TPOL Hardware Fall 2019 Checkup

TPOL supplies

Nick found all of the TPOL supplies and consolidated the items in one location

Spares

- Three Swan preamp boxes
- Three functional filter boards (2 from ASU 1 from JLab)
- Two blank filter boards
- 1 blank board for distribution box

Location of TPOL supplies

Tool box

Signal check

Checked each channel for signal

- Typical result shown below
- All channels included at end of this presentation

Baseline and noise check

- Baseline fluctuation is typically a few mV and noise envelope about +/- 5 mV
- Typical example shown below (all at end of this presentation)
- Worst outliers shown on next slide

Ie	< Stop]	1 m`	V/D	iv, 2	20 µ	ıs/Di	V
			1	6 sa	mp	ole a	ve	Acquisition
		hanna	a La Ma				Netican Jed ¹ M	Sample
Ð					e en el			Peak Detect
								Hi Res
								Envelope
								Average a 16
	1 00mV) Aus	(50.0MS/s	
- (Mode	Record	Delay	Set Horiz.	Wayoform	•••0.00000 s	10k points	
	Mode Average	Length 10k	On Off	Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 10:32:54

lek	Stop	5	mV	//Di	v, 20 µs/Div				
			5	S e	nve	lope			
D									
	all faith an a state of the sta	dillater en little die	<mark>a, ha kanan di dini kanan</mark>	uyani fi ti taya ta		a 1994 Al forder bester a H	i i i i contra di si	initia in _{th} ailtinit	and the second se
	1 5.00mV Save Screen Image	Ω Save Waveform	Save Setup	Recall Waveform	Recall Setup	0.0µs → 0.00000 s Assign Save to Image	50.0MS/s 10k points File Utilities	1 J 130 11:	1.60mV Oct 2019 31:19

Baseline and noise check

• Channel 10 noise envelope is about twice the size as compared to a typical channel

 Baseline for channel 32 is a very clear periodic fluctuation of about +/- 5 mV

Noisy Channel 10, 5s envelope, 2.8mV

Zoom in on envelope shows that time structure is not very sharp (voltage versus time has low slope)

Noisy channel 10, 30 mV trigger

• Signal has sharp time structure

Trigger

Conversions:

- 5.33 keV per mV
- 2.6 keV per FADC channel

A threshold of 240 keV implies 45 mV from bottom of signal to trigger

A trigger set to 30 mV would require a signal bottom within 15 mV of nominal

Noisy channel 10, 30 mV trigger

Te<u>k</u> Stop

10mV/Div, 40 ns/Div 15 min envelope

12 Oct 2019

10

• Want distance between baseline and bottom < 15 mV

Large baseline channel 32, 30 mV trigger

10mV/Div, 40 ns/Div 15 min envelope

• Want distance between baseline and bottom < 15 mV 11

Typical channel 3, 30 mV trigger

10mV/Div, 40 ns/Div 15 min envelope

• Need distance between baseline and bottom < 15 mV 12

Remarks

- Did not find any need to switch out the preamps or filter boards ③
- All looks well for TPOL to run using a 30 mV trigger

All scope pictures shown in remaining slides

Channels 1-4

Channels 5-8

Channels 9-12

Channels 13-16

Channels 17-20

Channels 21-24

Channels 25-28

Channels 29-32

Channels 1-2

5 mV/Div 5 s en	v, 20 μs/Div velope	
	20.0µs (3++0.00000 s) (50.0MS/s)	лания 7 1.60mV
screen image waveform save setup waveform setup waveform setup waveform setup waveform setup set	xee to utilities (v, 20 μs/Div tvelope	3 Oct 2019 1:31:19
3 Michail (March 1996) Michael All Alternations of Annual Michael, and y, mittable for all upper and if a strate your All	an a	ette ä hydratta yr

50.0MS/s 10k points

> File Utilities

<u>1</u> Г

1.60m\

13 Oct 2019 11:26:24

20.0µs

Recall Setup

Recall

Waveforn

Save

Screen Image

Save Waveform Save Setup Assign Save to

Channels 3-4

lek	Stop		1 m	V/D)iv, i	20 µ	ıs/Di	V
	E			16 sa	amp	ole a	ve	Acquisition Mode
						Λ)		رات Sample
1		W						Peak Detect
		W.		A I I	M to 1		1	 Hi Res
								Envelope
								Average a 16
ļ		· · · · ·					نىپ ئىرىدىرى	
	1) 1.00mVs	2			20).0µs →▼0.00000 s	50.0MS/s 10k points	1 J 1.96mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 10:46:56

Channels 5-6

Iel			5mV	//Di 5 s e	v, 2 enve	v, 20 µs/Div nvelope				
D		hada, mednid nieda,		nins a data wila da			Athana ang akalar	na na sa		
((1) 5.00mVS Save Screen Image	Save Waveform	Save Setup	Recall Waveform	Recall Setup	0µs ▼0.00000 s Assign Save to Image	50.0MS/s 10k points File Utilities	1 J 1.60m 13 Oct 201 11:27:39		

Channels 7-8

Channels 9-10

Channels 11-12

Т	ek Stop	7 ¹	l m 1	V/D)iv, 2	20 µ	ıs/D	iv	
			ا ادار السینیات	U 57		ne a			Acquisition
		Gelfin _{sent}	u seletet						Mode
1							1. And the second se		Sample
									Peak Detect
									Hi Res
١									Average a 16
	1 1.00mVs	2				.0μs ▼0.00000 s	50.0MS/s 10k points		J 1.80mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		(12 Oct 2019 11:02:00

