

Monte Carlo peak fits

• Each mass spectrum was fit to voigtian line shape

SU

Results of Monte Carlo peak fits

• Reconstructed masses are systematically high by about 2 MeV

Results of Monte Carlo peak fits

- Reconstructed masses are systematically high by about 2 MeV
- Gaussian broadening (σ) of Voigtian line shape is about 9.45 MeV

- Looking at the intensity in two different ways:
 - Salgado-Weygand
 - JPAC

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2$$

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2 = \sum_{\text{ext spins}} \left\langle out \left| \hat{T} \right| in \right\rangle \left\langle in \left| \hat{T}^* \right| out \right\rangle$$

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2 = \sum_{\text{ext spins}} \left\langle out \left| \hat{T} \right| in \right\rangle \left\langle in \left| \hat{T}^* \right| out \right\rangle$$

Define the spin density matrix ρ such that:

$$|in\rangle\langle in| = \sum_{i,j} \rho_{i,j} = \sum_{i,j} |i\rangle\langle j|$$

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2 = \sum_{\text{ext spins}} \left\langle out \left| \hat{T} \right| in \right\rangle \left\langle in \left| \hat{T}^* \right| out \right\rangle$$

Define the spin density matrix ρ such that:

$$|in\rangle\langle in| = \sum_{i,j} \rho_{i,j} = \sum_{i,j} |i\rangle\langle j|$$

Now

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| {}^{i}\hat{T}\rho_{i,j}{}^{j}\hat{T}^{*} \right| out \right\rangle$$

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2 = \sum_{\text{ext spins}} \left\langle out \left| \hat{T} \right| in \right\rangle \left\langle in \left| \hat{T}^* \right| out \right\rangle$$

Define the spin density matrix ρ such that:

$$|in\rangle\langle in| = \sum_{i,j} \rho_{i,j} = \sum_{i,j} |i\rangle\langle j|$$

Now

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| {}^{i}\hat{T}\rho_{i,j}{}^{j}\hat{T}^{*} \right| out \right\rangle$$

Let $\hat{T} = \hat{T}_d \hat{T}_p$, where subscript $d \equiv$ decay and $p \equiv$ production

The intensity can be written as [1] :

$$I = \sum_{\text{ext spins}} \left| \left\langle out \left| \hat{T} \right| in \right\rangle \right|^2 = \sum_{\text{ext spins}} \left\langle out \left| \hat{T} \right| in \right\rangle \left\langle in \left| \hat{T}^* \right| out \right\rangle$$

Define the spin density matrix ρ such that:

$$|in\rangle\langle in| = \sum_{i,j} \rho_{i,j} = \sum_{i,j} |i\rangle\langle j|$$

Now

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| {}^{i}\hat{T}\rho_{i,j}{}^{j}\hat{T}^{*} \right| out \right\rangle$$

Let $\hat{T} = \hat{T}_d \hat{T}_p$, where subscript $d \equiv$ decay and $p \equiv$ production

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| \hat{T}_d^i \hat{T}_p \rho_{i,j}^{\ j} \hat{T}_p^* \hat{T}_d^* \right| out \right\rangle$$

From prior slide: $I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| \hat{T}_d^i \hat{T}_p \rho_{i,j}^{\ j} \hat{T}_p^* \hat{T}_d^* \right| out \right\rangle$

$$I = \sum_{\text{ext spins } i,j} \sum_{i,j} \left\langle out \left| \hat{T}_d^i \hat{T}_p \rho_{i,j}{}^j \hat{T}_p^* \hat{T}_d^* \right| out \right\rangle$$

Insert full set of partial waves

$$1 = \sum_X |X\rangle \langle X|$$

$$1 = \sum_{X'} |X'\rangle \langle X'|$$

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| \hat{T}_d^i \hat{T}_p \rho_{i,j}^j \hat{T}_p^* \hat{T}_d^* \right| out \right\rangle$$

Insert full set of $1 = \sum_X |X\rangle\langle X|$ $1 = \sum_{X'} |X'\rangle\langle X'|$ partial waves

