

- Thrown-acceptance events are 1 million phase space events
- Statistical errors are consistent with nominal value 1.0 when the distribution of mass[*K*⁺*K*⁻] of thrown-acceptance match the distribution of thrown-signal

• The procedure in this **TEST** is not practical way to perform an analysis.

• The procedure in this **TEST** is not practical way to perform an analysis. It is simply a **TEST**.

- The procedure in this **TEST** is not practical way to perform an analysis. It is simply a **TEST**.
- Shaped the a_0 isobar for the acceptance events exactly as signal.

- The procedure in this **TEST** is not practical way to perform an analysis. It is simply a **TEST**.
- Shaped the a_0 isobar for the acceptance events exactly as signal. NOTE: Once the a_0 isobar is in the acceptance events, there is no need for that shape to exist in the PWA

- The procedure in this **TEST** is not practical way to perform an analysis. It is simply a **TEST**.
- Shaped the a₀ isobar for the acceptance events exactly as signal.
 NOTE: Once the a₀ isobar is in the acceptance events, there is no need for that shape to exist in the PWA
- Removed a_0 shape from PWA, but kept phase by dividing complex Flatte function by the magnitude of Flatte function

- Thrown-acceptance events are 1 million phase space events
- The PWA results of the isobar shaped acceptance $a_0\pi^0$ events are more consistent with the PWA from the $(K^+K^-)_s\pi^0$ events

- Generated $K^{+*}K$, where $K^{+*} \rightarrow K^{+}\pi^{0}$ and J=1, l=0, s=1
- Fit mass[$K^+\pi^0$] with $K^*(892)$ and also a_0

• Reconstructed data has been smeared by detector

- Reconstructed data has been smeared by detector
- Must put smear into the fitted Breit-Wigner

K^* isobar smear fits

• Modified standard AmpTools Breit-Wigner by numerical convolution with a gaussian. See backup slides for more details.

K^* isobar smear fits

- Modified standard AmpTools Breit-Wigner by numerical convolution with a gaussian. See backup slides for more details.
- The standard deviation of the gaussian was determined by looking at $\Delta \text{mass}[K^+\pi^0] = (\text{mass detector precision}) (\text{mass thrown precision})$

 Δ [Mass($K^+\pi^0$)] versus Mass($K^+\pi^0$)

• From phase space distribution

Δ [Mass($K^+\pi^0$)] fit to gaussian

K^* isobar fits (no angular information fit)

Without gaussian convolution

Fraction $a_0 \pi^0 = 0.07(1)$

K^* isobar fits (no angular information fit)

Without gaussian convolution

Fraction $K^*K = 0.92(3)$ Fraction $a_0\pi^0 = 0.07(1)$ With gaussian convolution

Fraction $K^*K = 0.98(3)$ Fraction $a_0\pi^0 = 0.04(1)$

• Generated $K^{*+}K^{-}$ with j=1, l=0, s=1

- Generated $K^{*+}K^{-}$ with j=1, l=0, s=1
- Fit designations
 - *J*=0 includes

- Generated $K^{*+}K^{-}$ with j=1, l=0, s=1
- Fit designations
 - *J*=0 includes
 - $a^0 \pi^0$ with *j*=0, *l*=0, *s*=0
 - $K^{*+}K^{-}$ with j=0, l=1, s=1
 - K^*-K^+ with j=0, l=1, s=1

- Generated $K^{*+}K^{-}$ with j=1, l=0, s=1
- Fit designations
 - J=0 includes
 - $a^0 \pi^0$ with *j*=0, *l*=0, *s*=0
 - $K^{*+}K^{-}$ with j=0, l=1, s=1
 - $K^{*-}K^{+}$ with j=0, l=1, s=1
 - J=1 includes
 - $a^0 \pi^0$ with j=1, l=1, s=0
 - $K^{*+}K^{-}$ with j=1, l=0, s=1
 - $K^{*-}K^{+}$ with j=1, l=0, s=1
 - $K^{*+}K^{-}$ with j=1, l=1, s=1
 - $K^{*-}K^{+}$ with j=1, l=1, s=1

