

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$

where

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi^{-}$

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

 $\Lambda \rightarrow p\pi$

where and

• Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

 $\Lambda \rightarrow p\pi$

where and

۲

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi^{-}$

Requires 2 steps to obtain Ξ^* :

 $\Lambda \rightarrow p\pi^{-}$

where and

۲

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi^{-}$

Requires 2 steps to obtain Ξ^* :

• Step 1: $\gamma p \rightarrow KY^*$

 $\Lambda \rightarrow p\pi^{-}$

where and

۲

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi^{-}$

Requires 2 steps to obtain Ξ^* :

- Step 1: $\gamma p \rightarrow KY^*$
- Step 2: $Y^*K \to \Xi^*$

Ξ^* Generator Refinement

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*

- Three rounds of MC to set *t*-slope (parameter *b* in Ae^{-b|t|}) to 1.138/GeV²
- Fourth round: First pass at shaping mass[*Y**]
- Fifth round: Second pass at shaping mass[*Y**]

• Distribution in E_{γ} distribution is good for each round $\rightarrow s$ is good

• Mass[*Y*^{*}] is not getting much better!

– MC

Data

4.5 5 Mass[Y*]/GeV

$|t_{\text{fast}}|$ vs Mass Y^*

I assume

- $\gamma p \to K_{\text{fast}} Y^*$
- $Y^* \to K_{\text{slow}} \Xi^*$
- $\Xi^* \rightarrow \Xi \pi$

I take t_{fast} from exchange between γ and K_{fast}

$|t_{\text{fast}}|$ vs Mass Y^*

I assume

- $\gamma p \to K_{\text{fast}} Y^*$
- $Y^* \to K_{\text{slow}} \Xi^*$ • $\Xi^* \to \Xi \pi$

I take t_{fast} from exchange between γ and K_{fast}

• Looks like $\gamma p \rightarrow K_{\text{fast}} Y^*$ is probably the wrong assumption for region in red circle. Perhaps not even *t*-channel process. Can cut out red circle events with simple cut on |t|

$\Xi^* \rightarrow \Xi \pi^0$ update

NEW: I went back to round 4 and cut out events with $|t_{\text{fast}}| > 3$ GeV²

The above is what I am now calling round 8 (rounds 6 and 7 had various errors)

4.5 5 Mass[Y*]/GeV

Next step

• Momentum comparisons are the next thing I will look at