To get

SU

$$I = \sum_{\text{ext spins}} \sum_{i,j} \sum_{X,X'} \langle out | \hat{T}_d | X \rangle \langle X |^i \hat{T}_p \rho_{i,j}{}^j \hat{T}_p^* | X' \rangle \langle X' | \hat{T}_d^* | out \rangle$$

$$I = \sum_{\text{ext spins}} \sum_{i,j} \left\langle out \left| \hat{T}_d^i \hat{T}_p \rho_{i,j}^j \hat{T}_p^* \hat{T}_d^* \right| out \right\rangle$$

Insert full set of $1 = \sum_X |X\rangle\langle X|$ $1 = \sum_{X'} |X'\rangle\langle X'|$ partial waves

To get
$$I = \sum_{\text{ext spins } i,j} \sum_{X,X'} \langle out | \hat{T}_d | X \rangle \langle X | i \hat{T}_p \rho_{i,j} i \hat{T}_p^* | X' \rangle \langle X' | \hat{T}_d^* | out \rangle$$

where $\langle out | \hat{T}_d | X \rangle$ is the partial wave amplitude

Partial wave amplitude

$$X_{lms}^{j} =$$

$$\frac{m_{0}\Gamma}{m_{0}^{2}-m^{2}-im_{0}\Gamma}a_{jlsm}\sum_{\lambda}D_{m\lambda}^{J*}(\varphi_{GJ},\theta_{GJ})D_{\lambda0}^{S*}(\varphi_{h},\theta_{h})\langle l0s\lambda|J\lambda\rangle,$$

where a_{jlsm} are the coefficients of the fit, and the Breit-Wigner factor is for the potential isobar

• Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates
- Can construct amplitudes that are eigenstates of reflectivity = parity (space inversion) and 180° rotation

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates
- Can construct amplitudes that are eigenstates of reflectivity = parity (space inversion) and 180° rotation
- Operators:
 - Parity operator = Π

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates
- Can construct amplitudes that are eigenstates of reflectivity = parity (space inversion) and 180° rotation
- Operators:
 - Parity operator = Π
 - Reflection operator = $\Pi_y = \Pi \cdot \exp(-i\pi J_y)$

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates
- Can construct amplitudes that are eigenstates of reflectivity = parity (space inversion) and 180° rotation
- Operators:
 - Parity operator = Π
 - Reflection operator = $\Pi_y = \Pi \cdot \exp(-i\pi J_y)$

- Strong reactions conserve parity and it would be nice to construct amplitudes with eigenstates of parity
- Helicity states are not parity eigenstates
- Can construct amplitudes that are eigenstates of reflectivity = parity (space inversion) and 180° rotation
- Operators:
 - Parity operator = Π
 - Reflection operator = $\Pi_y = \Pi \cdot \exp(-i\pi J_y)$
- Reflectivity quantum number ϵ , with
 - $\epsilon = \pm 1$ for bosons
 - $\epsilon = \pm i$ for fermions

Let *m* be angular momentum *z*-projection, ϵ be reflectivity and *a* be all other quantum numbers.

Let *m* be angular momentum *z*-projection, ϵ be reflectivity and *a* be all other quantum numbers.

States of definite reflectivity:

- $|\epsilon, a, m \rangle = \Theta(m)[|a, m \rangle + \epsilon P(-1)^{J-m}|a, -m \rangle],$ where
 - $\Theta(m) = \frac{1}{\sqrt{2}}$, if m > 0
 - $\Theta(m) = \frac{1}{2}$, if m = 0
 - $\Theta(m) = \overline{0} \ if \ m < 0$

Let *m* be angular momentum *z*-projection, ϵ be reflectivity and *a* be all other quantum numbers.

