Low-mass $K^+K^-\pi^0$ study

$K^+K^-\pi^0$

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was s-channel

$K^+K^-\pi^0$

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was *s*-channel

• We should be able to distinguish the *J*=1 nature through PWA

$K^+K^-\pi^0$

- Found that R. Dickson and R.A. Schumacher eventually identified the CLAS x(1280) bump as being the $f_1(1285)$ and published their results in 2016.
 - Not enough statistics for PWA
 - Speculated that the production mechanism was s-channel

• We should be able to distinguish the J=1 nature through PWA

• Will start by assuming *t*-channel prior to searching for *s*-channel contributions (code is currently setup for *t*-channel).

• Convenient to treat potential 3-body decay as two 2-body decays

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

 K^+

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

- Convenient to treat potential 3-body decay as two 2-body decays
- For the two 2-bodies:
 - One body is single meson
 - Other body is composed of remaining two mesons

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-$)
Mass (T-Matrix	Pole \sqrt{s}) = (890 ± 14) –	i (26 \pm 6) MeV
$K^*(892)^{\pm}$ hadro	oproduced mass $m = 891.6$	7 ± 0.26 MeV
${\it K}^{st}$ (892) $^{\pm}$ in $ au$	decays mass $m=$ 895.5 \pm	0.8 MeV
$K^{*}(892)^{0}$ mass	$m = 895.55 \pm 0.20$ MeV	(S = 1.7)
$K^*(892)^{\pm}$ hadro	pproduced full width $\Gamma = 5$	1.4 ± 0.8 MeV
$K^{*}(892)^{\pm}$ in τ	decays full width $\Gamma = 46.2$	\pm 1.3 MeV
<i>K</i> *(892) ⁰ full v	width $\Gamma = 47.3 \pm 0.5$ MeV	(S = 1.9)
		p
K*(892) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level (MeV/c)
Κπ	$\sim~100$ %	289

	100 /0		
$\langle ^{0}\gamma$	$(2.46\pm0.21)\times10^{-3}$		307
$\zeta^{\pm}\gamma$	(9.8 ± 0.9) $ imes 10^{-4}$		309
$(\pi \pi)$	$< 7 \times 10^{-4}$	95%	223

K ₀ *(700)	$I(J^P) = rac{1}{2}(0^+)$	
also known as κ ; was K_0^* (800))	
See the review on "Scalar	Mesons below 1 GeV."	
Mass (T-Matrix P	ole \sqrt{s}) = (630–730) – i (260)–340) MeV
Mass (Breit-Wigne	$er) = 845 \pm 17$ MeV	
Full width (Breit-V	$Wign(\mathbf{r}) = 468 \pm 30 \; MeV$	
K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-)$	
Mass (T-Matrix P	$(16.\sqrt{s}) = (890 + 14) - i(26)$	5 + 6) MeV
$K^*(892)^{\pm}$ hadrop	roduced mass $m = 891.67 + 0$).26 MeV
$K^*(892)^{\pm}$ in τ de	cave mass $m = 895.5 \pm 0.8$ M	leV
$K^*(892)^0$ mass n	$n = 895.55 \pm 0.20$ MeV (S =	= 1.7)
$\kappa^*(892)^{\pm}$ hadrop	roduced full width $\Gamma = 51.4 \pm$	0.8 MeV
$\mathit{K}^*(892)^\pm$ in $ au$ de	cays full width $\Gamma=46.2\pm1.3$	3 MeV
K*(892) ⁰ full wid	th $\Gamma = 47.3 \pm 0.5$ MeV (S	= 1.9)
		p
K*(892) DECAY MODES	Fraction (Γ_i/Γ) Confi	dence level (MeV/c)
Kπ	~ 100 %	289
$K^{\circ}\gamma$	$(2.46\pm0.21)\times10^{-3}$	307
$K^{\pm}\gamma$	$(9.8 \pm 0.9) \times 10^{-4}$	309
Κππ	$< 7 \times 10^{-4}$	95% 223

K*(700)

$$I(J^P) = \tfrac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

Fraction (Γ_i/Γ)	p (MeV/c)
100 %	256
	Fraction (Γ _i /Γ) 100 %

K*(892)

$$(J^P) = \frac{1}{2}(1^-)$$

Mass $(T-Matrix Pole \sqrt{s}) = (890 \pm 14) - i (26 \pm 6) \text{ MeV}$ $K^*(892)^{\pm}$ hadroproduced mass $m = 891.67 \pm 0.26 \text{ MeV}$ $K^*(892)^{\pm}$ in τ decays mass $m = 895.5 \pm 0.8 \text{ MeV}$ $K^*(892)^0$ mass $m = 895.55 \pm 0.20 \text{ MeV}$ (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8 \text{ MeV}$ $K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3 \text{ MeV}$ $K^*(892)^0$ full width $\Gamma = 47.3 \pm 0.5 \text{ MeV}$ (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Κπ	$\sim~100$	6	289
$\kappa^0\gamma$	(2.46±0.21)	< 10 ⁻³	307
$\kappa^{\pm}\gamma$	(9.8 ±0.9)>	< 10 ⁻⁴	309
$K\pi\pi$	< 7 >	< 10 ⁻⁴ 95%	223

