

Ξ^* Analysis

- Requested studies:
 - Refine MC generator distributions
 - Status: Latest attempt Will be shown today
 - Show mass $[\Xi \pi]$ for best χ^2 in central peak along with hybrid method
 - Status: Will be shown today
 - Mass fit Ξ for each bin in Ξ^*
 - Status: First attempt first attempt shown last time
 - *t*-cut dependence on Ξ^* spectrum
 - Status: In progress
 - Vertex dependence on π^0 mass with real and MC data
 - Status: Need to work on
 - Vertex angle between momentum and path of Ξ
 - Status: Not started yet
 - Explore sidebands as background shape under Ξ^*
 - Status: Not started yet

Ξ^* Generator Refinement

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*

- Three rounds of MC to set *t*-slope (parameter *b* in Ae^{-b|t|}) to 1.138/GeV²
- Should have shaped mass[*Y*^{*}] before worrying too much about the *t*-slope since mass[*Y*^{*}] is set before the *t*-slope in the generator
- Fourth round: First pass at shaping mass[*Y**]

• Distribution in E_{γ} distribution is good for each round $\rightarrow s$ is good for each round $(s = 2E_{\gamma}m_p + m_p^2)$.

• Mass $[Y^*]$ is getting better, but still needs another round

- t_{fast} looks better after shaping mass[Y^*] \bigcirc
- After final shaping of mass[*Y*^{*}] is complete, I will have to change the *t*-slope at least one more time

