Partial wave analysis of $K^*\bar{K}$ events in GlueX

Sebastian Cole

Arizona State University

9/7/2021

1 Motivation for the analysis of $\gamma p \rightarrow p K^* \overline{K}$ events

- 1.1 Previous experimental results
- Interpretation of previous results and motivation 1.2

Analysis

- 2.1 Event selection
- 2.2 Partial wave analysis

1 Motivation for the analysis of $\gamma p \rightarrow pK^*K$ events

- 1.1 Previous experimental results
- Interpretation of previous results and motivation 1.2

Analysis

The E/ι puzzle

Pseudoscalar in $\bar{p}p$ annihilation at rest

In 1963, peak at $1425~{\rm MeV}$ seen in $K\bar{K}\pi$ mass spectrum with $J^{PC}=0^{-+}$ dubbed E meson [1].

E and ι separate particles

Different quantum numbers for different production mechanisms from spin-parity analysis, specifically the E meson 0^{-+} and the ι meson 1^{++} [1].

The 1998 PDG

The 1998 PDG reports an axial vector $f_1(1420)$ and pseudoscalar $\eta(1440)$ as the ι and E, respectively [2].

Two pseudoscalar mesons in $1400 \ \mathrm{MeV}$ mass region

- J/ψ decays in MARKIII and DM2.
- $p\bar{p}$ annihilation at rest by OBELIX.
- $\gamma\gamma$ collisions by L3 only provided evidence of $\eta(1475).$

E852 at Brookhaven PWA results

PWA of $K^+K^-\pi^0$

Evidence of $\eta(1295)$ and $f_1(1285)$ decay $a_0(980)\pi^0$ left. Evidence of $\eta(1416)$ decay $a_0(980)\pi^0$ and $K^*\bar{K}$, and $\eta(1485)$ and $f_1(1420)$ decay $K^*\bar{K}$ right [3].

		\sim \cdot	
20	hastian		
	bastian		,

The $\eta(1295)$ and $\eta(1475)$ pseudoscalars

Assuming the $\eta(1295)$ exists, then it may be the first radial excitation of η and the $\eta(1475)$ is the first radial excitation of η' . The $\eta(1475)$ isoscalar would be the $s\bar{s}$ contribution to the 0^{-+} nonet.

The $\eta(1405)$ pseudoscalar

If two pseudoscalar mesons exist in the 1400 MeV region, the $\eta(1405)$ might be a 0^{-+} glueball. This is supported by the fact that it is not seen in $\gamma\gamma$ collisions in L3. This is not supported by lattice gauge theory, but is by the flux tube model [4].

Analysis of $X \to K^* \bar{K}$

What mesons states exist in the $1400~{\rm MeV}$ region seen in production mechanisms: π^-p , radiative $J/\psi(1S)$ decay, and $\bar{p}p$ annihilation at rest?

Sebastian Cole (ASU)

イロト イポト イヨト イヨト

Motivation for the analysis of $\gamma p \to p K^* \overline{K}$ events 1.1 Previous experimental results

Analysis

- 2.1 Event selection
- 2.2 Partial wave analysis

Event selection

Removal conditions

 $\begin{array}{l} \chi^2/n.d.f.>5\\ \theta_\gamma<1.5^\circ\\ 10.3^\circ<\theta_\gamma<11.5^\circ\\ E_{BCAL}^{min}<0.05~{\rm GeV}\\ {\rm Shower~quality~FCAL}<0.5\\ d_{\gamma_1,\gamma_2}<12.5~{\rm cm}\\ MM^2>0.2~{\rm GeV}\\ p_p^{recoil}<0.45~{\rm GeV}\\ 52~{\rm cm}<z_{vertex}>78~{\rm cm}\\ r_{vertex}>1~{\rm cm} \end{array}$

Selection of combination

Select combination with best $\chi^2/n.d.f.$ and kaons detected in TOF or FCAL only.

Accidentals

-f/6 weight for accidentals where f from CCDB.

None

• • = • • = •

None

NULL

NA

π^0 selection

From Gaussian with third degree polynomial fit, π^0 mesons is selected using 2σ from center, $0.12-0.15~{\rm GeV}$ as shown by dashed lines.

Sebastian Cole (ASU)

$K^*(892)$ selection

From Gaussian with third degree polynomial fit, $K^*(892)$ mesons is selected using 2σ from center, 0.84 - 0.94 GeV as shown by dashed lines.

Excited K^*

A peak for excited K^* mesons near ${\sim}1.4~{\rm GeV}$ is visible. This may include $K_1^*(1410),$ predicted to be an η_1' hybrid meson candidate decay product.