MeV

K*(700)

$$I(J^P) = \tfrac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$
See the review on "Scalar Mesons below 1 GeV."
Mass (T-Matrix Pole \sqrt{s}) = (630–730) – i (260–340)
Mass (Breit-Wigner) $=$ 845 \pm 17 MeV
Full width (Breit-Wigner) $=$ 468 \pm 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256
K*(892)	$I(J^P) = \frac{1}{2}(1^-)$	
Mass (T-Matrix F	Pole \sqrt{s}) = (890 ± 14) - i (26	\pm 6) MeV

 $\begin{array}{l} \text{Mass } (1-\text{Matrix Fole } \sqrt{s}) = (050 \pm 14) = i \ (20 \pm 0) \text{ MeV} \\ \text{$K^*(892)^{\pm}$ in τ decays mass $m = 891.67 \pm 0.26$ MeV} \\ \text{$K^*(892)^{\pm}$ in τ decays mass $m = 895.55 \pm 0.20$ MeV} \ \text{$(S = 1.7)$} \\ \text{$K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8$ MeV} \\ \text{$K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV} \\ \text{$K^*(892)^0$ full width $\Gamma = 47.3 \pm 0.5$ MeV} \ \text{$(S = 1.9)$} \end{array}$

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Κπ	$\sim~100$	%	289
$\kappa^0\gamma$	(2.46±0.21)	$\times 10^{-3}$	307
$\kappa^{\pm}\gamma$	(9.8 ±0.9)	$\times 10^{-4}$	309
$K\pi\pi$	< 7	× 10 ⁻⁴ 95%	223

MeV

p (MeV/c)

256

SU

$$I(J^P) = \tfrac{1}{2}(0^+)$$

also known	n as κ ; was $K_0^*(800)$))	
See the	e review on "Scalar	r Mesons below 1 GeV."	
	Mass (T-Matrix F	Pole \sqrt{s}) = (630–730) – <i>i</i> (26	60–340) MeV
	Mass (Breit-Wign	ler) $=$ 845 \pm 17 MeV	
	Full width (Breit-	Wigner) $=$ 468 \pm 30 MeV	
			- (
N ₀ (100) DE	CAT MODES	Fraction (I_i/I)	<i>p</i> (
Kπ		100 %	
K*(892)	$I(J^{\boldsymbol{P}}) = \frac{1}{2}(1^{-})$	
	Mass (T-Matrix F $K^*(892)^{\pm}$ hadrop	Pole \sqrt{s}) = (890 ± 14) - <i>i</i> (2 produced mass <i>m</i> = 891.67 ±	26 ± 6) MeV 0.26 MeV
	Λ (097) = In τ de	$e_{cays} mass m = 695.5 \pm 0.6$	iviev

 $K^*(892)^0$ mass $m = 895.55 \pm 0.20$ MeV (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8$ MeV $K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV $K^{*}(892)^{0}$ full width $\Gamma = 47.3 \pm 0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Γ raction (Γ_i/Γ) Confidence level	р (MeV/c)
Κπ	~ 100 %	289
$\kappa^0\gamma$	$(2.46\pm0.21)\times10^{-3}$	307
$K^{\pm}\gamma$	(9.8 ± 0.9) $ imes 10^{-4}$	309
Κππ	< 7 × 10 ⁻⁴ 95%	223

Mass too large and narrow to be part of these events

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 845 ± 17 MeV Full width (Breit-Wigner) = 468 ± 30 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	256

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

φ(1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

 $I^{G}(J^{PC}) = 0^{+}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

φ(1020)

 $\begin{array}{ll} \mbox{Mass} \ m = 1019.461 \pm 0.016 \ \mbox{MeV} \\ \mbox{Full width} \ \Gamma = 4.249 \pm 0.013 \ \mbox{MeV} \quad (S = 1.1) \end{array}$

 $I^{G}(J^{PC}) = 0^{+}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

*a*₀(980)

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} [i]$ Mass $m = 980 \pm 20 \text{ MeV} [i]$ Full width $\Gamma = 50$ to 100 MeV [i]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} {[i]}$ Mass $m = 990 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 10$ to 100 MeV ${[i]}$

