Search for Excited Ξ states and Preliminary Cross Section for $\Xi(1530)$

Brandon Sumner

Brandon Sumner

Outline

• Preliminary total $\mathcal{Z}^{*-}(1530)$ cross section

• PWA of the $\mathcal{E}(1530)$

Preliminary $\mathcal{Z}^{*-}(1530) \rightarrow \mathcal{Z}^{-}\pi^{0}$ cross section

Brandon Sumner

Decay chain

Note: $\pi^0 \rightarrow \gamma \gamma$ and $\Lambda \rightarrow p\pi^-$

Brandon Sumner

Decay chain

$$\gamma p \rightarrow K^{+} K^{+} \Xi^{-*}$$
$$\Xi^{-*} \rightarrow \Xi^{-} \pi^{0}$$
$$\Xi^{-} \rightarrow \Lambda \pi^{-}$$

- The masses of Λ and $\pi's$ are constrained to the known masses in the kinematic fit.
- To remove the background associated with low confidence level an analysis cut of confidence level above 10^{-4} was made

Ξ^- Invariant mass selection

Ξ^- Invariant mass selection

Ξ^- Invariant mass selection

• Cut around the signal of the ground state cascade

Brandon Sumner

Background contamination from K^*

• From the combinatorics of all final state particles, there can be an incorrectly linked K^* meson associated with the reaction

$$\gamma p \longrightarrow K^+ K^+ \Xi^{-*}$$
$$\Xi^{-*} \longrightarrow \Xi^- \pi^0$$

$$\gamma p \rightarrow K^+(K^+\pi^0)\Xi^-$$

$$K^{*+} \rightarrow K^+ \pi^0$$

Background contamination from K^*

• From the combinatorics of all final state particles, there can be an incorrectly linked K^* meson associated with the reaction

$$\gamma p \longrightarrow K^+ K^+ \Xi^{-*}$$
$$\Xi^{-*} \longrightarrow \Xi^- \pi^0$$

$$\gamma p \rightarrow K^+(K^+\pi^0)\Xi^-$$

 $K^{*+} \rightarrow K^+ \pi^0$

Background contamination from K^*

• From the combinatorics of all final state particles, there can be an incorrectly linked K^* meson associated with the reaction

$$\gamma p \longrightarrow K^+ K^+ \Xi^{-*}$$
$$\Xi^{-*} \longrightarrow \Xi^- \pi^0$$

$$\gamma p \rightarrow K^+ (K^+ \pi^0) \Xi^-$$

 $K^{*+} \rightarrow K^+ \pi^0$

Background contamination from *K*^{*}

Background contamination from K*

• Reject events associated with $K^* \to K^+ \pi^0$ contamination

Excited Cascade 1530 Reconstruction

Modeling the cascade production in signal MC

• Theoretical Calculations done by Nakayama, Oh and Haberzettl proposed the cascade/excited cascade are produced by a two-step process:

$$\gamma p \rightarrow K^+ Y^*$$

$$Y^* \longrightarrow K^+ \Xi^{-*}$$

• Direct production of the Ξ^{-*} would be OZI suppressed with two strange- antistrange pairs at the production vertex. Therefore, I defined *t* as $t = (P_{\gamma} - P_{K^+})^2$

t-Slope extraction

• Selecting events within the excited cascade 1530 peak

t-Slope extraction

• Selecting events within the excited cascade 1530 peak

• Assuming :
$$\frac{d\sigma}{dt} \propto e^{-bt}$$

t-Slope extraction

• Selecting events within the excited cascade 1530 peak

• Assuming :
$$\frac{d\sigma}{dt} \propto e^{-bt}$$

$$b = 1.08(4)/\text{GeV}^2$$

Energy-dependent E(1530) Yield Extraction

Cross sections for cascade baryons

"Upper limits were calculated on the production total cross sections of the three best-known excited states: the $\Xi(1690)$, the $\Xi(1820)$ and the $\Xi(1950)$ [7] at 0.75 nb, 1.01 nb, and 1.58 nb, respectively" -Study of Ξ Photoproduction from threshold to W = 3.3 GeV via CLAS collaboration

Brandon Sumner

Preliminary total $\mathcal{Z}^{*-}(1530)$ cross section

Decay chain

• Where the Λ and π 's are kinematically constrained but does not use vertex fitting

Brandon Sumner

Reconstructed $\Xi^{*-}(1530) \rightarrow \Xi^0 \pi^-$ w/o vertex fitting

• The above plot uses a confidence level above 10^{-3} and invariant mass restriction on the $\Lambda \pi^0$ system

Brandon Sumner

Issues w/Vertex fitting

- Large contamination of misidentified particles at high confidence level
- The issues originates from the two neutrals come from the same vertex

Clebsch Gordan study of $\Xi^0\pi^-$ channel

Clebsch Gordan study motivation

• This reaction $\Xi^* \rightarrow \Xi\pi$ should conserve isospin.

