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MODELLING AND IMPROVEMENT OF PROTON COMPUTED

TOMOGRAPHY

Valentina Giacometti

A Thesis for PhD in Medical Physics

School of Physics
University of Wollongong

ABSTRACT

Proton computed tomography (pCT) is a promising imaging technique to substitute x-ray
CT for more accurate proton therapy treatment planning as it allows to calculate directly
proton relative stopping power (RSP) from proton energy loss measurements.

A novel pCT scanner (phase II pCT scanner prototype) was completed with a silicon-
based particle tracking system and a 5 stage scintillating energy detector. In parallel, a mod-
ular software platform was developed to characterize the performance of the pCT system.
The modular pCT software platform consists of (1) a Geant4-based simulation modelling
the Loma Linda (California, USA) proton therapy beam line and the phase II pCT scanner
prototype, (2) water equivalent path length calibration and (3) conversion of the scintillating
energy detector, and (4) image reconstruction algorithm for the reconstruction of the RSP of
the scanned object. The platform has been validated with respect to experimental measure-
ments and proved to be a valid tool to characterize and optimize the novel pCT system.

The results show that the pCT software platform accurately reproduces the performance
of the existing phase II pCT scanner prototype with a RSP agreement between experimental
and simulated values to better than 1.5%.

The pCT software platform was also used to perform a dosimetric evaluation of the phase
II pCT scanner prototype. The results are very promising because the dose delivered during
a pCT scan was calculated to be 10 time less than the dose delivered during a cone-beam
CT scan.

Finally, the accuracy of the most likely path calculation in homogeneous and heteroge-
neous medium was also investigated using a pixelated Medipix detector. The detector was
successfully integrated with the experimental phase II pCT scanner prototype. A Geant4
simulation of the pCT-Medipix system was also developed and theoretically predicted, sim-
ulated and experimental data were compared and analysed. The agreement between exper-
imental and simulated results is always within one standard deviation and the correlation
coefficients between predicted and measured data is close to 1, showing a good agreement
between predicted and measured data.



Acknowledgements

This PhD project started in 2012, from a collaboration between the University of Wollongong and
the Loma Linda University, CA, USA. It is a pleasure for me to thank Prof. Anatoly Rosenfeld and
Dr. Reinhard Schulte who made this thesis possible. I do not think I know two people who work
harder than you: thanks for your guidance, for your support and for everything you taught me, both
as scientists and as a human beings.

I am grateful to all the pCT collaboration who made possible the realisation of an innovative pCT
scanner that, hopefully, one day, will be an instrument that could help in saving some people lives.
In particular, thanks to Prof. Bashkirov, Prof. Johnson, Prof. Sadrozinski, Dr. Zatserklyaniy, and Dr.
Plautz: thanks for your help, for your patience and for everything you taught me.

A special thank to everyone at CMRP: the support, help and encouragement that each one of you
always gave me was simply great. In particular, thanks to Dr. Susanna Guatelli: I could have not
asked for a better supervisor. You are an inspiration for me to follow for the rest of my life.

I owe my deepest gratitude to my parents: thanks for supporting me, pushing me and always
being there for me. I would like to express my sincere gratitude also to my godparents, my uncles,
aunts, and cousins: no matter how far I go, you are always asking me when I am coming back.

Far West Thanks to Ryan, John, Josh, Raquel for the great memories (and nickname) I got from
Salem CT. Thanks to Marghe, Roger and Pier for making the lab a better place. A special thanks
to Diogo and the lucky coincidence of being, again, in the same State at the same time: thanks, in
particular, for introducing me to Silvio, Stefano and Sole.

Down Under Thanks to my Aussie friends (Matt, Pricey, Jesse, Odi in particular) who made me
feel at home in a new land, teaching me important cultural life lessons. Thanks to Sara, Enrico,
Davide and Mirko because I would have never survived this year without them. Thanks to all my
other Italian friends, also Rino and Nelda, for the singing and eating moments. Thanks to Christel
for being an idiot. Thanks to all the volley-people for making me looking forward for the weekend.
Thanks and sorry to all the other people I cannot mention here for space issues.

My Lovely Boot Paolo, Gra, Marco and Tella, please, do not stop fighting for us. Tella, thanks
for your patience. Gra, thanks for the voice messages. Marco, thanks for your wise advice. Paolo,
thanks for making me smile and driving me crazy at the same time. Ila and Ale, I would be lost
without you and without Ila’s email reminding me the Etti’s family skype meetings. Marta and Ele,
thanks for being as crazy as me. Matti, thanks for being always present, no matter the time zones
where we are. Mati, our friendship is unusual but crucial for me: thanks for helping me the most
when I left. Thanks to Fede and Laura for waiting for me.

x



List of Publications

Journal Pubblication

1. V. A. Bashkirov, R. W. Schulte, R. F. Hurley, R. P. Johnson, H. F. W. Sadrozinski,
A. Zatserklyaniy, T. E. Plautz, V. Giacometti, “Novel scintillation detector design and
performance for proton radiography and computed tomography”, Medical Physics, 43
(2), 664-74 (2016). DOI: 10.1118/1.4939255.

2. R. P. Johnson, V. A. Bashkirov, L. DeWitt, V. Giacometti, R. F. Hurley, P. Piersimoni,
T. E. Plautz, H. F. W. Sadrozinski, K. E. Schubert, R. W. Schulte, B. Schultze, A.
Zatserklyaniy, “A Fast Pre-Clinical Head Scanner for Proton CT”, IEEE Transactions
on Nuclear Science, 63 (1), 52-60 (2016). DOI: 10.1109/TNS.2015.2491918

3. H. F. W. Sadrozinski, T. Geoghegan, E. Harvey, R. P. Johnson, T. E. Plautz, A. Zat-
serklyaniy, V. A. Bashkirov, R. F. Hurley, P. Piersimoni, R. W. Schulte, P. Karbasi, K.
E. Schubert, B. Schultze, V. Giacometti, “Operation of the Preclinical Head Scanner
for Proton CT”, Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment , 831, 394-99 (2016).
DOI: 10.1016/j.nima.2016.02.001.