Possible meson states

Visible peak near ~1.4 GeV for both distributions. This is consistent with $\eta(1405)$, $f_1(1420)$, $\rho(1450)$, and $\eta(1475)$. Difficult to make any other conclusions for higher mass peaks without PWA.

Angular distributions

9/7/2021 12/3

Angular distributions cont.

$K^*\bar{K}$ Monte Carlo

Generator and simulation

- Randomly generate samples of $K^*\bar{K}$ isotropically through phase space.
- Pass generated events through simulation of GlueX spectrometer.
- Flat incident photon beam energy from 8.2 8.6 GeV.
- The K^{\ast} mass distribution is given a Breit-Wigner shape.
- t-slope= $1.3/\text{GeV}^2$

Sebastian Cole (ASU)

$K^*\bar{K}$ Monte Carlo cont.

Sebastian Cole (ASU)

 $\gamma p \to p K^* \bar{K}$

15/3

Partial wave analysis

Intensity function in reflectivity basis requiring positive reflectivity

Obtain fit parameters $[J_i^P]_{m,k}^{(\epsilon)}$ for different wave contributions with fits to the angular distributions using the intensity function:

$$\begin{split} I(\Omega, \Omega_H, \Phi) &= 2\kappa \sum_k [(1 - P_\gamma)[|\sum_{i_N, m} [J_i^N]_{m,k}^{(+)} Im(Z)|^2 + |\sum_{i_U, m} [J_i^U]_{m,k}^{(+)} Re(Z)|^2] \\ &+ (1 + P_\gamma)[|\sum_{i_U, m} [J_i^U]_{m,k}^{(+)} Im(Z)|^2 + |\sum_{i_N, m} [J_i^N]_{m,k}^{(+)} Re(Z)|^2]], \\ Z &= e^{-i\Phi} \sum_{m_2''} \sum_{m'} D_{mm'}^{J_i*}(\Omega) \langle Jm'|j_1 m_1 j_2 m_2'' \rangle D_{m_2'', m_2}^{j_2*}(\Omega_H)[5]. \end{split}$$

Wave conditions

- Require positive reflectivity.
- J = 0, 1, and 2 for spin projections M from -J to J.
- Orbital angular momentum of the decay is restricted to P, S, and D waves.

Between coherent sums

- Four fit parameters, two $[J_i^N]^{(+)}$ and two $[J_i^U]^{(+)}.$
- Identical fit parameters constrained.

Simultaneous fit

- Data broken into eight subsets with meson resonance deacys $K^{*+}K^{-}$ and $K^{*-}K^{+}$ for each polarization.
- Identical fit parameters between the eight subsets are constrained.
- J = 0 with P-wave forced to real.
- Number of fit parameters reduced from 192 to 10.
- Simultaneous fit between these subsets of the data reduces statistical uncertainty.

PWA fit results for

18 / 31

$K^*\bar{K}$ invariant mass for each total angular momentum

Results of PWA

- J = 0: $\eta(1405)$ and $\eta(1475)$.
- J = 1: $f_1(1420)$ and $f_1(1510)$.
- J = 2: $f_2(1430)$ and $f_2(1530)$.

Results of PWA

- J = 0: $\eta(1405)$ and $\eta(1475)$.
- J = 1: $f_1(1420)$ and $f_1(1510)$.
- J = 2: $f_2(1430)$ and $f_2(1530)$.

J	PID	PDG center (MeV)	PDG width (MeV)	Fit center (MeV)	Fit width (MeV)
0	$\eta(1405)$	1408.8 ± 2.0	50.1 ± 2.6	1406 ± 2	49.46 ± 7.07
0	$\eta(1475)$	1475 ± 4	90 ± 9	1475 ± 10	104.8 ± 2.24
1	$f_1(1420)$	1426.3 ± 0.9	54.5 ± 2.6	1436 ± 11	48.40 ± 4.17
1	$f_1(1510)$	1518 ± 5	73 ± 25	1503 ± 5	71.78 ± 12.76
2	$f_2(1430)$	$\sim \! 1430$	NA	1438 ± 1	68.22 ± 1.27
2	$f_2(1525)$	1517.4 ± 2.5	86 ± 5	1537 ± 5	88.10 ± 8.24

イロト イヨト イヨト イヨト

Motivation for the analysis of $\gamma p \to p K^* \overline{K}$ events 1.1 Previous experimental results

1.2 Interpretation of previous results and motivation

Analysis

Analysis of $X \to K^* \overline{K}$

What mesons states exist in the 1400 MeV region seen in production mechanisms: $\pi^- p$, radiative $J/\psi(1S)$ decay, and $\bar{p}p$ annihilation at rest?

Resolving the nonets

How can this be resolved?

The K_L would help establish the $s\bar{s}$ meson contributions to the pseudoscalar, axial vector, and tensor meson nonets. The extraneous states would require glueball, hadronic molecule, or tetraquark explanations.

