Search for Excited Ξ states and Preliminary Cross Section for $\Xi(1530)$

Brandon Sumner

Outline

• Motivation

• Preliminary E(1530) Cross Section

• Clebsch Gordan study of $\Xi^0 \pi^-$ channel

• Simultaneous fitting between $\Xi^-\pi^0$ and $K^-\Lambda$ channels

Missing Resonance Problem

$\frac{\text{State, } J^P}{\Xi^{\frac{1}{2}^+}}$	Predicted masses (MeV)							
	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385				
$\Xi^{*\frac{7}{2}}$	2355							
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345	
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240			
$\Xi^{*\frac{7}{2}^{+}}$	2180	2240						

		Overall
Particle	J^P	Status
$\Xi(1318)$	$1/2^+$	****
$\Xi(1530)$	$3/2^{+}$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
Ξ(1820)	$3/2^{-}$	***
$\Xi(1950)$	<i>.</i>	***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$,	*
$\Xi(2250)$		**
Ξ(2370)		**

- List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/ c^2
- Current List of states in PDG with mass less than 2.4 GeV/ c^2

Branching Fractions

State	ΛK	ΣK	Ξπ
$\Xi(1530)$			$100 \ \%$
$\Xi(1690)$	seen	seen	seen
$\Xi(1820)$	large	small	small
$\Xi(1950)$	seen	seen?	seen
$\Xi(2030)$	20%	80%	small

- Per the PDG all the Cascade 1530s decay Ξπ, while for higher mass cascade states this channel is suppressed
- The Cascade 1530 is below threshold for the ΛK channel
- The $\Xi\pi$ channel can decay $\Xi^0\pi^-$ or $\Xi^-\pi^0$

Decay Chain

$$\gamma p \rightarrow K^{+} K^{+} \Xi^{-*}$$
$$\Xi^{-*} \rightarrow \Xi^{-} \pi^{0}$$
$$\Xi^{-} \rightarrow \Lambda \pi^{-}$$

- Kinematically fit refers to using vertex and four momentum constraints to improve the resolution of measured data and help distinguish between different reactions
- The masses of Λ and π^0 are constrained to the known masses in the kinematic fit

Confidence Level Selection

Cut around the signal of the ground state cascade

Background Contamination from K*

Reject events associated with $K^* \rightarrow K^+ \pi^0$ contamination

Excited Cascade 1530

Modeling the Cascade Production in Signal MC

 Theoretical Calculations done by Nakayama, Oh and Haberzettl proposed the cascade/excited cascade are produced by a twostep process:

$$\gamma p \to K^+ Y^*$$
$$Y^* \to K^+ \mathcal{Z}^{-*}$$

 Direct production of the E^{-*} would be OZI suppressed with two strange- antistrange pairs at the production vertex.
Therefore, I defined t as:

$$t = \left(P_{\gamma} - P_{K^+}\right)^2$$

t-Slope extraction

• Selecting events within the excited cascade 1530 peak

• Assuming :
$$\frac{d\sigma}{dt} \propto e^{-bt}$$

$$b=1.08(4) c^4/GeV^2$$

Energy-dependent E(1530) Yield Extraction

Cross Sections for Cascade Baryons

"Upper limits were calculated on the production total cross sections of the three best-known excited states: the Ξ (1690), the Ξ (1820) and the Ξ (1950) [7] at 0.75 nb, 1.01 nb, and 1.58 nb, respectively" -Study of Xi Photoproduction from Threshold to W = 3.3 GeV via CLAS collaboration

Charge Exchange Motivation

• This reaction should conserve isospin. Using Clebsch-Gordan coefficients we can that determine the neutral cascade channel should occur (roughly) twice as often.

Yields From ground state cascade without vertex fitting

Ground state cascade yields for the neutral and charged states roughly follow their Clebsch-Gordan coefficients

$K^-\Lambda$ Decay Chain

$$\gamma p \to K^+ K^+ \Xi^{-*}$$
$$\Xi^{-*} \to K^- \Lambda$$

• The K⁻ is Kinematically constrained

Event Selection

- Mass cut on Λ from 1.107 to 1.124 GeV/ c^2
- CL above 10^{-2}

Cut on K^+K^- Invariant Mass Spectrum

Remove background associated with $\phi \rightarrow K^+K^-$ contamination

Simultaneous Fitting

- 3rd degree polynomial background with independent parameters
- The centers and widths are shared between the two channels

Conclusion

• The Cross Section for the reaction $\gamma p \rightarrow K^+ K^+ \Xi^- \pi^0$ has a preliminary value of 1 nb

• Iso-spin symmetry is shown to be approximately conserved in the charge exchange reaction

• GlueX can make a first-time measurement of branching ratio $\Gamma[\Xi(1690) \rightarrow K^{-}\Lambda] / \Gamma[\Xi(1690) \rightarrow \Xi^{-}\pi^{0}]$

Charge Exchange Reaction

• The Λ and π^0 are kinematically constrained