4. V. Giacometti, S. Guatelli, M. Bazalova-Carter, A. B. Rosenfeld, R. W. Schulte, “De-
velopment of a High Resolution Voxelised Head Phantom for Medical Physics Appli-
cations”, submitted to Physica Medica (2016) and accepted (2017).

5. V. Giacometti, V. A. Bashkirov, P. Piersimoni, S. Guatelli, T. E. Plautz, H. F. W.
Sadrozinski, R. P. Johnson, A. Zatserklyaniy, T. Tessonnier, K. Parodi, A. B. Rosen-
feld, R. W. Schulte, “Software Platform for Simulation of a Prototype Proton CT
Scanner”, submitted to Medical Physics (2016) and accepted (2017).

6. T. E. Plautz, R. P. Johnson, H. F. W. Sadrozinski, A. Zatserklyaniy, V. A. Bashkirov,
R. F. Hurley, R. W. Schulte, P. Piersimoni, V. Giacometti, “Evaluation of Spatial Res-
olution for a Prototype Proton CT Scanner”, submitted to Medical Physics (2016) and
accepted (2016).

xi



Conference Proceedings

1. V. Giacometti, S. Guatelli, A. Zatserklyaniy, R. P. Johnson, H. F. W. Sadrozinski,
T. E. Plautz, P. Piersimoni, Caesar E. Ordonez, V. A. Bashkirov, A. B. Rosenfeld,
R. W. Schulte, “Dosimetric Evaluation of Proton CT using a Prototype Proton CT
Scanner”, 2016 IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), Strasbourg, FR, (2016).

2. R.W. Schulte, V. A. Bashkirov, V. Giacometti, R. F. Hurley, M. Johnson, R. P. Johnson,
T. E. Plautz, P. Piersimoni, H. F. W. Sadrozinski, K. E. Schubert, “A Proton CT Imag-
ing System for Improving the Accuracy of Particle Treatment Planning and Delivery:
Monte Carlo Simulations and First Experimental Results”, International journal of
radiation oncology, 93 (3), S98 (2015). DOI: 10.1016/j.ijrobp.2015.07.235.

3. R. P. Johnson, V. A. Bashkirov, V. Giacometti, R. F. Hurley, P. Piersimoni, T. E.
Plautz, H. F. W. Sadrozinski, K. E. Schubert, R. W. Schulte, B. Schultze, M. Witt, A.
Zatserklyaniy, “Results from a pre-clinical head scanner for proton CT”, 2014 IEEE
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle,
WA, 1-5 (2014). DOI: 10.1109/NSSMIC.2014.74308762.

4. T. E. Plautz, V. A. Bashkirov, R. F. Hurley, V. Giacometti, R. P. Johnson, H. F.
W. Sadrozinski, R. W. Schulte, A. Zatserklyaniy, “Spatial resolution studies for a
prototype proton CT scanner”, 2014 IEEE Nuclear Science Symposium and Medi-
cal Imaging Conference (NSS/MIC), Seattle, WA, 1-5 (2014). DOI: 10.1109/NSS-
MIC.2014.7431002.

5. A. Zatserklyaniy, R. P. Johnson, S. Macafee, T. E. Plautz, H. F. W. Sadrozinski, V.
A. Bashkirov, R. F. Hurley, R. W. Schulte, N. Vence, V. Giacometti, “Track recon-
struction with the silicon strip tracker of the proton CT Phase 2 scanner”, 2014 IEEE
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle,
WA, 1-5 (2014). DOI: 10.1109/NSSMIC.2014.7430749.

xii



List of Presentations

Oral presentations

• A high-resolution Dicom Digital Head Phantom, Geant4 School and Monte Carlo
Workshop for Medical Physics, Wollongong, Australia, 2016.

• A High-Resolution Digital Head Phantom for Geant4 Proton Beam Simulations, Geant4
International User Conference, Bordeaux, France, 2013.

• Characterization of a Proton-CT System by means of Geant4 Simulations, Micro-Mini
& Nano Dosimetry Conference, Wollongong, Australia, 2012.

Poster presentations

• Dosimetric Evaluation of Proton CT using a Prototype Proton CT Scanner, IEEE Nu-
clear Science Symposium and Medical Imaging Conference, Strasbourg, FR, 2016.

• A Medipix Study of Proton Paths through Heterogeneous Materials during Proton CT
data Acquisition, IEEE Nuclear Science Symposium and Medical Imaging Confer-
ence, San Diego, USA, 2015.

• Macro and Nanodosimetric Evaluation of the Phase II Proton CT Scanner with Geant4
Simulations, Micro-Mini & Nano Dosimetry and International Prostate Cancer Treat-
ment Conference, Port Douglas, Australia, 2014.

• Geant4 Simulation Platform for the Phase II Proton CT Scanner, IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference, Seattle, USA, 2014.

Other posters

• Spatial Resolution Studies in Proton CT Using a Phase-II Prototype Head Scanner,
American Association of Physicists in Medicine (AAPM), Washington, DC, USA,
2016.

• Design and performance of a preclinical proton CT head scanner, 3rd ESTRO Forum,
Barcellona, Spain, 2015.

xiii



• Tools for Development of 4D Proton CT, American Association of Physicists in Medicine
(AAPM), Anaheim, CA, 2015.

• Performance of a Proton-CT-to-Proton-CT Image Registration Algorithm for Image-
Guided Proton Therapy, IEEE Nuclear Science Symposium and Medical Imaging
Conference, San Diego, USA, 2015.

• Experimental Proton CT: an Update on Data Pre-Processing for Iterative Image Re-
construction, IEEE Nuclear Science Symposium and Medical Imaging Conference,
San Diego, USA, 2015.

• Machine Learning Algorithm for Calibration of the Energy Detector of the Phase II
Proton Computed Tomography Head Scanner, IEEE Nuclear Science Symposium and
Medical Imaging Conference, San Diego, USA, 2015.

• Testing a Pre-Clinical Proton-CT Head Scanner, IEEE Nuclear Science Symposium
and Medical Imaging Conference, San Diego, USA, 2015.

