$K^+K^-\pi^0$ update $a_0(980)$ mass parameterization

Using $a_0(980)$ isobar as parameterized by BESIII:

The ordinary intermediate resonance is parametrized by a relativistic Breit-Wigner (BW) propagator with a constant-width

$$BW(s) = \frac{1}{M^2 - s - iM\Gamma},\tag{4.2}$$

where s is the invariant mass squared of resonances, M and Γ are the corresponding mass and width. For $a_0(980)^0$ with mass near $K\bar{K}$ threshold, we use dispersion integrals to describe its lineshape

The $a_0(980)$ amplitude is constructed using the following denominator:

$$D_{\alpha}(s) = m_0^2 - s - \sum_{ch} \Pi_{ch}(s), \tag{4}$$

The $a_0(980)$

amplitude is constructed using the following denominator:

$$D_{\alpha}(s) = m_0^2 - s - \sum_{ch} \Pi_{ch}(s), \tag{4}$$

where m_0 is the $a_0(980)$ mass and $\Pi_{ch}(s)$ in the sum over channels is a complex function, with imaginary part

$$\operatorname{Im}\Pi_{ch}(s) = g_{ch}^2 \rho_{ch}(s) F_{ch}(s), \tag{5}$$

The $a_0(980)$ amplitude is constructed using the following denominator:

$$D_{\alpha}(s) = m_0^2 - s - \sum_{ch} \Pi_{ch}(s), \tag{4}$$

where m_0 is the $a_0(980)$ mass and $\Pi_{ch}(s)$ in the sum over channels is a complex function, with imaginary part

$$\operatorname{Im}\Pi_{ch}(s) = g_{ch}^2 \rho_{ch}(s) F_{ch}(s), \tag{5}$$

while real parts are given by principal value integrals,

$$\operatorname{Re}\Pi_{ch}(s) = \frac{1}{\pi} P \int_{s_{ch}}^{\infty} \frac{\operatorname{Im}\Pi_{ch}(s')ds'}{(s'-s)}.$$
 (6)

In the above expressions $\rho_{ch}(s)$ is the available phase space for a given channel, obtained from the corresponding decay momentum $q_{ch}(s)$: $\rho_{ch}(s) = 2q_{ch}(s)/\sqrt{s}$. The integral in Eq. (6) is divergent when $s \to \infty$, so the phase space is modified by a form factor $F_{ch}(s) = e^{-\beta q_{ch}^2(s)}$, where the parameter β is related to the root-mean-square (rms) size of an emitting source [20]. We use $\beta = 2.0 [\text{GeV}/c^2]^{-2}$ corresponding to rms = 0.68 fm, and we verify that our results are not sensitive to the value of β . The integration in Eq. (6)

In the above expressions $\rho_{ch}(s)$ is the available phase space for a given channel, obtained from the corresponding decay momentum $q_{ch}(s)$: $\rho_{ch}(s) = 2q_{ch}(s)/\sqrt{s}$. The integral in Eq. (6) is divergent when $s \to \infty$, so the phase space is modified by a form factor $F_{ch}(s) = e^{-\beta q_{ch}^2(s)}$, where the parameter β is related to the root-mean-square (rms) size of an emitting source [20]. We use $\beta = 2.0 [\text{GeV}/c^2]^{-2}$ corresponding to rms = 0.68 fm, and we verify that our results are not sensitive to the value of β . The integration in Eq. (6)

In the above expressions $\rho_{ch}(s)$ is the available phase space for a given channel, obtained from the corresponding decay momentum $q_{ch}(s)$: $\rho_{ch}(s) = 2q_{ch}(s)/\sqrt{s}$. The integral in Eq. (6) is divergent when $s \to \infty$, so the phase space is modified by a form factor $F_{ch}(s) = e^{-\beta q_{ch}^2(s)}$, where the parameter β is related to the root-mean-square (rms) size of an emitting source [20]. We use $\beta = 2.0 [\text{GeV}/c^2]^{-2}$ corresponding to rms = 0.68 fm, and we verify that our results are not sensitive to the value of β . The integration in Eq. (6)

FIG. 4. Line shapes of (a) $Im\Pi(s)$ and (b) $Re\Pi(s)$ for the $K\bar{K}$ and $\eta'\pi$ production with arbitrary normalization.

FIG. 4. Line shapes of (a) $Im\Pi(s)$ and (b) $Re\Pi(s)$ for the $K\bar{K}$ and $\eta'\pi$ production with arbitrary normalization.

I used Mathematica to perform the principal value integrals

BESII

$a_0(980)$

FIG. 4. Line shapes of (a) Im $\Pi(s)$ and (b) Re $\Pi(s)$ for the $K\bar{K}$ and $\eta'\pi$ production with arbitrary normalization.

I used Mathematica to perform the principal value integrals

Included waves

• Uniform background

Included waves

- Uniform background
- J = 0:

 - a₀π⁰
 K*+K-
 - K*-K+

Included waves

- Uniform background
- J = 0:
 - $a_0\pi^0$
 - K*+K-
 - *K**-*K*+
- J = 1:
 - $a_0\pi^0$
 - $K^{*+}K^{-}(L=0, \text{ and } L=1)$
 - K^*-K^+ (L=0, and L=1)

Comparison of OLD to NEW

- Previous results I showed in October had standard Breit-Wigner for $a_0(980)$
- New results have BESIII style $a_0(980)$

OLD fit: Simultaneous fit to J=1 isobars

The blue line does not exist in the $a_0\pi^0$

 \Rightarrow

the blue line is consistent with being an h_1

Simultaneous fit to J=1 isobars

NEW

Simultaneous fit to J=1 isobars

Title

