KK π update (my first look at DIRC)

- Using real data (2019-11) for this part of presentation
- Required
 - Incident photon in central beam bunch
 - Incident photon in coherent peak
 - Kinfit reaction : $\gamma p \rightarrow p K^+ K^- \pi^0$
 - Best CL that is > 10e-4

Inclusion of DIRC

$$\beta = 1/[n\cos(\theta)]$$

SO

$$(\gamma\beta)^2 = 1/[n^2\cos^2(\theta)-1]$$

which implies

$$p^2 c^2 / (m^2 c^4) = 1 / [n^2 \cos^2(\theta) - 1]$$

or

Set effective index of refraction n = 1.4805 to get above plot

$$mc^{2} = pc[n^{2}\cos^{2}(\theta)-1]$$

Cerenkov opening angle vs momentum for different likelihood scenarios

4

Cerenkov opening angle vs momentum for different likelihood scenarios

• Remaining slides require that $L_K > L_{\pi}$

1000

1.25

1.3

1.35

1.4

1.5

m_kpkmpi0

1.45

- Previous data was real (2019-11 data)
- Data shown in the rest of the presentation is simulated

Let:

• $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$

Let:

- $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$
- ε_{Bad} : Efficiency for identifying $K^+\pi^-\pi^0$ as $K^+K^-\pi^0$

Let:

- $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$
- ε_{Bad} : Efficiency for identifying $K^+\pi^-\pi^0$ as $K^+K^-\pi^0$

We want the ratio $\varepsilon_{\rm Bad}/\varepsilon_{\rm Good}$ to be small

- What is currently used = Red solid circle
- To use when including DIRC? = Blue solid circles

ψ angle for determination of Σ (ρ^0 decay)

- Last meeting I had a difficult time describing the ψ angle I was trying to talk about \otimes
- Next slide gives definition of ψ

ψ angle for determination of Σ (ρ^0 decay)

Here, P_{γ} is the degree of linear polarization of the photon; Φ is the angle of the photon electric polarization vector with respect to the production plane measured in the over-all (γp) c.m. system; θ and ϕ are the polar and azimuthal angles of the π^+ in the ρ^0 rest frame. (See Fig. 12 and Ref. 36.)

J. Ballam, et. al., Phys. Rev. D 5 545 (1972)

Note: The angle Φ is the same as in our typical intensity expressions (sometimes called big phi) and if *z*-axis is taken along direction of γ , then φ given here is the azimuthal angle in the Gottfried-Jackson frame.

FIG. 12. Angles used in the study of ρ^0 decay. The angle α is zero in the Gottfried-Jackson system.