• Improving Proton Radiography using the Most Likely Path, IEEE Nuclear Science
Symposium and Medical Imaging Conference, San Diego, USA, 2015.

• Clinical Performance Evaluation of a Phase II Proton CT Scanner, American Associ-
ation of Physicists in Medicine (AAPM), Austin, TX, USA, 2014.

• Result from a Pre-Clinical Head Scanner for Proton CT, IEEE Nuclear Science Sym-
posium and Medical Imaging Conference, Seattle, USA, 2014.

• Spatial Resolution Studies and Measurement of the Modulation Transfer Function
for a Prototype Proton CT Scanner, IEEE Nuclear Science Symposium and Medical
Imaging Conference, Seattle, USA, 2014.

• A Novel Phantom and Method for Calibration of the Phase II Proton CT Scanner,
IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, USA,
2014.

xiv



List of Acronyms

ART Algebraic reconstruction technique
CCD Charge-coupled device
CT Computed tomography
DAQ Data acquisition
DECT Dual-energy computed tomography
FBP Filtered back projection
FDK Feldkamp–Davis–Kress
FOV Field of view
FT Fiber trackers
FWHM Full width at half maximum
HU Hounsfield unit
IMRT Intensity-modulated radiation therapy
MC Monte Carlo
MCS Multi Coulomb scattering
MLP Most likely path
MRI Magnetic resonance imaging
MTF Modulation transfer function
OAR Organ at risk
PCT Proton computed tomography
PMT Photomultiplier tubes
RSP Relative stopping power
Sci-Fi Scintillating fibres
SECT Single-energy computed tomography
SEM Secondary electron emission monitor
SOBP Spreadout Bragg peak
SP Stopping power
SSD Silicon strip detector
WET Water equivalent thickness
WEPL Water equivalent path length
XCT X-ray computed tomography

xv



Facilities

FNAL Fermilab National Accelerator Laboratory
HCL Harvard University Cyclotron Laboratory
HIT Heidelberg Ion-Beam Therapy
INFN Instituto Nazionale di Fisica Nucleare
LAMPF Los Alamos Meson Physics Facility
LBL Lawrence Berkeley Laboratory
LLU Loma Linda University
LLUMC Loma Linda University Medical Centre
LSN Laboratori Nazionali del Sud
MGH Massachusetts General Hospital
NIU Northern Illinois University
NMCPC Northwestern Medicine Chicago Proton Center
PRAVDA Proton Radiotherapy Verification and Dosimetry Application
PREDATE Particle Residual Energy And Tracker Enhancement
PRIMA PRoton IMAging
PSI Paul Scherrer Institute
UCSC University of California Santa Cruz

xvi



Chapter 1

Introduction

Protons are increasingly used for radiotherapy, in particular, in children and when the tol-

erance of organs at risk becomes dose-limiting [1]. To take full advantage of the dosimetric

properties of protons, the range of the proton beams in tissue has to be precisely known.

The current practice of converting Hounsfield values of x-ray computed tomography (xCT)

to relative stopping power (RSP) for proton treatment planning leads to systematic range

errors [2]. Better range accuracy can be achieved with proton computed tomography (pCT)

since it provides a direct calculation of the proton RSP from proton energy loss measure-

ments [3].

A prototype pCT scanner with a silicon-based particle tracking system and a 5 stage

scintillating energy detector has been completed by the collaboration between the University

of Santa Cruz and the Loma Linda University [4]. This thesis investigates various aspects of

the novel pCT sytem via modelling the existing prototype scanner.

After an historical and scientific overview on pCT (chapter 2), the prototype pCT scanner

is described in detail in chapter 3. A modular software platform was developed to character-

ize the performance of the scanner (chapter 5). The scanner was modelled using Geant4 [5],

a Monte Carlo toolkit for the simulation of the passage of particles through matter. The sim-

ulation was validated with respect to experimental data and benchmarked against theoretical

1
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predictions.

Several phantoms were scanned however, simple geometries were not sufficient to fully

characterize the novel pCT scanner prototype. Therefore, a high resolution digital head

phantom, modelling an existing head phantom (model HN715, CIRS, Norfolk, Virginia,

USA), was created to have an accurate representation of the human anatomy (chapter 4). The

use of such a detailed phantom is important to understand the effects of multiple Coulomb

scattering (MCS) on pCT image reconstruction, since MCS is one of the main limitations

for pCT spatial resolution.

An evaluation of the quality of the pCT image reconstruction achieved using the pCT

scanner prototype was presented in chapter 6, together with a simualted dosimetric evalu-

ation aiming at investigating the dosimetric advantages of using pCT rather than xCT for

scanning a patient.

Finally, another complication in using protons for imaging purposes is associated with

the determination of protons most likely path (MLP). The MLP formalism used for the

work presented in this thesis was proposed by Schulte et al. [6]; an experimental study on the

effects of heterogeneities on the protons MLP calculation is presented in chapter 7.



Chapter 2

Proton Computed Tomography

Overview

PCT is a promising imaging technique that started to be investigated in the 60s as a possible

alternative to xCT. The interest in pCT arose with the use of protons for therapeutic purposes,

particularly in proton therapy.

2.1 Proton Therapy

The use of ionizing radiation (x-rays) for medical applications is one of the main treatment

option in oncology since 1985 [7]. The first cyclotron was invented by Ernest O. Lawrence in

1929 at the University of California, Berkley and a few years later, in 1946, the use of charge

heavy particles in radiotherapy, protons in particular, was proposed by Robert R. Wilson [8]

Wilson pointed out that protons have advantages over x-rays in radiotherapy because:

1. protons travel into a medium almost in a straight line;

2. protons ionise the tissue losing energy until they stop;

3. the energy of the protons is inversely related to their specific ionization i.e. protons

2



2.1. Proton Therapy 3

deposit most of the dose at the end of their path (specifically, in the last 2% of their

range), when they have lost most of their energy.

The latter characteristic is a phenomenon known as Bragg peak and it can be consid-

ered one of the main reasons why protons and other heavy particles started to be used in

radiotherapy.

