Excited Ξ Photoproduction Utilizing 9 GeV Photons on a Proton Target: $\gamma p \rightarrow K^+ K^+ \Xi^{-*}$

Katelyn Hernandez

Arizona State University kahern26@asu.edu

Katelyn Hernandez (ASU)

1 Motivation

Experiment

Thomas Jefferson National Accelerator Facility (TJNAF) GlueX Detector Our Reaction: $\gamma p \rightarrow K^+ K^+ \Xi^{-*}$

3 Data Analysis

Data Without Cuts Applying Cuts to Data Fractional Uncertainty Comparison Without Cuts Fitting Histogram Slices

4 Future Work

The Standard Model

Standard Model of Elementary Particles

Figure: Standard Model

Э

イロト イロト イヨト イヨト

Hadrons: Baryons and Mesons

Colorless proton (red, green, blue quarks) Colorless pi meson (red-antired quarks)

Figure: https://www.quantumdiaries.org/2012/01/20/thats-right-count-them-4-quarks/

Missing Cascade States:

- Under explored compared to non-strange baryons:
 - smaller cross sections producing the Ξ states
 - inability to produce Ξ resonances through direct formulation
- Many resonances predicted have yet to be discovered
- This lack of data limits our understanding of these particles

Particle	J^P	Overall status	Status as seen in —					
			$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2 +	****					Decays weakly	
$\Xi(1530)$	3/2 +	****	****					
$\Xi(1620)$		*	*					
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	3/2 -	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
Ξ(2500)		*		*	*		3-body decays	
****	Existence	is certain.	and pro	perties a	re at leas	st fairly well exr	olored.	

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

** Evidence of existence is only fair.

Evidence of existence is poor.

Figure: 4 Star Status Cascade

イロト イロト イヨト イヨト

Particle	J^P	Overall status	Status as seen in —					
			Ξπ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2+	****					Decays weakly	
$\Xi(1530)$	3/2+	****	****					
$\Xi(1620)$		*	*					
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	3/2 -	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
$\Xi(2500)$		*		*	*		3-body decays	
**** ***	Existence Existence and/or qu	is certain, ranges fro	and pro m very li mbers, b	perties a kely to c	re at leas ertain, bu fractions	st fairly well exp ut further confir	lored. mation is desirable ell determined.	

- ** Evidence of existence is only fair.
- Evidence of existence is poor.

Figure: 1 Star Status Cascade

< ∃ >

Thomas Jefferson National Accelerator Facility (TJNAF)

Figure: Jefferson Lab (JLab) Aerial View

Figure: Continuous Electron Beam Accelerator Facility (CEBAF)

Katelyn Hernandez (ASU)

GlueX Detector

Figure: GlueX Detector

Katelyn Hernandez (ASU)

Э

Our Reaction: $\gamma p \rightarrow K^+ K^+ \Xi^{-*}$

$$\begin{split} & \stackrel{\text{``}}{\gamma} \rho \longrightarrow K^+ K^+ \Xi^{-*} \\ & \stackrel{\text{``}}{\longrightarrow} \Xi^- \pi^\circ \\ & \stackrel{\text{``}}{\longrightarrow} \Lambda \pi^- \\ & \stackrel{\text{``}}{\longrightarrow} \rho \pi^- \end{split}$$

FINAL STATE PARTICLES: K* K* & V p m-m-

< ロ > < 同 > < 三 > < 三 > ...

Data Without Cuts

- Cuts are criteria to select events from data
 - e.g. if reaction doesn't produce particles above certain threshold, we can 'cut' all events that have particles above that energy
- Isolate events representing physics of interest from the sea of background events
- One type of cut is a confidence level cut

Confidence Level Cuts

< D > < B

Э

Ξ

Figure: Confidence Level 2D Plot

Confidence Level Plotted in 1D

Ξ

Ξ

Cuts from 0.1 to 0.00000001

Figure: Grey: CL=0.1, Green: CL=0.00000001

Katelyn Hernandez (ASU)

୬ < ୯ 20 / 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E

- To determine what the best confidence level cut is we can compare their fractional uncertainties
- e.g. We can see here that the 0.01 cut has less statistics, but is cleaner than the 0.0001 cut

Fractional Uncertainty

Determining Best Confidence Level Cuts

Katelyn Hernandez (ASU)

24 / 34

Best Confidence Level Cuts Cont'd...

Katelyn Hernandez (ASU)

Excited Ξ Photoproduction

25 / 34

Katelyn Hernandez (ASU)

< D > < B

E

Ξ

CL Cuts Applied to 2D Histograms

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ξ^- Can Be Seen

Figure: 10^{-4} CL Cut Showing Ξ^-

Binning 2D Histogram After CL Cuts

Figure: 2D Histogram Sliced by Bins into 1D Histograms

Katelyn Hernandez (ASU)

Fitting 1D Histogram Slices

Figure: Fit of Bin 28 after 10⁻² CL Cut Applied

Now that I have completed this CL cut study on a well established resonance state, I can use this method onto other, lesser established resonances such as the $\Xi(1620)$ or other resonant states.

Dugger Lab

- Prof. Michael Dugger
- Dr. Brandon Sumner
- Alan Gardner

Funding

- DOE
- ASU

프 > 프

The End

Questions? Comments?

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のへの