Q-factors to separate $\varphi \pi$ from $K^+K^-\pi^0$ and $a_0\pi^0$ events

Data

Dataset:

• Spring 2018 data

Restrictions:

- Incident photon timed to be within central peak
- Only best Confidence Level (*CL*) per event kept
- *CL* must be above 10⁻⁴
- Kaons must be seen in TOF
- Kaons must have momentum < 3 GeV
- Missing mass within 3 standard deviations of central peak
- 0.12 GeV < Mass $[\pi^0]$ < 0.15 GeV
- K^* cuts : Mass $[K^+\pi^0] < 0.81$ GeV and Mass $[K^+\pi^0] < 0.81$ GeV

Distance between events

Frames and decays:

- *KK*-isobar π breakup is analyzed in the Gottfried-Jackson frame
- *KK*-isobar breakup is analyzed in the Helicity frame

Variables:

- $\cos(\theta_{GJ})$: polar angle in the Gottfried-Jackson frame
- φ_{GJ} : azimuthal angle in the Gottfried-Jackson frame
- $\cos(\theta_{\rm H})$: polar angle in the Helicity frame
- $\varphi_{\rm H}$: azimuthal angle in the Helicity frame

Distance between events = sqrt[$\cos^2(\theta_{GJ}) + \varphi^2_{GJ} + \cos^2(\theta_H) + \varphi^2_H$]

Q-factors

- Events are binned within files that have a bin width of $\Delta Mass[KK\pi] = 10$ MeV.
- For each event, I use the nearest 20 events within the same file to determine the *Q*-factor
- Log likelihood fit
- Binned fit (for now) : 1000 bins within 0.95 < Mass[KK] < 1.1 GeV
- Signal is φ represented as gaussian (for now) with center allowed to vary +/- 1 MeV within PDG values and FWHM between 4.25 and 9.25 MeV.
- Background is represented by 1st order polynomial.

Q-factors for each file

Mass[K^{*}K⁻π⁰] = 1225 MeV

Mass[K⁺K π⁰] = 1245 MeV

Q-factors for each file

Mass[K⁺K⁻π⁰] = 1265 MeV

Mass[K⁺K⁻π⁰] = 1285 MeV

5

Q-factors for each file

Mass[K⁺K⁻π⁰] = 1305 MeV

Mass[K⁺K⁻π⁰] = 1315 MeV

Mass[K⁺K π⁰] = 1325 MeV

Mass[K⁺K⁻π⁰] = 1335 MeV

7

Q-factors for each file

Mass[K^{*}K⁻π⁰] = 1345 MeV

Mass[K⁺K⁻π⁰] = 1365 MeV

Q-factors for full $KK\pi$ mass range

Q-factors for full $KK\pi$ mass range

Q-factors for full $KK\pi$ mass range