Nowadays, oncologists and medical physicists can choose to modulate proton beam en-

ergies thus combining several Bragg peaks, in order to cover small localized areas and pre-

cisely irradiate the tumours. The plateau of deposited dose obtained is called spread-out

Bragg peak (SOBP). Fig. 2.1 shows an example of SOBP and photons dose distribution.

With protons, most of the dose is delivered to the target, sparing the surrounding tissues

while photons instead deposit dose along their entire path.

Since the protons LET is very high in correspondence of the Bragg peak, it is often

avoided placing the Bragg curve at the edge of organs at risk (OARs) because of range

uncertainties often resulting in non-optimal treatment plans [1]. When treating tumours near

critical organs, another proton beam characteristics is exploited: the sharper proton beam

penumbra [9].

The first proton treatment was carried at the Lawrence Berkeley Laboratory (LBL) in

1954, and in the following 3 years, 30 patients were treated. In the 1960s, the facilities

pioneer in proton therapy were LBL, the Gustav Werner Institute, in Uppsala (Sweden),

where the first patient was treated in 1957 and the Massachusetts General Hospital (MGH).

MGH in collaboration with the Harvard University Cyclotron Laboratory (HCL) treated

9116 patients between 1961 and 2002 [1,8,11]. In the following decades, proton therapy began

at several research institutions around the world (Russia, Japan, Switzerland, France, UK,

South Africa, etc.) but only in 1990 the first hospital-based facility was opened at Loma

Linda University Medical Centre (LLUMC), in California [12]. Currently there are 58 clinical

proton center operating worldwide: 19 in North America, 21 in Europe, 1 in Africa, 17 in
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Figure 2.1: Depth vs dose curve for photons and protons. The orange parallelepiped represents the tumour
(target volume) while the area below the curves is the integral dose deposited by photons (grey) and protons
(blue). The plot is normalized to the dose desired in the target. The SOBP is produced by a modulated proton
beam. Image taken from [10]

Asia [13].

Proton therapy has been proven to be very effective for several types of cancer. Tumours

of the central nervous system, cervical carcinoma and head & neck cancers are good candi-

dates for proton treatment because of their proximity to radiosensitive organs and for their

radioresistance. In the 90’s the use of protons to treat prostate cancer started to be inves-

tigated too but it still not clear whether it is advantageous to use protons for prostate [14].

Many studies were conducted to compare conventional photon radiotherapy therapy, inten-

sity modulated radiation therapy (IMRT) and proton therapy. Fig. 2.2 shows the dosimetric

advantage of proton therapy in sparing the surrounding healthy tissues during the treatment.

This characteristic makes proton therapy particularly suitable to treat paediatric tumour

since it decreases the probability of secondary cancers compared to conventional radio-

therapy [15] [16]. An extensive review of the radiation induced cancers is presented in [17]. An

interesting work was conducted by Chung et al. [18] where 558 patients were retrospectively
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studied comparing the risk of secondary cancer after receiving proton and x-ray therapy: 29

proton patients (5.2%) vs 42 photon patients (7.5%) were effected by second malignancies.

Figure 2.2: Comparison of dose delivered with conventional radiotherapy (photons), IMRT and proton therapy
in a (1) meningioma, (2) malignant melanoma and (3) Klatskin tumour. Colour bands indicate the correspon-
dent dose delivered. Image taken from [19].

2.2 From proton therapy to proton computed tomography

Proton therapy effectiveness strongly depends on the accuracy and precision of both the

treatment planning and the proton beam delivery. Nowadays, for both photons and protons

therapy the patient treatment is based on xCT images, which consist of a map of Hounsfield

(HU) values:

HU = 1000 ·
(
µ− µwater
µwater − µair

)
(2.1)

where µ is the average linear attenuation coefficient in a voxel, µair and µwater are the
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linear attenuation coefficients of air and water, respectively

Each xCT scanner is characterised by its own calibration curve used to convert the HU

values into electron density of known materials with an acceptable accuracy. For proton

therapy purposes, a map of the proton RSP is although necessary. The RSP corresponds to

the stopping power (SP) of a specific material relative to water:

RSP = SPmaterial
SPwater

(2.2)

In order to get a RSP map from a xCT image, both theoretical and experimental ap-

proaches were investigated. The theoretical relationship between RSP (or SP) and attenua-

tion coefficient (or HU values) was studied in the past [20] but the formulation was not simple

and the accuracy of the result was not clinically acceptable (±5%). The main problem in es-

tablishing a relationship between RSP and HU is the different dependence on Z and Z/A of

protons and photons, resulting into a non-unique correspondence between RSP and HU that

causes uncertainties in the proton range estimation. Therefore, two experimental approaches

are currently used to correlate HU values and RSP, (1) the stoichiometric method [21] and (2)

the polybinary calibration [22], with proton range uncertainties around 1−3%. Yang et al. [23]

conducted a study on how the use of the stoichiometric method effected the RSP estimation

and range uncertainties in proton therapy planning. The sources of error for the RSP were

classified into five independent categories:

1. uncertainties from CT imaging;

2. uncertainties in the stoichiometric formula used to calculate theoretical CT numbers;

3. uncertainties in the human tissue composition (different from the ICRU standard tis-

sue [24]);

4. uncertainties in the mean excitation energies used in the Bethe-Bloch equation;
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5. uncertainties due to RSP proton energy dependence not taken into account by dose

algorithms.

The uncertainties calculated are obviously more critical for heterogeneous organs than

homogeneous tissues because of the increase of proton scattering. Dose perturbation and

Bragg peak degradation are typical problems encountered at the interface between two ma-

terials of different scattering powers, i.e. bone and soft tissue [1].

Different approaches are under investigation to get the patient RSP map reducing the

sources of uncertainties. In primis, dual energy CT (DECT) has shown promising results

in the reduction of the range uncertainties in heterogeneous tissues [23] as proved also in

the comparative study between single energy CT (SECT) and DECT recently conducted by

Hudobivnik et al. [25]. Unfortunately DECT still relies on patients’ CT images, therefore

uncertainties and artefacts effect the electron density and atomic number calculation [23].