States of definite reflectivity:

- $|\epsilon, a, m\rangle = \Theta(m)[|a, m\rangle + \epsilon P(-1)^{J-m}|a, -m\rangle],$ where
 - $\Theta(m) = \frac{1}{\sqrt{2}}$, if m > 0
 - $\Theta(m) = \frac{1}{2}$, if m = 0
 - $\Theta(m) = \overline{0} \ if \ m < 0$
- When m = 0 we have $|\epsilon, a, 0 > =\frac{1}{2} [1 + \epsilon P(-1)^{J}] |a, 0 >$
 - Only non-zero when $\epsilon = P(-1)^J$, or
 - $\epsilon = +P$, for J = even
 - $\epsilon = -P$, for J = odd

Natural parity and Naturality

Definitions:

- Natural parity if $P = (-1)^J$ and unnatural parity if $P = -(-1)^J$. So:
 - Scalars and vectors are Natural
 - Pseudoscalars and pseudovectors are Unnatural

Natural parity and Naturality

Definitions:

- Natural parity if $P = (-1)^J$ and unnatural parity if $P = -(-1)^J$. So:
 - Scalars and vectors are Natural
 - Pseudoscalars and pseudovectors are Unnatural
- Naturality (N) of the exchanged particle is $N = P(-1)^J$, with Natural when N = +1 and Unnatural when N = -1.

The intensity in the helicity basis can be written as [2]

$$I(\Omega,\mathscr{P},\Phi) = \sum_{\lambda_1,\lambda_2} \sum_{\lambda,\lambda'} T_{\lambda;\lambda_1,\lambda_2}(\Omega) \rho^{\gamma}_{\lambda,\lambda'}(\mathscr{P},\Phi) T^*_{\lambda';\lambda_1,\lambda_2}(\Omega).$$
(76)

The intensity in the helicity basis can be written as [2]

$$I(\Omega, \mathscr{P}, \Phi) = \sum_{\lambda_1, \lambda_2} \sum_{\lambda, \lambda'} T_{\lambda; \lambda_1, \lambda_2}(\Omega) \rho_{\lambda, \lambda'}^{\gamma}(\mathscr{P}, \Phi) T_{\lambda'; \lambda_1, \lambda_2}^{*}(\Omega).$$
(76)
where

$$T_{\lambda;\lambda_1,\lambda_2}(\Omega) = \sum_{l,m} T^l_{\lambda,m;\lambda_1,\lambda_2} Y^m_l(\Omega)$$
(77)

The intensity in the helicity basis can be written as [2]

$$I(\Omega, \mathscr{P}, \Phi) = \sum_{\lambda_1, \lambda_2} \sum_{\lambda, \lambda'} T_{\lambda; \lambda_1, \lambda_2}(\Omega) \rho_{\lambda, \lambda'}^{\gamma}(\mathscr{P}, \Phi) T_{\lambda'; \lambda_1, \lambda_2}^{*}(\Omega).$$
(76)
where
$$T_{\lambda; \lambda_1, \lambda_2}(\Omega) = \sum T_{\lambda, m; \lambda_1, \lambda_2}^{l} Y_l^m(\Omega)$$
(77)

 $\overline{l.m}$

At high energy, parity conservation can be incorporated by taking [3]

$$T^{\ell}_{\lambda m;\lambda_1\lambda_2} \simeq -P(-1)^J(-1)^m T^{\ell,s}_{-\lambda-m;\lambda_1\lambda_2}, \qquad (C8)$$

The intensity in the helicity basis can be written as [2]

$$I(\Omega, \mathscr{P}, \Phi) = \sum_{\lambda_1, \lambda_2} \sum_{\lambda, \lambda'} T_{\lambda; \lambda_1, \lambda_2}(\Omega) \rho_{\lambda, \lambda'}^{\gamma}(\mathscr{P}, \Phi) T_{\lambda'; \lambda_1, \lambda_2}^{*}(\Omega).$$
(76)
where
$$T_{\lambda; \lambda_1, \lambda_2}(\Omega) = \sum_{l, m} T_{\lambda, m; \lambda_1, \lambda_2}^{l} Y_l^m(\Omega)$$
(77)

At high energy, parity conservation can be incorporated by taking [3]

$$T^{\ell}_{\lambda m;\lambda_1 \lambda_2} \simeq -P(-1)^J (-1)^m T^{\ell,s}_{-\lambda - m;\lambda_1 \lambda_2}, \qquad (C8)$$

