

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$

where

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi^{-}$

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

 $\Lambda \rightarrow p\pi$

where and

• Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

 $\Lambda \rightarrow p\pi^{-}$

where and

۲

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

Requires 2 steps to obtain Ξ^* :

 $\Xi \rightarrow \Lambda \pi^{-}$

where and

 $\Lambda \rightarrow p\pi^{-}$

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

• Mass of Ξ^- not constrained

Requires 2 steps to obtain Ξ^* :

- Step 1: $\gamma p \rightarrow KY^*$: Completed
- Step 2: $Y^* \to K\Xi^*$: Still needs refinement

Ξ^* Generator Refinement

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*

Ξ^* Comparison of Reconstructed MC to Actual Data

- Rounds 1-3: of MC to set *t*-slope (parameter *b* in Ae^{-b|t|}) to 1.138/GeV²
- Round 4: First pass at shaping mass[*Y**]
- Round 5: Second pass at shaping mass[*Y**]
- Round 6: coding errors
- Round 7: coding errors
- Round 8: I went back to round 4 and cut out events with $|t_{\text{fast}}| > 3 \text{ GeV}^2$

Ξ^* Comparison of Reconstructed MC to Actual Data Round 8

Ξ^* Comparison of Reconstructed MC to Actual Data

- Rounds 1-3: of MC to set *t*-slope (parameter *b* in Ae^{-b|t|}) to 1.138/GeV²
- Round 4: First pass at shaping mass[*Y**]
- Round 5: Second pass at shaping mass[*Y**]
- Round 6: coding errors
- Round 7: coding errors
- Round 8: I went back to round 4 and cut out events with $|t_{\text{fast}}| > 3 \text{ GeV}^2$

Jew

• Round 8B: Required mass of Ξ^* to be < 1.8 GeV (range of interest)

Ξ^* Comparison of Reconstructed MC to Actual Data Round 8B

Ξ^* Comparison of Reconstructed MC to Actual Data

- Rounds 1-3: of MC to set *t*-slope (parameter *b* in Ae^{-b|t|}) to 1.138/GeV²
- Round 4: First pass at shaping mass[*Y**]
- Round 5: Second pass at shaping mass[Y*]
- Round 6: coding errors
- Round 7: coding errors
- Round 8: I went back to round 4 and cut out events with $|t_{\text{fast}}| > 3 \text{ GeV}^2$

New

- Round 8B: Required mass of Ξ^* to be < 1.8 GeV (range of interest)
- Round 9: Shape mass of Ξ^* and Reshape Y^*

Ξ^* Comparison of Reconstructed MC to Actual Data Round 9 (slide 1)

From this slide forward I am switching from histograms in E_{γ} to histograms in sqrt(s)

Note: Straight-forward mapping of E_{γ} to s: $s = 2E_{\gamma}m_{\rm p} + m_{\rm p}^2$

Ξ^* Comparison of Reconstructed MC to Actual Data Round 9 (slide 1)

Ξ^* Comparison of Reconstructed MC to Actual Data Round 9 (slide 2)

Near future:

- $p(K_{\text{slow}})$
- Angles for K_{slow} and K_{fast}

After kaon comparisons

• Look at backgrounds using side bands

