Search for Excited Ξ states and Preliminary Cross Section for $\Xi(1530)$

Brandon Sumner

Brandon Sumner

Missing Resonance Problem

State, J ^P	Predicted masses (MeV)							
$\Xi_{\frac{1}{2}}^{+}$	1305							
$\Xi_{\frac{3}{2}}^{+}$	1505							
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385				
$\Xi^{*\frac{7}{2}}$	2355							
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345	
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240			
$\Xi^{*\frac{7}{2}+}$	2180	2240						

		Overall
Particle	J^P	Status
$\Xi(1318)$	$1/2^+$	****
$\Xi(1530)$	$3/2^{+}$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
Ξ(1820)	$3/2^{-}$	***
$\Xi(1950)$	<i>.</i>	***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$,	*
$\Xi(2250)$		**
Ξ(2370)		**

- List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/ c^2
- Current List of states in PDG with mass less than 2.4 GeV/ c^2

GlueX Phase I Detector

Decay Chain

$$\gamma p \rightarrow K^{+} K^{+} \Xi^{-*} (1530)$$
$$\Xi^{-*} (1530) \rightarrow \Xi^{-} \pi^{0}$$
$$\Xi^{-} \rightarrow \Lambda \pi^{-}$$

- Kinematically fit refers to using vertex and four momentum constraints to improve the resolution of measured data and help distinguish between different reactions
- The masses of Λ and π^0 are constrained to the known masses in the kinematic fit

Confidence Level Cut

• There is a signal around the mass of the ground state cascade

Optimizing the Kinematic Fit CL for the $\Xi(1530)$

• The CL cut needs to minimize the error in the yield improving the error in my final cross section measurement. Therefore, I defined a figure of merit (FOM) as the ratio of the signal yield over the error in the signal yield:

FOM =
$$\frac{Y}{\sigma_Y}$$
 $\sigma_Y = \sqrt{Y + 2B}$

• The CL cut used in the analysis is determined by CL interval that maximizes the FOM

Excited Cascade Mass Spectrum

CL Study

₩ASU

Searching for Excited Cascades

Modeling the Cascade Production in Signal MC

 Theoretical Calculations done by Nakayama, Oh and Haberzettl proposed the cascade/excited cascade are produced by a twostep process:

$$\gamma p \to K^+ Y^*$$
$$Y^* \to K^+ \mathcal{Z}^{-*}$$

 Direct production of the *Ξ*^{-*} would be OZI suppressed with two strange- antistrange pairs at the production vertex. Therefore, I defined *t* as:

$$t = \left(P_{\gamma} - P_{K^+}\right)^2$$

t-Slope extraction

• Selecting events within the excited cascade 1530 peak

• Assuming :
$$\frac{d\sigma}{dt} \propto e^{-bt}$$

$$b=1.08(4) c^4/GeV^2$$

Energy-dependent E(1530) Yield Extraction

Conclusion

• $\mathcal{E}(1530) \rightarrow \mathcal{E}^- \pi^0$ observed in high energy photoproduction at GlueX

• Preliminary value of the cross section from $7.0 < E_{\gamma} < 11.0$ GeV is ~1nb with studies of systematic uncertainties ongoing

• Extending search for excited cascades with full GlueX-I data

GlueX Acknowledgements: gluex.org/thanks

Cuts on Data

• Exclude events where either Kaon comes from start timer or NULL events

• Above a confidence level of .0001

• Invariant mass of $\Lambda\pi^-$ (note $\Xi^- \rightarrow \Lambda\pi^-$) between 1.31-1.34 GeV/ c^2

Accidental Subtraction

- Define in time events as events within 2ns of main beam bucket
- Appropriately weight the eight out of time accidentals

¥asu

Photon Flux

¥asu