Completed

- Possibly have multiple states in the 1400 1500 MeV mass region.
- These states are consistent with past results.
- Consistent pattern between the three nonets.

Future

- Update the MC to change *t*-slope for each mass bin.
- Future work will move up the $K^*\bar{K}$ mass spectrum.
- Look at the other meson resonance decays, $a_0\pi^0$ and $K^+K^-\pi^0$.
- Look to simultaneously fit each decay mode.

<u> </u>		\sim \cdot	
50	haction		
20	Dastiali		

・ロト・雪 ト・雪 ト・雪 うらの

Partial wave analysis cont.

Quantum numbers

- J and M are the total angular momentum and spin projection of the meson resonance.
- L and m_L are the orbital angular momentum and spin projection of the meson resonance's decay, for which a P
- S and m_S are the spin and spin projection of the vector meson.

Wave conditions

- Require positive reflectivity.
- J = 0, 1, and 2 for spin projections M from -J to J are included for the four coherent sums.
- To reduce fit parameters, the orbital angular momentum of the decay *L* is restricted to *P*, *S*, and *D* waves for each *J*, respectively.
- To conserve total angular momentum $M = m_L + m_S.$

J	M	L	m_L	S	m_S
0	0	1	-1	1	1
0	0	1	0	1	0
0	0	1	1	1	-1
1	-1	0	0	1	-1
1	0	0	0	1	0
1	1	0	0	1	1
2	-2	2	-2	1	0
2	-2	2	-1	1	-1
2	-1	2	-2	1	1
2	-1	2	-1	1	0
2	-1	2	0	1	-1
2	0	2	-1	1	1
2	0	2	0	1	0
2	0	2	1	1	-1
2	1	2	0	1	1
2	1	2	1	1	0
2	1	2	2	1	-1
2	2	2	1	1	1
2	2	2	2	1	0
				_	

Uncertainty determination

Fit

Plot $\cos \theta$, $\cos \theta_H$, ϕ , and Φ of PWA fit results for all subsets. Fit histograms to the data. Extract fractional uncertainties of the coefficients.

$$h_{tot} = a_0 h_0 + a_1 h_1 + a_2 h_2 + C$$
$$\sigma_m = \frac{\sigma_{a_n}}{a} m$$

$$a_n$$

LQCD hybrid predictions

Masses

 $\begin{array}{l} 0^{+-} \sim 2.3 - 2.5 \ {\rm GeV} \\ 1^{-+} \sim 2.0 - 2.4 \ {\rm GeV} \\ 2^{+-} \sim 2.4 - 2.6 \ {\rm GeV} \end{array}$

Widths

```
\label{eq:gamma-0.1} \begin{split} & \Gamma \sim & 0.1 - 0.5 \ \mathrm{GeV} \\ & \Gamma_{1^{-+}} \approx \Gamma_{2^{+-}} < \Gamma_{0^{+-}} \end{split}
```

J^{PC}	Particle	Decays
	b_0	$\pi(1300)\pi$, $h_1\pi$, $f_1 ho$, $b_1\eta$
0^{+-}	h_0	$b_1\pi$, $h_1\eta$
	h'_0	$K_1(1270)ar{K}$, $K(1410)ar{K}$, $h_1\eta$
	π_1	$ ho\pi$, $b_1\pi$, $f_1\pi$, $\eta\pi$, $\eta^\prime\pi$, $a_1\eta$
1^{-+}	η_1	$f_1\eta$, $a_2\pi$, $f_1\eta$, $\eta'\eta$, $\pi(1300)\pi$, $a_1\pi$
	η'_1	$K^*ar{K}$, $K(1270)ar{K}$, $K(1410)ar{K}$, $\eta'\eta$
	b_2	$\omega\pi$, $a_2\pi$, $ ho\eta$, $f_1 ho$, $a_1\pi$, $h_1\pi$, $b_1\eta$
2^{+-}	h_2	$ ho\pi$, $b_1\pi$, $\omega\eta$, $f_1\omega$
	h'_2	$K_1(1270)\bar{K}$, $K(1410)\bar{K}$, $K_2\bar{K}$, $\phi\eta$, $f_1\phi$

[1] C. Meyer et al., [arXiv:1004.551].