 $I^{G}(J^{PC}) = 1^{-}(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (960-1030) - i (20-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

Mass binned PWA for low-mass $K^+K^-\pi^0$

• Performed a PWA on each mass bin shown on plot below

PWA

• Used expressions:

 $a_{Jlsm} \sum_{\lambda} D_{m\lambda}^{J*}(\varphi_{GJ}, \theta_{GJ}) D_{\lambda0}^{s*}(\varphi_h, \theta_h) \langle l0s\lambda | J\lambda \rangle$, where the form under summation is from Salgado-Weygand and a_{Jlsm} are the coefficients of the fit

- Used AmpTools for PWA
- Meson Resonance $(R) = KK\pi$ system
- Decay modeled as $R \rightarrow \text{Isobar } \pi$, where Isobar $\rightarrow K K$

PWA

• Used expressions:

 $a_{Jlsm} \sum_{\lambda} D_{m\lambda}^{J*}(\varphi_{GJ}, \theta_{GJ}) D_{\lambda0}^{s*}(\varphi_h, \theta_h) \langle l0s\lambda | J\lambda \rangle$, where the form under summation is from Salgado-Weygand and a_{Jlsm} are the coefficients of the fit

- Used AmpTools for PWA
- Meson Resonance $(R) = KK\pi$ system
- Decay modeled as $R \rightarrow \text{Isobar } \pi$, where Isobar $\rightarrow K K$
- For now:
 - For fixed *j*,*l*,*s*, coherently added the m_i values

PWA

• Used expressions:

 $a_{Jlsm} \sum_{\lambda} D_{m\lambda}^{J*}(\varphi_{GJ}, \theta_{GJ}) D_{\lambda0}^{s*}(\varphi_h, \theta_h) \langle l0s\lambda | J\lambda \rangle$, where the form under summation is from Salgado-Weygand and a_{Jlsm} are the coefficients of the fit

- Used AmpTools for PWA
- Meson Resonance $(R) = KK\pi$ system
- Decay modeled as $R \rightarrow \text{Isobar } \pi$, where Isobar $\rightarrow K K$
- For now:
 - For fixed *j*,*l*,*s*, coherently added the m_i values
 - Incoherently added:
 - *j*=0, *l*=0, *s*=0
 - *j*=0, *l*=1, *s*=1
 - *j*=1, *l*=1, *s*=0
 - *j*=1, *l*=0, *s*=1
 - *j*=1, *l*=1, *s*=1

j=0

- Fit gaussian to PWA results
- Center: 1302 +/- 20 MeV
- FWHM: 69 +/- 26 MeV

j=0

55± 5 OUR AVERAGE

- Fit gaussian to PWA results
- Center: 1302 +/- 20 MeV
- FWHM: 69 +/- 26 MeV
 - Agrees with PDG state $\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

TECN

COMMENT

COMMENT

See the review on "Spectroscopy of Light Meson Resonances."

TECN

55± 5 OUR AVERAGE

- Fit gaussian to PWA results
- Center: 1302 +/- 20 MeV
- FWHM: 69 +/- 26 MeV

COMMENT

COMMENT

Agrees with PDG state $\eta(1295)$ \odot

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

TECN

See the review on "Spectroscopy of Light Meson Resonances."

j=1, *l*=1, *s*=0

- Fit gaussian to PWA results
- Center: 1284 +/- 4 MeV
- FWHM: 55 +/- 8 MeV

j=1, l=1, s=0

j=1, l=1, s=0

j=1, l=1, s=0

- Fit gaussian to PWA results
- Center: 1284 +/- 4 MeV

• Wide compared to PDG state

j=1, l=1, s=0

- Fit gaussian to PWA results
- Center: 1284 +/- 4 MeV

• Wide compared to PDG state

j=1, *l*=0, *s*=1

- Fit gaussian to PWA results
- Center: 1280 +/- 4 MeV
- FWHM: 48 +/- 10 MeV

j=1, l=0, s=1

j=1, l=0, s=1

j=1, l=0, s=1

- Fit gaussian to PWA results
- Center: 1280 +/- 4 MeV

• Wide compared to PDG state

j=1, l=0, s=1

- Fit gaussian to PWA results
- Center: 1280 +/- 4 MeV

• Wide compared to PDG state

j=1, *l*=1, *s*=1

• Shape is not very suggestive

The two similar j=1 states

- Center: 1284 +/- 4 MeV
- FWHM: 55 +/- 8 MeV

- Center: 1280 +/- 4 MeV
- FWHM: 48 +/- 10 MeV

The two similar j=1 states

• Mass distribution so similar that these must be the same state