Note: $P(-1)^{J}$ is of exchange particle

The intensity in the helicity basis can be written as [2]

$$I(\Omega, \mathscr{P}, \Phi) = \sum_{\lambda_1, \lambda_2} \sum_{\lambda, \lambda'} T_{\lambda; \lambda_1, \lambda_2}(\Omega) \rho_{\lambda, \lambda'}^{\gamma}(\mathscr{P}, \Phi) T_{\lambda'; \lambda_1, \lambda_2}^{*}(\Omega).$$
(76)
where
$$T_{\lambda; \lambda_1, \lambda_2}(\Omega) = \sum T_{\lambda, m; \lambda_1, \lambda_2}^{l} Y_l^m(\Omega)$$
(77)

At high energy, parity conservation can be incorporated by taking [3]

$$T^{\ell}_{\lambda m;\lambda_1\lambda_2} \simeq -P(-1)^J (-1)^m T^{\ell,s}_{-\lambda-m;\lambda_1\lambda_2}, \quad (C8) \qquad \text{Note: } P(-1)^J \text{ is of exchange}$$
particle

Trading photon-helicity index for photon-reflectivity and define the reflectivity basis

$${}^{(\epsilon)}T^{\ell}_{m;\lambda_1\lambda_2} = \frac{1}{2} \left[T^{\ell}_{+1m;\lambda_1\lambda_2} - \epsilon(-1)^m T^{\ell}_{-1-m;\lambda_1\lambda_2} \right], \qquad (D1)$$

The intensity in the helicity basis can be written as [2]

$$I(\Omega, \mathscr{P}, \Phi) = \sum_{\lambda_1, \lambda_2} \sum_{\lambda, \lambda'} T_{\lambda; \lambda_1, \lambda_2}(\Omega) \rho_{\lambda, \lambda'}^{\gamma}(\mathscr{P}, \Phi) T_{\lambda'; \lambda_1, \lambda_2}^{*}(\Omega).$$
(76)
where
$$T_{\lambda; \lambda_1, \lambda_2}(\Omega) = \sum_{l, m} T_{\lambda, m; \lambda_1, \lambda_2}^{l} Y_l^m(\Omega)$$
(77)

 $T^{\ell}_{\lambda m;\lambda_1\lambda_2} \simeq -P(-1)^{j}(-1)^m T^{\ell,s}_{-\lambda-m;\lambda_1\lambda_2},$ (C8) Note: $P(-1)^{J}$ is of exchange particle

Trading photon-helicity index for photon-reflectivity and define the reflectivity basis

$${}^{(\epsilon)}T^{\ell}_{m;\lambda_1\lambda_2} = \frac{1}{2} \left[T^{\ell}_{+1m;\lambda_1\lambda_2} - \epsilon(-1)^m T^{\ell}_{-1-m;\lambda_1\lambda_2} \right],$$

(D1) Note: Only for 2-pseudoscalar production

((())

[2] Carlos Salgado and Vincent Mathieu, https://halldweb.jlab.org/DocDB/0045/004599/001/photonPWA_FINAL.pdf [3] V. Mathieu, et. al. Phys. Rev. D 100, 054017 (2019)

Justin took the JPAC method written for 2-pseudoscalar production and expanded it for vector pseudoscalar

$$Modified \longrightarrow \quad {}^{(\epsilon)}T_m^l = \frac{1}{2} \left(T_{+1,m}^l - \epsilon (-1)^m T_{-1,-m}^l \right) \tag{5}$$

Justin Stevens, https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4858

Justin took the JPAC method written for 2-pseudoscalar production and expanded it for vector pseudoscalar

Modified
$$\rightarrow \quad {}^{(\epsilon)}T_m^l = \frac{1}{2} \left(T_{+1,m}^l - \epsilon (-1)^m T_{-1,-m}^l \right)$$
(5)

To include the reflectivity of the meson resonance

$${}^{(\epsilon)}T^{i}_{m} = \frac{1}{2} \left(T^{i}_{+1,m} - \epsilon \overline{\tau_{i}} (-1)^{m} T^{i}_{-1,-m} \right)$$
(6)

Justin Stevens, https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4858

Justin took the JPAC method written for 2-pseudoscalar production and expanded it for vector pseudoscalar