Clebsch Gordan study motivation

• This reaction $\Xi^* \rightarrow \Xi \pi$ should conserve isospin. Using Clebsch-Gordan coefficients we can that determine the neutral cascade channel should occur twice as often.

Clebsch Gordan study motivation

• This reaction $\Xi^* \rightarrow \Xi \pi$ should conserve isospin. Using Clebsch-Gordan coefficients we can that determine the neutral cascade channel should occur twice as often.

Yields from Ξ^0 and Ξ^- w/o vertex fitting w/CL above 10^{-3}

Yields from Ξ^0 and Ξ^- w/o vertex fitting w/CL above 10^{-3}

$$\frac{N[\Xi^{-}(1320)]}{N[\Xi^{0}(1320)]} = 0.54(2)$$

Preliminary total cross section for $\Xi^{*-}(1530) \rightarrow \Xi\pi$

Partial Wave Analysis (PWA) of the E(1530)

PWA

• The PWA is preformed by selecting a specific frame of reference, extracting the efficiency corrected yields of the $\Xi(1530)$ in bins of $\cos(\theta_{GJ})$ and fit the resulting efficiency corrected yield distribution to the intensity function.

Intensity function

- The intensity function is given by $I(\tau) \equiv \sum_{i,j} \sum_{b,b'} {}^{i}A_{b}(\tau)^{i,j} \rho_{b,b'} {}^{j}A_{b'}^{*}(\tau)$
- The ${}^{i}A_{b}(\tau)$ terms are the decay amplitudes where *i* represents the initial state, *b* represents the set of possible quantum numbers (*J*, *l*, *m*) and τ represents all phase space and ρ is the final state spin density matrix

Choice of frame

• The choice of frame is the GJ frame.

Choice of frame

$$\hat{z}_{GJ} = \frac{\vec{p}_{\gamma}(\Xi^*)}{|\vec{p}_{\gamma}(\Xi^*)|}$$

• The y-axis is defined to be the normal to the production plane of Ξ^* in the CM frame.

$$\hat{y}_{GJ} = \frac{\vec{p}_{\gamma} \ge \vec{p}_{\Xi^*}}{|\vec{p}_{\gamma} \ge \vec{p}_{\Xi^*}|}$$

• The *x*-axis is defined by making the coordinate system right-handed:

$$\hat{x}_{GJ} = \hat{y}_{GJ} \ge \hat{z}_{GJ}$$

$\cos\theta_{GJ}$ versus invariant mass of $\Xi^-\pi^0$

¥asu

• The full expression for a decay amplitude in the GJ frame is:

$$A_b(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_l(p) a_{ls} \sum_{\lambda_1 \lambda_2} D_{m\lambda}^{J*} (\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_1 \lambda_1 s_2 \ \bar{} \lambda_2 | s\lambda \rangle.$$

• The full expression for a decay amplitude in the GJ frame is:

$$A_{b}(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_{l}(p) a_{ls} \sum_{\lambda_{1}\lambda_{2}} D_{m\lambda}^{J*} (\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_{1}\lambda_{1}s_{2} \ ^{-}\lambda_{2} | s\lambda \rangle.$$

Blatt-Weisskopf centrifugal-barrier factor dependent on angular momentum l

• The full expression for a decay amplitude in the GJ frame is:

$$A_{b}(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_{l}(p) a_{ls} \sum_{\lambda_{1}\lambda_{2}} D_{m\lambda}^{J*} (\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_{1}\lambda_{1}s_{2} \ \bar{} \lambda_{2} | s\lambda \rangle.$$

Fit parameter that house unknown transition amplitudes

• The full expression for a decay amplitude in the GJ frame is:

$$A_{b}(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_{l}(p) a_{ls} \sum_{\lambda_{1}\lambda_{2}} D_{m\lambda}^{J*}(\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_{1}\lambda_{1}s_{2} \ \neg \lambda_{2} | s\lambda \rangle.$$

Wigner-D functions

• The full expression for a decay amplitude in the GJ frame is:

$$A_{b}(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_{l}(p) a_{ls} \sum_{\lambda_{1}\lambda_{2}} D_{m\lambda}^{J*} (\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_{1}\lambda_{1}s_{2} \ \overline{\lambda_{2}} | s\lambda \rangle.$$

Clebsch-Gordan Coefficients

• The full expression for a decay amplitude in the GJ frame is:

$$A_{b}(\tau) = \sqrt{\frac{2l+1}{4\pi}} F_{l}(p) a_{ls} \sum_{\lambda_{1}\lambda_{2}} D_{m\lambda}^{J*} (\Omega_{GJ}) \langle l0s\lambda | J\lambda \rangle \langle s_{1}\lambda_{1}s_{2} -\lambda_{2} | s\lambda \rangle.$$

$$= 1$$

• This term always equals one because the excited cascade decays into a spin ½ baryon and pseudo-scalar meson

Parity conservation

- The overall parity sign must be the same before and after the *E*(1530) decay because the strong interaction conserves parity
- The parity of angular momentum eigenstates is (-1)^l
- Therefore l = 1

The End

THANK YOU !!!!!