Channels 13-14

			1 m	V/D 6 sa	iv, amr	20 µ ole a	ıs/Di ive	iv
		ka ila a.						Acquisition Mode
								رانی Sample
1								Peak Detect
								 Hi Res
								Envelope
								Average 8 16
					+			
	(<u>1)</u> 1.00mV≤	5).0µs →▼0.00000 s	50.0MS/s 10k points	1 <i>J</i> 4.20mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 11:04:53

lek Stop	35	m S M	//D 5 s e	iv, 2 enve	20 μ elop	s/Di e	iv
		Adaman and a da	pa ^{lit} ini ka ma	ka, jakima	al a de addaidh	Anterfacture	Acquisition Mode
D.							Sample
							Peak Detect
tioff, that, whitting	(the file state on a balants of sorth		it is stall the start of	and the second second		the philippine and and	Hi Res
							Envelope
							Average
							16
(1) 5.00mV	Ω			20	.0μs ▼0.00000 s	50.0MS/s 10k points	<mark>1</mark> <i>Γ</i> 700μV
Mode Envelope	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 11:04:05
lek Stop			7/D) 		

Channels 15-16

Position

to 0 s

On

10k

Display

Envelope

12 Oct 2019 11:09:56

Channels 17-18

~~L

Peak Detec

Hi Res

<u>___</u>

Envelope

Average

1) J −1.86m

12 Oct 2019 11:21:53

50.0MS/s

10k point

20.0µs

Waveform

Display

Position

to 0 s

XY Display Off

Delay

On Off

Length

10k

Mode

Average

Channels 19-20

Channels 21-22

	2	2	1 m 1	V/D 6 sa)iv, 2 amp	20 µ ole a	ıs/D ave)iv	7
1	lann an th								Acquisition Mode
									Envelope Average (a) 16
	1 1.00mVs	Record	Delay	Set Horiz.	20 Waveform	.0µs → 200.000ns	50.0MS/s 10k points		J 200μ\

	15		V/D 5 s e	iv, 2 enve	20 μ elop	s/D e	
A the same district	filmining profilmilies	mati nologini paro	ing and pathon states of a particular		illistada. Anisiashti	un, verten da cibi di cabie	hitsin ka dina dina na kua patrimbul
(1) 5.00mV Save	Ω	Save	Recall	Recall	0.0μs →▼0.00000 s Assign	50.0MS/s 10k points File	1 7 1.60mV

Channels 23-24

Te	ek Stop		l m	V/D	iv, i	20 µ	ıs/Div	V
				6 Sa	amr	ole a	ive	Acquisition Mode
1					97 - MA			Sample
								Hi Res
								Average
	(1) 1.00mV≤	2			20).0μs →▼−200.000ns	50.0MS/s 10k points	Ĵ Ĵ 2.38mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 11:32:46

Channels 25-26

16		C	1 m`	V/D)iv, 2	20 µ	ıs/D	iv	
	2	\mathcal{A}	1	6 sa	amp	ole a	ive	Acquisi	tion
			hing Jahren	I. M. Charles			Revenue and	Mod Samp	e le
1								Peak De	, tect
				Salker - Arad					- !S
								Envelo	pe
								Avera a 16	- ge
	1.00mV	2			20).0us	150.0MS/s		80u\
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off	10k points	12 Oct 11:37:1	201 1

Channels 27-28

T	ek Stop		l m`	V/D	iv, 2	20 µ	ıs/D	iv
	2		1	6 sa	mp	ole a	ve	Acquisition
		NAME			<mark>, </mark> And	P NA		یری) Sample
1								میں Peak Detect
								 Hi Res
								Envelope
								Average a 16
				· ·	+			
	1.00mV	Ω				.0µs ▼-200.000ns	10k points	1.78mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 11:41:43

Tel	< Stop		5 m \	//D i	iv , 2	20 µ	s/Di	V
		lingen auf		S S e		elop	e	Acquisition Mode
								یر این Sample
1	a a state to a state to a state	in the second	utilatilities is the second second	inter a statistica de la contra d		and and a state of the state of	والمتراوين والمتحدثات	Peak Detect
			a to de Materia					Hi Res
								Envelope a)∞
								Average 16
	(1) 5.00mV	Ω			20	.0μs →−200.000ns	50.0MS/s 10k points	1 J 3.70mV
	Mode Envelope	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off		12 Oct 2019 11:40:35

Channels 29-30

Ie			1 m	V/D)iv, 2	20 µ	ıs/D	iv
	P	Ų		.6 Sa	mp	le a	ve	Acquisition
1	M	V	\mathbb{V}	Λ	/N	N	V	Sample Peak Detect
				V		V		Hi Res Envelope
	(1 1.00mV	· · · · · · · · · · · · · · · · · · ·			20	.0µs	50.0MS/s	Average a 16 1 J 3.02mV
	Mode Average	Record Length 10k	Delay On Off	Set Horiz. Position to 0 s	Waveform Display	XY Display Off	10k points	12 Oct 2019 11:45:06

Channels 31-32

to 0 s

