow a_0 \pi^0, K^*K$
 - $f_1(1510) \rightarrow a_0 \pi^0, K^* K$

PWA mass-dependent fit

- Used fit parameters from above fit to simulate signal using gen_amp
- Did mass-independent fit using the gen_amp simulation to help verify leakage assumption

- J = 0:
 - $\eta(1295)$ -Not included
 - $\eta(1405) \rightarrow a_0 \pi^0, K^* K$ Branch measured
 - $\eta(1475) \rightarrow a_0 \pi^0$
- J = 1:
 - $f_1(1285) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $h_1(1415) \rightarrow K^* K$ (Note: $h_1 \rightarrow a_0 \pi^0$ not allowed)
 - $f_1(1420) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $f_l(1510) \rightarrow a_0 \pi^0, K^* K$

- J = 0:
 - $\eta(1295)$ -Not included
 - $\eta(1405) \rightarrow a_0 \pi^0, K^* K$ Branch measured
 - $\eta(1475) \rightarrow a_0 \pi^0$

No PDG branch, just generic $KK\pi$

- J = 1:
 - $f_1(1285) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $h_1(1415) \rightarrow K^* K$ (Note: $h_1 \rightarrow a_0 \pi^0$ not allowed)
 - $f_1(1420) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $f_l(1510) \rightarrow a_0 \pi^0, K^* K$

- J = 0:
 - $\eta(1295)$ -Not included
 - $\eta(1405) \rightarrow a_0 \pi^0, K^* K$ Branch measured
 - $\eta(1475) \rightarrow a_0 \pi^0$

No PDG branch, just generic $KK\pi$

- J = 1:
 - $f_1(1285) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $h_1(1415) \rightarrow K^* K$ (Note: $h_1 \rightarrow a_0 \pi^0$ not allowed)
 - $f_1(1420) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $f_1(1510) \rightarrow a_0 \pi^0, K^*K$

Peak outside of fit region

• J = 0:

- $\eta(1295)$ -Not included
- $\eta(1405) \rightarrow a_0 \pi^0, K^* K$ Branch measured
- $\eta(1475) \rightarrow a_0 \pi^0$
- J = 1:
 - $f_1(1285) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $h_1(1415) \rightarrow K^*K$ (Note: $h_1 \rightarrow a_0 \pi^0$ not allowed)
 - $f_1(1420) \rightarrow a_0 \pi^0, K^*K$ Branch measured
 - $f_1(1510) \rightarrow a_0 \pi^0, K^* K$

Compared

to PDG

η (1405) BRANCHING RATIOS $\Gamma(a_0(980)\pi)/\Gamma(KK\pi)$ Γ_3/Γ_1									
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT				
ullet $ullet$ ullet $ullet$ $ullet$ $ullet$ $ullet$ $ullet$ u									
~ 0.15		¹ BERTIN	95	OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$				
~ 0.8	500	¹ DUCH	89	ASTE	$\overline{\rho} ho ightarrow \pi^+\pi^-K^\pm\pi^\mp K^0$				
~ 0.75		¹ REEVES	86	SPEC	6.6 $p \overline{p} \rightarrow K K \pi X$				
¹ Assuming that the a_0 (980) decays only into $K\overline{K}$.									

Measured for charged kaons: $\Gamma(a_0\pi^0/KK\pi^0) = 0.59 + -0.13$

η (1405) BRANCHING RATIOS $\Gamma(a_0(980)\pi)/\Gamma(KK\pi)$ Γ_3/Γ_1									
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT				
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$									
~ 0.15		¹ BERTIN	95	OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$				
~ 0.8	500	¹ DUCH	89	ASTE	$\overline{p}p \rightarrow \pi^+\pi^- K^\pm \pi^\mp K^0$				
~ 0.75		¹ REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow KK\pi X$				
¹ Assuming that the $a_0(980)$ decays only into $K\overline{K}$.									

Measured for charged kaons: $\Gamma(a_0\pi^0/KK\pi^0) = 0.59 + -0.13$

Measured for charged kaons: $\Gamma(K^*K/KK\pi^0) = 0.87 + -0.08$

Comparison of Mass[$K^+K^-\pi^0$] between efficiency corrected real data and generated (gen_amp)

Comparison of Mass[$K^+K^-\pi^0$] between efficiency corrected real data and generated (gen_amp)

- Integral of efficiency corrected real data = 1.3 million
- More than enough generated data pushed through glueX simulation
- Next step was : PWA of the gen_amp data as though it was real

Comparison of Real to Fake: Mass[$K^+K^-\pi^0$]

REAL

FAKE

Note:

- $h_1 \rightarrow a_0 \pi^0$ [Blue] was not generated
- $\eta(1295)$ [Gray] was not generated

Comparison of Real to Fake: Mass[$K^+K^-\pi^0$]

Note:

- $h_1 \rightarrow a_0 \pi^0$ [Blue] was not generated
- $\eta(1295)$ [Gray] was not generated

Comparison of Real to Fake: Mass[$K^+K^-\pi^0$]

Note:

- $h_1 \rightarrow a_0 \pi^0$ [Blue] was not generated
- $\eta(1295)$ [Gray] was not generated
 - Assumed leakage (dashed-dotted lines) looks similar [©] ⁴⁶

