

$\Xi^* \rightarrow \Xi \pi^0$ update

- Inclusion of hybrid method for accidental subtraction
- Addressing various comments and suggestions

Reaction

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

Reaction

 $\Lambda \rightarrow p\pi^{-}$

where and

• Mass of Ξ^- not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

$\Xi^* \rightarrow \Xi \pi^0$ update

- Inclusion of hybrid method for accidental subtraction
- Addressing various comments and suggestions

Accidental subtraction using hybrid method

Note: Error bars need to be fixed?

Ξ^* Analysis

- Requested studies:
 - Refine MC generator distributions
 - Status: Initial attempt with *s* and *t* distributions will be shown today
 - Mass fit Ξ for each bin in Ξ^*
 - Status: First attempt will be shown today
 - *t*-cut dependence on Ξ^* spectrum
 - Status: In progress
 - Vertex dependence on π^0 mass with real and MC data
 - Status: Started MC
 - Vertex angle between momentum and path of \varXi
 - Status: Not started yet
 - Explore sidebands as background shape under Ξ^*
 - Status: Not started yet

• Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*

Confidence level and pathlength significance

- Same confidence level cut: $CL > 10^{-6}$
- Same pathlength significance cut > 4

Note: $s = 2E_{\gamma}m_p + m_p^2$

• -*t*(fast) is being refined further

Not yet tried to get the Y^* shape to match but the high-mass part of distribution already looks OK

Ground State Ξ - Fits

- Attempting to remove all non-Ξ⁻ background by fitting the Ξ⁻ for each mass[Ξ⁻ π⁰] bin
- Since lifetime of Ξ^- is 1.6e-10, I set width of the ground state Ξ^- to detector resolution found from Monte Carlo study.
- Some of the fits are not great, but we can still get a sense of the contribution to mass[Ξ⁻ π⁰] from the non-Ξ⁻ background

Ground State Ξ - Fits

From 1477.5 to 1557.5 MeV

TА

Ground State Ξ - Fits

Next: From 1567.5 to 1647.5 MeV

Ground State Ξ - Fits

Next: From 1657.5 to 1737.5 MeV

Ground State Ξ - Fits

Last: From 1747.5 to 1777.5 MeV

Ξ(1690):

- Fits have shape of $\Xi(1690)$ due entirely to detector resolution
- In general: Not enough statistics for the $\Xi(1690)$
- If we can say anything at all, the best we can do for the $\Xi(1690)$ will probably be an upper limit

Ξ(1620):

• With current statistics, the best we can do for the $\Xi(1620)$ will probably be an upper limit

- *Ξ*(1530):
 - Center = 1536(2) MeV
 - Width = 13(17) MeV

Note: Error bars need to be fixed?

Note: Error bars need to be fixed?

Ξ(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV

Ξ(1530) ⁻	MASS						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
1535.0 ± 0.6	OUR FIT						
1535.2 \pm 0.8 OUR AVERAGE							
1534.5 ± 1.2		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$		
1535.3 ± 2.0		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$		
1536.2 ± 1.6	185	KIRSCH	72	HBC	<i>К[—] р</i> 2.87 GeV/ <i>с</i>		
1535.7 ± 3.2	38	LONDON	66	HBC	<i>К[—] р</i> 2.24 GeV/ <i>с</i>		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
1540 ±3	48	BERTHON	74	HBC	Quasi-2-body σ		
1534.7 ± 1.1	334	BALTAY	72	HBC	<i>К[—] р</i> 1.75 GeV/ <i>с</i>		

<i>Ξ</i> (1530) [–] WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9.9 ^{+1.7} OUR AVERAGE				
9.6±2.8	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
8.3±3.6	ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
$7.8^{+3.5}_{-7.8}$	BALTAY	72	HBC	$K^- p \ 1.75 \ \text{GeV}/c$
16.2 ± 4.6	KIRSCH	72	HBC	$\Xi^-\pi^0$, $\Xi^0\pi^-$

E(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV

 $\Xi(1620)$:

- Center = 1597(7) MeV
- Width = 28(39) MeV

Note: Error bars need to be fixed?

- *E*(1530):
 - Center = 1536(2) MeV
 - Width = 13(17) MeV
- $\Xi(1620)$:
 - Center = 1597(7) MeV
 - Width = 28(39) MeV

Ξ(1620) MASS

VALUE (M	eV)	EVTS	DOCUMENT ID		TECN	COMMENT
≈ 1620	OUR ESTIMA	TE				
1610.4	$\pm 6.0^{+6.1}_{-4.2}$		SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi(1620)\pi^+$
1624	\pm 3	31	BRIEFEL	77	HBC	<i>K⁻ p</i> 2.87 GeV/ <i>c</i>
1633	± 12	34	DEBELLEFON	75B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606	± 6	29	ROSS	72	HBC	$K^- p$ 3.1–3.7 GeV/ c

Ξ(1620) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
32 + 8 OUR AV	ERAGE	Error includes sca	le fac	tor of 2.	2. See the ideogram below.
$59.9\pm~4.8^{+2.8}_{-7.1}$		SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi(1620) \pi^+$
$22.5\pm$ 7.5	31	¹ BRIEFEL	77	HBC	<i>К[—] р</i> 2.87 GeV/ <i>с</i>
40 ±15	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
21 ± 7	29	ROSS	72	HBC	$K^- p \rightarrow \Xi^- \pi^+ K^{*0}$ (892)

Ξ(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV

 $\Xi(1620)$:

- Center = 1597(7) MeV
- Width = 28(39) MeV

- *Ξ*(1530):
 - Center = 1538(2) MeV
 - Width = 7(14) MeV
- $\Xi(1620)$:
 - Center = 1592(9) MeV
 - Width = 14(34) MeV