イロト イポト イヨト イヨト 二日

Partial wave analysis

The intensity of a meson states production is defined in terms of the differential cross section:

$$I(\Omega, \Omega_H, \Phi) \equiv \frac{d\sigma}{dt \ dm_{K^*\bar{K}} \ d\Omega \ d\Omega_H \ d\Phi}.$$

In terms of phase rotated decay amplitudes $\tilde{A}_{\pm}(\Omega, \Omega_H, \Phi) = e^{\mp i \Phi} A_{\pm}(\Omega, \Omega_H, \Phi)$ in a reflectivity basis

$$I(\Omega, \Omega_{H}, \Phi) = 2\kappa \sum_{k} [(1 - P_{\gamma})[|\sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z)|^{2} + |\sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} Re(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} Re(Z)|^{2}] + (1 + P_{\gamma})[|\sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z)|^{2} + |\sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} Re(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} Re(Z)|^{2}]].$$

$$A_{\lambda} = \sum_{i} \sum_{m} T_{\lambda, m}^{i} \sum_{\lambda} D_{m,\lambda}^{J_{i}*}(\Omega) F_{\lambda}^{i} D_{m,\lambda}^{1*}(\Omega_{H}), \qquad (1)$$

Sebastian Cole (ASU)

/2021 29/3

PDG and experimental results possible states

Particle	$I^G(J^{PC})$	Decays	Mass (MeV)	Width (MeV)
$b_1(1235)$	$1^+(1^{+-})$	$K^{*\pm}K^{\mp}$ †	1229.5 ± 3.2	142 ± 9
$a_1(1260)$	$1^{-}(1^{++})$	$KK\pi$ † $/K^*K$ †	1230 ± 40	250 - 600
$f_2(1270)$	$0^+(2^{++})$	$K^0 K^- \pi^+ + c.c.$	1275.5 ± 0.8	$186.7 \pm 2.2/2.5$
$f_1(1285)$	$0^+(1^{++})$	$KK\pi/K^*K \star /a_0(980)\pi(E852)$	1281.9 ± 0.5	22.7 ± 1.1
$\eta(1295)$	$0^+(0^{-+})$	$a_0(980)\pi(E852)$	1294 ± 4	55 ± 5
$\eta(1405)$	$0^+(0^{-+})$	$KK\pi^{\dagger}/K^{*}K^{\dagger}/a_{0}(980)\pi(E852)$	1408.8 ± 1.8	51.0 ± 2.9
$f_1(1420)$	$0^+(1^{++})$	$KK\pi\ddagger/K^*K\ddagger$	1426.4 ± 0.9	54.9 ± 2.6
$\rho(1450)$	$1^+(1^{})$	$K^*K + c.c.*$	1476 ± 4	85 ± 9
$\eta(1475)$	$0^+(0^{-+})$	$KK\pi \dagger / K^*K \dagger / a_0(980)\pi\dagger$	1475 ± 4	90 ± 9
$\eta_2(1645)$	$0^+(2^{-+})$	$KK\pi\dagger/K^*K\dagger$	1617 ± 5	181 ± 11
$\pi_2(1670)$	$1^{-}(2^{-+})$	K * K + c.c.	1672.2 ± 3.0	260 ± 9
$\phi(1680)$	$0^{-}(1^{})$	$K^{*}K + c.c. \ddagger /K_{S}^{0}K\pi^{\dagger}$	1680 ± 20	150 ± 50
$\rho_3(1690)$	$1^+(3^{})$	$K\bar{K}\pi$	1688.8 ± 2.1	161 ± 10
$\rho(1700)$	$1^+(1^{})$	$K^*K + c.c.\dagger$	1720 ± 20	250 ± 100
$\pi(1800)$	$1^{-}(0^{-+})$	$K_0^*(1430)K^- \dagger / K^*K^- \star$	$1810 \pm 9/11$	$215 \pm 7/8$
$\phi(1850)$	$0^{-}(3^{})$	$K^*K + c.c.\dagger$	1854 ± 7	$87 \pm 28/23$
(2170)	$0^{-}(1^{})$	$K^{*0}K^{\pm}\pi^{\mp}\star$	2160 ± 80	125 ± 65

If no marker on the decay(s), has defined branching fraction.

- * possibly seen
- seen
- ‡ dominant
- not seen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ¹A. Bertin et al. (OBELIX), "E / iota decays to K anti-K pi in anti-p p annihilation at rest", Phys. Lett. B **361**, 187–198 (1995).
- ²P. D. Group et al., "Review of Particle Physics", Progress of Theoretical and Experimental Physics **2020**, 083C01, 10.1093/ptep/ptaa104 (2020).
- ³G. Adams et al., "Observation of pseudoscalar and axial vector resonances in $p \rightarrow k+k0n$ at 18 gev", Physics Letters B **516**, 264–272 (2001).
- ⁴T. Gutsche et al., "Strong decays of radially excited mesons in a chiral approach", Physical Review D **79**, 10.1103/physrevd.79.014036 (2009).
- ⁵V. Mathieu et al., "Moments of angular distribution and beam asymmetries in 0 photoproduction at gluex", Physical Review D **100**, 10.1103/physrevd.100.054017 (2019).

A B A A B A