It is evident that a direct determination of the RSP is the ideal way to proceed. This

is where pCT plays an important role in medical physics and imaging: it allows a direct

calculation of the RSP from proton energy loss measurements, for more accurate proton

therapy treatment planning.

2.3 Proton computed tomography: historical overview

PCT is a promising imaging technique that started to be studied in the 60’s. Allan Corkmack

in 1963 proposed to use the energy loss of charged particles in the matter to determine the

variable density of matter with constant chemical composition [26,27]. In 1968 Koehler [28]

presented the first example of use of energetic protons for radiographic purposes at Harvard

cyclotron. Five years later, he compared proton radiographs and x-radiographs of human

tissues with tumours [28,29] proving that the image contrast with protons was higher than with

photons.
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The promising results encouraged the use of protons for imaging in the following decades.

While Moffet et al. [30,31] kept investigating proton radiography, in 1972 the first heavy par-

ticle tomographical reconstruction was performed by Goiten in 1972 [32] at LBL Cyclotron.

Goiten reconstructed images of a few phantoms from alpha particles data using an iterative

reconstruction algorithm: the phantoms were scanned with 41 translations and 19 view an-

gles using a 840 MeV alpha beam at LBL (Fig. 2.3). Goitein conducted a complete study on

the quality of the image reconstruction, in particular he focused on image resolution, mea-

surement accuracy, imaging artifacts and ideal scanning angle range. His study was very

important because for the first time an iterative relaxation technique was used for tomo-

graphic imaging and the resolution achievable using heavy particles was studied in detail.

Figure 2.3: (a) Schematic representation of the phantom scanned by Lyman with 840 MeV alpha particles at
the LBL cyclotron. (b) Reconstruction of the phantom performed by Goitein. Image taken from [32].

Three years later, in 1975, Cormak and Koehler conducted the first study on the use of

protons for tomography [33].

They irradiated a circularly symmetrical phantom made of Lucite and sugar solutions

with 158 MeV protons at the Harvard cyclotron. They concluded that proton tomography

could distinguish density differences up to 0.5% and they noticed that the change in MCS

at interfaces between different materials effected the measurements. The residual energy of
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protons traversing the phantom was measured using two sodium iodide scintillation counters

with diametre 3.81 cm and thickness 2.54 cm, mounted on photomultipliers tube.

Proton tomography was extensively investigated at the Los Alamos Meson Physics Fa-

cility (LAMPF) in New Mexico by Hanson et al. in the late 1970s and early 1980s. In 1978

and 1979 a 29 cm and a 19 cm diametre phantom were scanned with 240 MeV and 192

MeV protons, respectively. The phantoms had inserts of different material and density and

were both reconstructed using a filtered backprojections (FBP) algorithm [34,35]. An hyper-

pure germanium (HPGe) detector was used to measure the proton residual energy and 360

projections were collected in the full rotation scan (1 degree step angle). The same phan-

toms were also scanned with an x-ray EMI 5005 CT scanner to compare the results. Hanson

et al. concluded that that using protons the dose delivered is lower, the beam hardening

artifacts are absent and that a pCT scan can be relatively fast. On the other hand the technol-

ogy necessary to have proton beams of sufficient energy is expensive and more complicated

than photons and the image resolution is strongly effected by MCS. In 1981 Hanson et al.

demonstrated the dosimetric advantage of pCT [36] and did the first pCT scan of humans or-

gans [37]. They scanned and reconstructed an adult hearth specimen and a normal fresh adult

brain using the same method adopted in [34,35]. In this experiment the proton energy varied

from 224 to 236 MeV and a range telescope was used to record the proton residual energy.

Figure 2.4: Comparison between pCT reconstruction (a) and xCT reconstruction (b) of a 29 cm phantom
performed by Hanson et al. Image taken from [34].



2.4. Proton computed tomography: current status 10

The contribution of the LAMPF group was determinant for spreading worldwide the

validity of pCT as an imaging technique. Unfortunately Hanson himself recognized that the

technology available in the 1980s was not sufficient to fully exploit the potential of pCT.

A decade later, in 1994, at the Paul Scherrer Institute (PSI) in Switzerland, Schneider and

Pedroni started investigating the possibility of using proton radiography as a control tool

for the HU-RSP calibration curve in proton therapy [38]. With proton radiography, the range

uncertainty was improved up to a factor of 2.5, i.e. approximately 1 mm of error range.

Ten years later, Schneider et al. performed the first proton radiography on an animal

patient (a dog) to prove the dosimetric advantages of proton radiography [39]. It was proven

that the dose delivered using protons was 50 to 100 times lower than the one necessary to

obtain a comparable image using x-rays.

At the end of the 20th century, the first cone beam pCT system was developed at the HCL

aiming at using the reconstructed images in proton therapy treatment planning. A 160 MeV

proton beam was scattered with a modifier to produce a proton cone beam that irradiated

a phantom. The residual energy of protons was measured with a gadolinium oxysulfide

scintillator screen viewed by a cooled charged-coupled device (CCD). The 3D proton RSP

map was performed using the Feldkamp-Davis-Kress (FDK) algorithm [40], the cone beam

version of the FBP. The results published by Zygmanski et al. in 1999 [41] showed that the

RSP values directly calculated with pCT were in better agreement with the real phantom

values than then one indirectly calculated converting xCT values into RSPs. On the other

hand, the spatial resolution was very poor, mostly because of the MCS.

2.4 Proton computed tomography: current status

Currently, several prototypes of proton radiography and tomography scanners are present all

over the world. Focusing on pCT, based on the published material, seven groups of research

are working on pCT scanner prototypes, 2 in America, 3 in Europe, and 1 in Asia. All the
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existing prototypes consist of two main components, (1) a proton tracking system and (2) a

residual energy detector. The scanned objects are placed at the centre (isocentre) between

front and rear tracking planes and rotates along the vertical axis.

Figure 2.5: Schematic representation of the pCT scanner prototypes components; proton tracking system (in
green), residual energy detector (in yellow) and scanned object (in blue).