Modified
$$\rightarrow \quad {}^{(\epsilon)}T_m^l = \frac{1}{2} \left(T_{+1,m}^l - \epsilon (-1)^m T_{-1,-m}^l \right)$$
(5)

To include the reflectivity of the meson resonance

$${}^{(\epsilon)}T^{i}_{m} = \frac{1}{2} \left(T^{i}_{+1,m} - \epsilon \overline{\tau_{i}} (-1)^{m} T^{i}_{-1,-m} \right)$$
(6)

And once the dust settles \rightarrow

Justin Stevens, https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4858

$$\begin{split} I(\Phi,\Omega,\Omega_H) &= 2\kappa \sum_k \\ \left\{ (1-P_{\gamma}) \left[\left| \sum_{i_N,m} [J_i^N]_{m,k}^{(+)} Im(Z) + \sum_{i_U,m} [J_i^U]_{m,k}^{(-)} Im(Z) \right|^2 + \left| \sum_{i_N,m} [J_i^N]_{m,k}^{(-)} Re(Z) + \sum_{i_U,m} [J_i^U]_{m,k}^{(+)} Re(Z) \right|^2 \right] + \\ (1+P_{\gamma}) \left[\left| \sum_{i_N,m} [J_i^N]_{m,k}^{(-)} Im(Z) + \sum_{i_U,m} [J_i^U]_{m,k}^{(+)} Im(Z) \right|^2 + \left| \sum_{i_N,m} [J_i^N]_{m,k}^{(+)} Re(Z) + \sum_{i_U,m} [J_i^U]_{m,k}^{(-)} Re(Z) \right|^2 \right] \right\} \end{split}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

$$\begin{split} I(\Phi,\Omega,\Omega_{H}) &= 2\kappa \sum_{k} \\ \left\{ (1-P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Re(Z) \right|^{2} \right] + \\ (1+P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Re(Z) \right|^{2} \right] \right\} \end{split}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

where $Z_m^i(\Omega, \Omega_H) = e^{-i\Phi} X_m^i(\Omega, \Omega_H)$ is the phase-rotated decay amplitude and Φ is the angle between the production plane and the photon polarization

K^*K decays

- K^+ has $I = \frac{1}{2}$ and $I_z = +\frac{1}{2} : |\frac{1}{2}, +\frac{1}{2}\rangle$
- K^{-} has $I = \frac{1}{2}$ and $I_{z} = -\frac{1}{2} : |\frac{1}{2}, -\frac{1}{2}\rangle$

For I=0 resonance $\rightarrow K^*K$:

- $|0,0\rangle = \frac{1}{\sqrt{2}} [|1_{2},+1_{2}\rangle |1_{2},-1_{2}\rangle |1_{2},-1_{2}\rangle |1_{2},+1_{2}\rangle]$
- $|0,0\rangle = \frac{1}{\sqrt{2}} \left[K^{+*} K^{-} K^{-*} K^{+} \right]$

For I=1 resonance $\rightarrow K^*K$:

• $|1,0\rangle = \frac{1}{\sqrt{2}} [|\frac{1}{2}, +\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle + |\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, +\frac{1}{2}\rangle]$

•
$$|1,0\rangle = \frac{1}{\sqrt{2}} \left[K^{+*} K^{-} + K^{-*} K^{+} \right]$$

K^*K decays

- K^+ has $I = \frac{1}{2}$ and $I_z = +\frac{1}{2}$: $|\frac{1}{2}, +\frac{1}{2}\rangle$
- K^{-} has $I = \frac{1}{2}$ and $I_{z} = -\frac{1}{2} : |\frac{1}{2}, -\frac{1}{2}\rangle$

For I=0 resonance $\rightarrow K^*K$:

- $|0,0\rangle = \frac{1}{\sqrt{2}} [|1_{2},+1_{2}\rangle |1_{2},-1_{2}\rangle |1_{2},-1_{2}\rangle |1_{2},+1_{2}\rangle]$
- $|0,0\rangle = \frac{1}{\sqrt{2}} \left[K^{+*} K^{-} \bigcirc K^{-*} K^{+} \right]$

For I=1 resonance $\rightarrow K^*K$:

- $|1,0\rangle = \frac{1}{\sqrt{2}} [|\frac{1}{2}, +\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle + |\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, +\frac{1}{2}\rangle]$
- | 1,0 $\rangle = \frac{1}{\sqrt{2}} \left[K^{+*} K^{-} \oplus K^{-*} K^{+} \right]$

Isospin

Meson resonances of interest:

- $\eta: I = 0$
- $f_1: I = 0$
- $h_1: I = 0$

Included in the fit at each mass[*KK* π] bin

• Uniform background

Included in the fit at each mass[$KK\pi$] bin

- Uniform background
- $J=0, m=0, L=0, S=0, \text{ Isobar} = a_0$
- $J=0, m=0, L=0, S=0, KK\pi$
- $J=0, m=0, L=1, S=1, KK\pi$
- $J=0, m=0, L=1, S=1, \text{Isobar} = K^{*+}$
- $J=0, m=0, L=1, S=1, \text{ Isobar} = K^{*}$

Included in the fit at each mass[$KK\pi$] bin

- Uniform background
- $J=0, m=0, L=0, S=0, \text{ Isobar} = a_0$
- $J=0, m=0, L=0, S=0, KK\pi$
- $J=0, m=0, L=1, S=1, KK\pi$
- $J=0, m=0, L=1, S=1, \text{Isobar} = K^{*+}$
- $J=0, m=0, L=1, S=1, \text{ Isobar} = K^{*}$ -
- J=1, m=-1, 0, 1, L=1, S=0, Isobar = a_0
- $J=1, m=-1, 0, 1, L=1, S=0, KK\pi$
- *J*=1, *m*=-1,0,1, *L*=0, *S*=1, *KK*π
- *J*=1, *m*=-1,0,1, *L*=1, *S*=1, *KK*π
- $J=1, m=-1, 0, 1, L=0, S=1, \text{ Isobar} = K^{*+}$
- J=1, m=-1, 0, 1, L=0, S=1, Isobar = K^{*} -

AmpTools error bars

- Was using fit fractions to obtain fractions and errors, but did not know how to use fit fractions for subsets of amplitudes.
- Switched to using histograms created through plotGenerator.projection

Note:

Using plotGenerator.enableAmp(i) for the i^{th} amplitude of interest in subset, and after turning on the desired amplitudes, creating histograms using Histogram* hist = plotGenerator.projection(ivar,reactionName,iplot), gives unrealistic error bars \bigotimes

- For a few days, the error bars were destroyed and I used a temporary work around $\ensuremath{\textcircled{\otimes}}$
- Matt Shepard sent me instructions on how to get the fit fractions to work for a subset of amplitudes. Now error bars look good again ③

Fit

¥ASU

Fit

SU

Leakage from J = 1?

Center = 1278 + 4Width = 15 + -11

Red bump: Center = 1278 ± 4 Width = 15 ± 11 **Consistent with leakage from** $f_1(1285)$

Red $f_1(1285)$: Center = 1285 +/- 1 PDG = 1281.9 +/- 0.5

Width = 20 + - 3PDG = 22.7 + - 1.1

Red $f_1(1285)$:

Red $f_1(1285)$:

 $h_1(1415)$

Blue $h_1(1415)$: Center = 1400 +/- 4 PDG = 1409 + 9 - 8

Width = 54 +/- 6 PDG = 78 +/- 11

 $h_1(1415)$

Blue $h_1(1415)$: Center = 1400 +/- 4 PDG = 1409 + 9 - 8

Width = 54 +/- 6 PDG = 78 +/- 11

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

$I^{G}(J^{PC}) = 0^{-}(1^{+-})$

h1(1415) MASS

VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT
1409 + 9 OUR AVERAGE	Error includes scal	e factor of 1.	9. See the ideogram below.
$1384\pm 6 \ +9 \ -0$	¹ ABLIKIM	22c BES3	$J/\psi \rightarrow \gamma \eta' \eta' \rightarrow$
1423± 2.1±7.3 2.2k 1412± 4 ±8	² Ablikim ² Ablikim	18AB BES3 15m BES3	$ \begin{array}{l} 4/5\gamma 2(\pi^+\pi^-) \\ J/\psi \to \eta' h_1 \to \eta' K^*\overline{K} \\ \psi(2S) \to \gamma \chi_{c1,2} \to \end{array} $
1440±60	ABELE	97H CBAR	$\begin{array}{c} \gamma\phi(h_1 \to K^*\overline{K}) \\ \overline{p}p \to K_L^0 K_S^0 \pi^0 \pi^0 \\ \mu K_L K_S^0 \mu K_L^0 K_L^0 \pi^0 \pi^0 \end{array}$
1380 ± 20	ASTON	88C LASS	$11 \text{ K}^- p \rightarrow \text{K}_S^{+} \pi^+ \Lambda$

 $h_1(1415)$

Blue $h_1(1415)$: Center = 1400 +/- 4 PDG = 1409 + 9 - 8

Width = 54 + - 6PDG = 78 + - 11

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

$$h_1(1415)$$

was $h_1(1380)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+-})$$

h1(1415) MASS

VALUE (MeV) EVTS	DOCUMENT ID	TECN COMMENT
1409 + 9 OUR AVERAGE	Error includes scale f	actor of 1.9. See the ideogram below.
1384 \pm 6 $^{+9}_{-0}$	¹ ABLIKIM 22	PC BES3 $J/\psi \rightarrow \gamma \eta' \eta' \rightarrow$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	² ABLIKIM 18 ² ABLIKIM 15	$\begin{array}{c} 4/5\gamma 2(\pi^+\pi^-) \\ \text{SAB BES3} J/\psi \to \eta' h_1 \to \eta' K^*\overline{K} \\ \text{SM BES3} \psi(2S) \to \gamma \chi_{c1,2} \to \end{array}$
1440±60 1380±20	ABELE 97 ASTON 88	$\begin{array}{rcl} & \gamma\phi(h_1 \to K^{\bullet}\overline{K}) \\ & \text{TH CBAR } \overline{p}p \to K_L^0 K_S^0 \pi^0 \pi^0 \\ & \text{Sc LASS } 11 \ K^- p \to K_S^0 K^{\pm} \pi^{\mp} \Lambda \end{array}$

h1(1415) WIDTH

VALUE (MeV)EVTS	DOCUMENT ID	TECN	COMMENT
78 ±11 OUR AVERAGE			
66 $\pm 10 \begin{array}{c} +12 \\ -10 \end{array}$	¹ ABLIKIM	22c BES3	$J/\psi \rightarrow \gamma \eta' \eta' \rightarrow$
90.3± 9.8±17.5 2.2k	² ABLIKIM	18AB BES3	$4/5\gamma 2(\pi^+\pi^-) J/\psi \to \eta' h_1 \to \eta' K^*\overline{K}$
84 ±12 ±40	² ABLIKIM	15M BES3	$\psi(2S) \rightarrow \gamma \chi_{c1,2} \rightarrow$
			$\gamma \phi(h_1 \rightarrow K^* \overline{K})$
170 ±80	ABELE	97H CBAR	$\overline{p}p \rightarrow K_{I}^{0}K_{S}^{0}\pi^{0}\pi^{0}$
80 ±30	ASTON	88C LASS	$11 \ K^- p \rightarrow K^0_S K^{\pm} \pi^{\mp} \Lambda$

¹ From a partial wave analysis of the systems (γX), with $X \to \eta' \eta'$, and ($\eta' X$), with $X \to \gamma \eta'$ in the decay $J/\psi \to \gamma \eta' \eta'$. The intermediate resonance X is parametrized by a constant-width, relativistic Breit-Wigner. ² Final states $K^+ K^- \pi^0$ and $K_S^0 K^{\pm} \pi^{\mp}$.

h1(1415) DECAY MODES

Г1	K 🕂 * (892	2)+ c.c.		
		h1(1	415) REFERENCE	s
ABLIKIM ABLIKIM ABLIKIM	22C 18AB 15M	PR D105 072002 PR D98 072005 PR D91 112008 PL B415 280	M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. A. Ablikim et al.	(BESIII Collab (BESIII Collab (BESIII Collab (Crystal Barrel Collab

Width consistent with most recent measurement

