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K*K-n” update

a,(980) mass parameterization




a,(980)

Using a,(980) isobar as parameterized by BESIII:

The ordinary intermediate resonance is parametrized by a relativistic Breit-Wigner

(BW) propagator with a constant-width

1

~ MZ—s—iMT’ (4.2)

BW(s)

where s is the invariant mass squared of resonances, M and I' are the corresponding mass
and width. For ag(980)° with mass near KK threshold, we use dispersion integrals to de-

scribe its lineshape
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a,(980)

The a,y(980)
amplitude 1s constructed using the following denominator:

Dy(s) =mj—s— Zl_[{,h(s). (4)

ch
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a,(980)

The a(y(980)
amplitude is constructed using the following denominator:

D,(s) =mj—s— Zﬂch(sL (4)

ch

where my is the ay(980) mass and IT_,(s) in the sum over
channels 1s a complex function, with imaginary part

I[nnch(‘ﬂ — Hihﬂch("")Fch(x)* (5)

M. Ablikim et. al. (BESIII Collaboration), Phys. Rev. D 95, 032002 (2017)
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a,(980)

The a,y(980)
amplitude 1s constructed using the following denominator:

Du(“"‘) — ”I{E] -8 anh(ﬁ)* (4)

ch

where my 1s the ay(980) mass and IT,,(s) in the sum over
channels 1s a complex function, with imaginary part

I[nn{:h(ﬁ} — thﬂch(SJF{:II(S)* (5)

while real parts are given by principal value integrals,

1 ‘oo ImlIT,, (s")ds’
’ / A (6)

Rell,,(s) = —
C Lh(") ) [:.‘1"—.‘1'}
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a,(980)

In the above expressions p.,(s) is the available phase space
for a given channel, obtained from the corresponding decay
momentum ¢, (s): pon(s) = 2g.,(s)//s. The integral in
Eq. (6) i1s divergent when s — oo, so the phase space is
modified by a form factor F,,(s) = e™#%:() where the
parameter f 1s related to the root-mean-square (rms) size of
an emitting source [20]. We use f = 2.0[GeV /c*|™* cor-
responding to rms = (.68 fm, and we verify that our results
are not sensitive to the value of /. The integration in Eq. (6)
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a,(980)

In the above expressions p.,(s) is the available phase space
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FIG. 4. Line shapes of (a) ImII(s) and (b) Rell(s) for the KK and #'z production with arbitrary normalization.
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FIG. 4. Line shapes of (a) ImII(s) and (b) Rell(s) for the KK and #'z production with arbitrary normalization.

I used Mathematica to perform the principal value integrals
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FIG. 4. Line shapes of (a) ImII(s) and (b) Rell(s) for the KK and #'z production with arbitrary normalization.

I used Mathematica to perform the principal value integrals
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Included waves

* Uniform background
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Included waves

* Uniform background

e J=0:
¢ gy’
« KK
« K"K*
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Included waves

* Uniform background

e J=0:
* a,r’
« KK
« K°K*

e J=1:

* a,r’
| « KK (L=0, and L=1)
« K“K*(L=0, and L=1)
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Comparison of OLD to NEW

* Previous results I showed in October had standard Breit-Wigner
for a,(980)

i * New results have BESIII style a,(980)
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OLD fit: Stmultaneous fit to J=/ 1sobars

[ — Full fit

C o 1 1(1285)

[ e h_1{1415)

Full fit

ﬂ_l III|III|III|III|III||||||

The blue line does not exist
in the a, "

=

the blue line is consistent
with being an A,
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Simultaneous fit to J=1 1sobars
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OLD NEW
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Simultaneous fit to J=1 1sobars
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