In 2007, based on the original design concept presented in [42] , the first pCT scanner

prototype was built by a collaboration started in 2003 including the University of California

Santa Cruz (UCSC), the Loma Linda University (LLU) and the Northern Illinois Univer-

sity (NIU). Individual protons are tracked before entering and after exiting the phantom or

patient with 2D-sensitive silicon trackers. Each tracking module consists of two planes of

paired silicon strip detectors (SSD) with orthogonally arranged strip orientation [3,42]. The

strip pich was 194 µm and the thickness was 400 µm. The sensitive area of each SSD was

6.4×6.4 cm2. The proton residual energy was measured with a thallium doped caesium io-

dide CsI(Tl) crystal scintillator. The covered area was 6.4×6.4 cm2, thus matching the SSD

area and stopping 115 MeV protons. This scanner is known as the phase 0 pCT scanner and

was used to conduct some preliminary pCT experiments [10]. It was limited by the number

of available SSDs that did not allow to cover a big area and by the system acquisition rate

which was approximately 10 kHz.

A few years later, in 2010, a second pCT prototype was built by the same collaboration.

Each tracking module consisted of four planes of paired (coupled) SSD with orthogonal

strips [3,42]. The strip pich was 228 µm and the thickness was 400 µm. The sensitive area of
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each SSD was 9×9 cm2; they were combined two by two to cover an area of 9×18 cm2.

The proton residual energy was still measured with a segmented array of thallium doped

caesium iodide CsI(Tl) crystal calorimeter. Eighteen CsI crystals were combined to form

a 3 × 6 rectangular matrix covering a total area of approximately 10.2×20.4 cm2 [43]. This

system operated at a maximum proton rate of 20 kHz, effecting the speed of the CT scan

(∼ 20 hours for a full scan of 90 projections at 4◦ interval). This scanner is known as the

phase I pCT scanner and the schematic representation of the scanner geometry is shown in

Fig. 2.6.

Figure 2.6: Schematic representation of the phase I pCT scanner. Image taken from [10].

In 2013 a new pCT scanner (phase II pCT scanner) was built by the pCT collaboration

formed by LLU and UCSC. The tracking system consists of the same type of SSDs but the

total sensitive area is double (9×36 cm2) [44]. The residual energy is measured with a five

stage scintillating energy detector [45] and the event rate is increased to 2 MHz. The phase

II pCT scanner is described in detail in chapter 3 and its modelling, characterisation and

guidelines for its improvement is the subject of this thesis.

NIU continued the work started with LLU and UCSC estabilishing a new collaboration

with Fermilab National Accelerator Laboratory (FNAL) in 2011, when they started building

a pCT scanner prototype. Individual protons are tracked with 2D-sensitive fiber trackers:
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four planes of paired scintillating fibres (Sci-Fi) retrieve x and y coordinates of the protons

covering an area of approximately 20×24 cm2 [46,47]. A calorimeter stack made of 96 scintil-

lating polyvinyltoluene is used to measure the residual energy of protons. The area covered

by each tile is 27×36 cm2 and their thickness is 3.2 mm. This system is built to operate at

an event rate of 2 MHz or faster.

In 2007 the PRIMA (PRoton IMAging) Italian collaboration started the development of

a prototype pCT scanner [48–50] . The proton tracking system consists of four planes of sili-

con microstrip detectors with a sensitive area of approximately 5×5 cm2. Four yttrium alu-

minum garnet activated by cerium (YAG:Ce) scintillating crystals collect the proton residual

energy. The area and depth of each crystal is 3×3 cm2 and 10 cm, respectively and the sys-

tem event rate is 10 kHz. The PRIMA pCT system was characterized both with 62 MeV

protons and with 180 MeV protons [51–53] at the Laboratori Nazionali del Sud (LSN, Italy)

and at Svedberg Laboratory (Sweden). A second generation pCT scanner will be built by

the PRIMA collaboration [54] with a larger sensitive area (5×20 cm2), 14 YAG:Ce crystals

covering an area of 6×21 cm2, and 1 MHz event rate.

Another Italian group, the Instituto Nazionale di Fisica Nucleare (INFN), in 2013 started

the PREDATE experiment (Particle Residual Energy And Tracker Enhancement) aiming at

developing a real time imaging and tracking system. Four couples of 400 FT, with 500 µm

square section, orthogonally placed, covering a sensitive area of 20×20 cm2 are used for

tracking the particles with a spatial resolution of about µm [55,56]. Sixty polystyrene layers

of Sci-Fi, 500 µm thick, covering an area of 4×4 cm2 are used to measure the particle

residual energy. The system was tested and characterised at the LSN facility but no image

reconstruction has been done yet. The use of FT both for tracking and residual energy system

theoretically allows for high rates event acquisition (up to 10 MHz, currently 1 MHz) [46].

In 2013, the Proton Radiotherapy Verification and Dosimetry Application (PRaVDA)

Consortium started developing a new pCT system, fully based on solid state components [57].
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Individual protons are tracked before and after the phantom or patient with silicon micro-

strip sensors (Micron Semiconductor Ltd, 150 µm) covering an active area of 9.3×9.6

cm2 [58,59]. Differently from all the systems previously described, each tracking module con-

sists of three detectors planes. The detectors are positioned at a 60◦ angle with respect to

each other to precisely measure the proton hit coordinates as shown in Fig. 2.7. Twenty-four

CMOS Active Pixel Sensors (APS) stacked are used to measure the residual proton energy,

covering an area of 12.8×12.8 cm2 [60]. The event rate of the system is 1 MHz.

Figure 2.7: Setup of the tracking module of the PRaVDA pCT system. Image taken from [58].

One of the most active country for proton and heavy ion therapy is Japan, as proven

by the fact that currently in Asia 14 out of 17 proton therapy facilities are in Japan. The

interest in pCT in Japan started in the 1980s, when Akisada published an article describing

a conceptual prototype of a pCT system [61].

At Niigata University a complete pCT prototype was developed in 2013 [62]. Single-sided

silicon strip detector covering an area of 9×9 cm2 were used to track the protons and their

residual energy was measured with a calorimeter made of NaI(Tl) crystals. This pCT system

is based on the LLU-NIU-UCSC phase I pCT scanner previously described. the rate of this
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system is very low (30 Hz) due to DAQ limitations. In 2014, at the same university a high

rate silicon tracker for pCT was designed [63].