- Generated $K^{*+}K^{-}$ with j=1, l=0, s=1
- Fit designations
 - J=0 includes
 - $a^0 \pi^0$ with *j*=0, *l*=0, *s*=0
 - $K^{*+}K^{-}$ with j=0, l=1, s=1
 - $K^{*-}K^{+}$ with j=0, l=1, s=1
 - J=1 includes
 - $a^0 \pi^0$ with j=1, l=1, s=0
 - $K^{*+}K^{-}$ with j=1, l=0, s=1
 - $K^{*-}K^{+}$ with j=1, l=0, s=1
 - $K^{*+}K^{-}$ with j=1, l=1, s=1
 - $K^{*-}K^{+}$ with j=1, l=1, s=1
 - J=2 includes
 - $K^{*+}K^{-}$ with j=1, l=2, s=1
 - K^*-K^+ with j=1, l=2, s=1

- Generated $K^{*+}K^{-}$ with j=1, l=0, s=1
- Fit designations
 - *J*=0 includes
 - $a^0 \pi^0$ with j=0, l=0, s=0
 - $K^{*+}K^{-}$ with j=0, l=1, s=1
 - K^*-K^+ with j=0, l=1, s=1
 - *J*=1 includes
 - $a^0 \pi^0$ with j=1, l=1, s=0
 - $K^{*+}K^{-}$ with j=1, l=0, s=1
 - $K^{*-}K^{+}$ with j=1, l=0, s=1
 - $K^{*+}K^{-}$ with j=1, l=1, s=1
 - $K^{*-}K^{+}$ with j=1, l=1, s=1
 - *J*=2 includes
 - $K^{*+}K^{-}$ with j=1, l=2, s=1
 - $K^{*-}K^{+}$ with j=1, l=2, s=1

→ Same choice as E852

- 200 thousand thrown signal events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number of acceptance events thrown
- PWA fit includes *J*=0 and *J*=1
- The gaussian convolution does not help (or hurt) in resolving J

- 200 thousand thrown signal events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number of acceptance events thrown
- PWA fit includes *J*=0 and *J*=1
- The gaussian convolution still helps in resolving Isobar type

- 200 thousand thrown signal events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number of acceptance events thrown
- PWA fit includes J=0, J=1 and J=2
- The gaussian convolution helps slightly in resolving J

Fraction of J= 1 events identified by decay

- 200 thousand thrown signal events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number of acceptance events thrown
- PWA fit includes J=0, J=1 and J=2
- The gaussian convolution still helps in resolving Isobar type

Fraction of *J*= 1 events identified by decay

With gaussian convolution

Looks stable for 1.3 million thrown acceptance events

Fraction of J= levents identified by decay

With gaussian convolution

Looks stable for 1.3 million thrown acceptance events

Will now use 1.3 million thrown acceptance events and vary the number of signal events

Fraction of events identified

- 1.3 million thrown acceptance events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number reconstructed signal events
- PWA fit includes J=0, J=1 and J=2
- The gaussian convolution is now included as a default for K^*

Fraction of events identified

- 1.3 million thrown acceptance events with mass $[K^+K^-\pi^0] = 1.415 \text{ GeV}$
- Varied the number reconstructed signal events
- PWA fit includes J=0, J=1 and J=2
- The gaussian convolution is now included as a default for K^*

Backup slides

Breit-Wigner with gaussian convolution

If interested, code can be found at:

https://www.public.asu.edu/~dugger/BWSmear/

Some details

Gaussian convolution

- Created gaussian histogram with
 - 100 bins
 - Standard deviation set to one
 - Center set to zero
 - Normalized to one
- Pulled numbers out and put into header file

Gaussian convolution

- Created gaussian histogram with
 - 100 bins
 - Standard deviation set to one
 - Center set to zero
 - Normalized to one
- Pulled numbers out and put into header file


```
double gCenterArray[100] = {
    -2.97, -2.91, -2.85, -2.79, -2.73, -2.67, -2.61, -2.55, -2.49, -2.43,
    -2.37, -2.31, -2.25, -2.19, -2.13, -2.07, -2.01, -1.95, -1.89, -1.83,
    -1.77, -1.71, -1.65, -1.59, -1.53, -1.47, -1.41, -1.35, -1.29, -1.23,
    -1.17, -1.11, -1.05, -0.99, -0.93, -0.87, -0.81, -0.75, -0.69, -0.63,
    -0.57, -0.51, -0.45, -0.39, -0.33, -0.27, -0.21, -0.15, -0.09, -0.03,
    0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, 0.45, 0.51, 0.57,
    0.63, 0.69, 0.75, 0.81, 0.87, 0.93, 0.99, 1.05, 1.11, 1.17,
    1.23, 1.29, 1.35, 1.41, 1.47, 1.53, 1.59, 1.65, 1.71, 1.77,
    1.83, 1.89, 1.95, 2.01, 2.07, 2.13, 2.19, 2.25, 2.31, 2.37,
    2.43, 2.49, 2.55, 2.61, 2.67, 2.73, 2.79, 2.85, 2.91, 2.97
};
```