In 2016, a collaboration between Tokyo and Hiroshima university developed an innova-

tive pCT imaging system. The system consists of a CCD camera facing the beam acquiring

a 2D image and a 20×20×5cm3 plastic scintillator collecting the proton residual energy [64].

A summary of the features of the pCT systems mentioned in this section is listed in Table

2.1.

Table 2.1: Summary of the features of the currently existing pCT scanners.

Group Country Year Tracking Area Residual energy Acquisition
(time frame) system [cm2] detector rate

UCSC - LLU USA 2003-2007 2 planes 6.4×6.4 CsI(Tl) 10 kHzNIU x-y SSDs calorimeter

UCSC - LLU USA 2007-2010 4 planes 9×18 CsI(Tl) 20 kHzNIU x-y SSDs calorimeter

UCSC - LLU USA 2010-2013 4 planes 9×36 Plastic 2 MHz
x-y SSDs scintillator

NIU USA 2011-2014 4 planes 20×24 Plastic 2 MHzFNAL Sci-Fi scintillator

PRIMA Italy 2007-2014 4 planes 5×5 YAG:Ce 10 kHz
x-y SSDs calorimeter

PREDATE Italy 2013-2014 4 couples 20×20 Sci-Fi 1 MHzINFN Sci-Fi

PRaVDA UK 2013-2015 x-y-z 9.3×9.6 CMOS 1 MHzSSDs APS

Niigata Japan 2013-2014 4 planes 9×9 NaI(Tl) 30 HzUniversity x-y SSDs calorimeter

Tokyo-Hiroshima Japan 2014-2016 CCD 10×10 Plastic -University camera scintillator

2.5 Limitation in proton computed tomography

PCT is still not clinically available after more than 50 years of scientific investigation be-

cause of several limitations that still need to be overcome. Density and spatial resolution

present some physical limitations in pCT but also the economic aspect plays a big role in

the pCT clinical development.
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2.5.1 Physical limitation

Protons travelling in a medium lose energy through [1,65]:

1. electromagnetic interactions with electrons and nuclei, causing erratic changes in pro-

tons direction;

2. nuclear interactions with nuclei, generating secondary particles.

Nuclear interactions are not very frequent and, above all, do not give any contribution

to pCT image reconstruction while energy loss and scatter of protons traversing a phantom

or a patient (angular and lateral scatter) are the two main physical processes observed for

proton imaging.

2.5.1.1 Scattering

Protons are subjected to small multiple angular and lateral deflection when traversing a

medium because of the electromagnetic interactions with the atomic nuclei of the material

traversed [66]. The contribution of all the small angular and lateral deflections are nearly

Gaussian distributed (as expected from the Central Limit Theorem). The central part of the

distribution is Gaussian but a single scattering tail is present due to the large single scatters in

the medium that sometime can cause differences of few mm between entry and exit position.

MCS is one of the main limiting factor for pCT spatial resolution [67,68]. It was proven

that a good estimation of the proton path is fundamental to increase the spatial resolution.

In this PhD thesis, a specific algorithm was used to calculate the MLP [6] for protons in pCT.

The effect of heterogeneities in the proton path estimation was investigated in chapter 7.

2.5.1.2 Stopping

The relevant energy range for pCT is between 100-250 MeV [69]. In this range of energies,

protons mainly lose their energy by ionizations and atomic excitation, while density effect



2.5. Limitation in proton computed tomography 17

and shell correction are negligible [70–72]. This behaviour is well described by the Bethe-

Bloch stopping power formula for protons:

−dE
dx

(E, r) = 4π
mec2

η(r)
β2(E)

(
e2

4πε0

)2 [
ln

(
2mec

2
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1− β2(E)

)
− β2(E)

]
(2.3)

E and r are the proton energy and location, respectively. β is the proton velocity relative

to the speed of light c, me is the electron mass, e is the electron charge, ε0 is the electric

constant, and I is the mean excitation potential of the medium. η, the electron density, can

be calculated as follow:

ηe = ρNA

(
Ze
Ae

)
(2.4)

where NA is Avogadro’s number, Ze and Ae are the effective atomic number and weight of

the medium, respectively.

For protons with the same initial energy, the stopping location will not be the same be-

cause protons are effected by fluctuations in their energy loss and consequently, in their

range. This phenomenon is known as energy straggling or range straggling and it is a limit-

ing factor in pCT because it effects pCT density resolution [73].

2.5.1.3 Nuclear Interactions

Protons can interact inelastically with the atomic nuclei of a target when they have energies

that can overcome the Coulomb barriers of the nuclei. The nuclei are transformed irre-

versibility and secondary particles such as neutrons, protons or heavier ions may be emitted.

Secondary particles are very important when using high energy protons for cancer treat-

ments because they affect spatial and absorbed dose distribution in patients [74,75]. It has

been calculated, for example, that for 200 MeV protons the secondary particle contribution



2.5. Limitation in proton computed tomography 18

to dose is about 10% at 20 cm of water depth [69].

The inelastic cross section of biologic materials for proton nuclear interaction is charac-

terised by a threshold of about 10 MeV, a peak at about 20 MeV, and a drop to approximately

half of the maximum value at about 100 MeV [65,76]. Given that the proton energy range for

pCT is between 100-250 MeV [69], the nuclear interaction contribution to pCT is negligible.

2.5.2 Economical limitation

The clinical use of pCT is strongly affected by the costs of medical facilities using pro-

tons for treatment purposes. The easiest solution would be to use proton accelerators and

beam transport systems already used for proton therapy treatments. Unfortunately, even

though many proton-based facilities have been opened in the last 20 years, proton therapy

widespread adoption is not as fast as for photon therapy. This is mainly due to construc-

tion problems (size of accelerators and beam delivery system required), running costs and

lack of evidence of cost-competitiveness and cost-effectiveness [10,65]. The cost of a proton

treatment was estimated to be approximately double the cost of a photon treatment [77].