→ Bin centers

Gaussian convolution

- Created gaussian histogram with
 - 100 bins
 - Standard deviation set to one
 - Center set to zero
 - Normalized to one
- Pulled numbers out and put into header file

double gCenterArray[100] = {

Bin contents

double gValArray[100] = {

0.000291608, 0.000347864, 0.000413481, 0.000489709, 0.000577906, 0.000679536, 0.000796168, 0.000929466, 0.00108118, 0.00125314, 0.00144724, 0.00166538, 0.00190953, 0.00218159, 0.00248347, 0.00281695, 0.00318374, 0.00358535, 0.00402311, 0.0044981, 0.0050111, 0.00556254, 0.00615248, 0.00678053, 0.00744584, 0.00814705, 0.00888226, 0.00964901, 0.0104443, 0.0112645, 0.0121054, 0.0129624, 0.0138302, 0.0147031, 0.0155748, 0.016439, 0.0172887, 0.0181171, 0.0189169, 0.019681, 0.0204025, 0.0210743, 0.0216901, 0.0222436, 0.0227293, 0.0231421, 0.0234778, 0.0237327, 0.0239042, 0.0239904, 0.0239904, 0.0239042, 0.0237327, 0.0234778, 0.0231421, 0.0227293, 0.0224366, 0.0216901, 0.0210743, 0.0204025, 0.019681, 0.0189169, 0.0181171, 0.0172887, 0.016439, 0.0155748, 0.0147031, 0.0138302, 0.0129624, 0.0121054, 0.0112645, 0.0104443, 0.00964901, 0.0088226, 0.00814705, 0.00744584, 0.00678053, 0.00615248, 0.0050111, 0.0044981, 0.00402311, 0.00358535, 0.00318374, 0.00281695, 0.00248347, 0.00218159, 0.00190953, 0.00166538, 0.00144724, 0.00125314, 0.00108118, 0.000929466, 0.000796168, 0.000679536, 0.000577906, 0.000489709, 0.000413481, 0.000347864, 0.000291608

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Relevant part of code
```

```
complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ ){
  GDouble gcVal = gCenterArray[i];
  GDouble gVal = sqrt(gValArray[i]);
  GDouble deltaM = gcVal*m_smear + m_centerShift;
  bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
}
return(bwVal);
```


- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Loop over gaussian bins
complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ ){
GDouble gcVal = gCenterArray[i];
GDouble gVal = sqrt(gValArray[i]);
GDouble deltaM = gcVal*m_smear + m_centerShift;
bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
}</pre>
```

return(bwVal);

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Obtain bin center

complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ )(
GDouble gcVal = gCenterArray[i];
GDouble gVal = sqrt(gValArray[i]);
GDouble deltaM = gcVal*m_smear + m_centerShift;
bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
}</pre>
```

```
return(bwVal);
```


- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Calculate the square root of bin content
complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ );
GDouble gcVal = gCenterArray[i];
GDouble gVal = sqrt(gValArray[i]);
GDouble deltaM = gcVal*m_smear + m_centerShift;
bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
}
```

```
return(bwVal);
```


- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Define ΔMass
complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ )
GDouble gcVal = gCenterArray[i];
GDouble gVal = sqrt(gValArray[i]);
GDouble deltaM = gcVal*m_smear + m_centerShift;
bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
}
```

```
return(bwVal);
```


- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Define \DeltaMass
complex <GDouble> bwVal(0,0);
for(unsigned int i = 0; i < 100; i++).
  GDouble gcVal = gCenterArray[i];
                      rt(qValArrav[i
  GDouble deltaM = gcVal(*m smear) + m centerShift;
  bwVal += gVal*bwCalc(mass+dectaM,mass1,mass2,m mass0,m width0,m orbitL);
                        Standard
return(bwVal);
                       deviation
                      passed into
                        program
                                                                        46
```

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

```
Convolution step
complex <GDouble> bwVal(0,0);
for( unsigned int i = 0; i < 100; i++ );
GDouble gcVal = gCenterArray[i];
GDouble gVal = sqrt(gValArray[i]);
GDouble deltaM = gcVal*m_smear + m_centerShift;
bwVal += gVal*bwCalc(mass+deltaM,mass1,mass2,m_mass0,m_width0,m_orbitL);
```

return(bwVal);

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

- Copied BrietWigner.cc to BWSmear.cc
- Modified code to include gaussian convolution