Some of the advantages of proton therapy were discussed in section 2.1. However, from

an economical point of view, more proofs of the effectiveness of proton therapy over IMRT

are required. Several studies have been published on this topic [78–80]. It was concluded that

the number of randomized control trials (RTCs) on proton therapy is currently not enough,

even if the ones conducted are very promising.

It is expected that the research conducted in all the new proton facilities worldwide will

bring new solutions to reduce the proton therapy and facilities costs, therefore making a step

forward for the pCT clinical implementation.
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2.6 Conclusions

Proton therapy is a radiation modality alternative to conventional photon or electron ther-

apy used primarily because proton beams allow delivering high doses to tumours (localised

targets) while sparing the surrounding healthy tissues. For this particular reason, proton

therapy is particularly indicated for head & neck cancer, brain and paediatric tumours. To

fully exploit the advantages of proton therapy, an accurate prediction of the proton range

is crucial. Currently, xCT images are used for proton treatment planning: CT numbers are

converted into RSP values leading up to 3% uncertainty in the proton range estimation [81].

PCT is an imaging technique that allows the direct calculation of the RSP. Knowing the

energy lost by protons traversing the patient, pCT provides a 3D RSP map that can be used

for treatment planning, reducing the proton range uncertainty to 1% or less. Moreover, the

dose delivered to a patient during a complete pCT scan is about 50 times less than with x-ray

CT.

PCT is still not ready to be clinically implemented but a few pCT scanner prototypes

are currently used by several research groups all over the world to investigate and improve

different aspects of pCT.

This PhD thesis aims at studying a second generation pCT scanner system build in 2013

by a collaboration between LLU and UCSC. Specifically:

• Monte Carlo methods are used to model the LLU/UCSC pCT scanner prototype;

• the effects of heterogeneities in the image reconstruction are studied using a pixelated

dector (Medipix);

• the dosimetric advantages of using pCT over cone beam CT are investigated both

using simulated and experimental data.

The final goal is to model and investigate as many aspects of pCT as possible in order to

make a step forward towards the clinical implementation of this imaging technique. Proton
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imaging has a great potential; its success is strongly linked to proton therapy treatments and

depends on the current progress of the ongoing research.



Chapter 3

The Phase II pCT Scanner Prototype

3.1 Introduction

A brief summary of the pCT prototypes scanners available all over the world was presented

in section 2.4. In particular, the phase 0 and phase I pCT scanner built by the pCT collabo-

ration in 2007 and 2010, respectively, were described. The pCT collaboration between LLU

and UCSC started in 2003 and the latest pCT scanner prototype build in 2013 (phase II pCT

scanner) is the main subject of this PhD thesis.

3.2 Phase II pCT scanner

Fig. 3.1 shows the phase II pCT scanner prototype, in all its components. The development

of this scanner has been described previously [42] [3]. Individual protons with energy of 170-

250 MeV are tracked with 2D-sensitive silicon trackers before entering and after exiting

the phantom. In addition, the residual energy of protons is measured with a multi-stage

scintillator detector, currently comprised of 5 individual scintillators with photomultiplier

readout. In chapter 5, a more detailed description of the individual components of the pCT

scanner will be given.

21
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The scanner has been tested both at the synchrotron at LLUMC and at the cyclotron at

the Northwestern Medicine Chicago Proton Center (NMCPC - Warrenville, IL).

The Loma Linda beam line is described in [12]. The proton beam exits after passing

through five 12.7 mm thick aluminum foils, representing the secondary-electron emission

monitor (SEM) detectors integrated in the distal end of the vacuum pipe. A lead foil of 1.9

mm thickness was placed immediately after the SEM exit window to scatter the beam at the

entrance of the front tracker. The beam energy is 200 MeV.

The NMCPC beamline consists of a 230 MeV scanning beam degraded in order to reach

an energy of 200 MeV. The proton beam covers an area of approximately 4×4 cm2 and

Wobbler magnets are used to select the adequate scanning field of interest.

Figure 3.1: The prototype pCT scanner mounted on a beam line of the Northwester Medicine Chicago Proton
Centre.

3.3 Tracking Detector

The front and rear trackers consist of two paired silicon strip detector planes with vertical

and horizontal strip orientation, respectively [4]. The silicon strip sensors were originally
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custom-designed for the NASA Fermi large-area gamma ray telescope (Fermi-LAT, now

in orbit) and manufactured by Hamamatsu Photonics (Japan). The trackers and associated

electronics are housed in an aluminium cassette. The front and rear trackers are positioned

symmetrically with respect to the scanner isocenter, which is defined as the intersection

of the phantom rotation platform and the central axis of the detector system on which the

proton beam is centred, as shown in Fig. 3.1.

Silicon strip detectors were selected for tracking protons because of several advantages:

• high performance - SSDs efficiency is nearly 100% for charged particles detection

and the noise occupancy is almost zero;

• high reliability and stability - the SSDs calibration is simple and stable for many years;

• easy to assemble - SSDs are compact and can be assembled using conventional indus-

trial processes, guaranteeing an excellent mechanical stability;

• high spatial resolution.

Each tracker plane consists of four square SSDs with individual sensitive areas of 8.6

× 8.6 cm2, which form a total sensitive area of 34.9 × 8.6 cm2 per plane, including the

submillimetre gaps between SSDs. The thickness of each SSD is 0.4 mm, and the strip pitch

is 0.228 mm. The tracker plane with vertical strips (t-plane) is formed by 1536 strips and the

plane with horizontal strips (v-plane) by 384 strips. The gaps between the adjacent SSDs

were minimized, sawing the edges next to the guard ring. The final gaps were approximately

0.6 mm wide. The gaps are not superposed (small offset) in different tracking planes in order

to minimize the probability for protons to go through more than one gap. Protons tracks can

be reconstructed both using 8 hits (complete track reconstruction) or using 7 hits recovering

the missing hit as described in section [82].

When a proton intersects the paired detector planes, the t-plane electronics retrieve the

horizontal hit coordinate while the v-plane retrieves the vertical hit coordinate. The applica-
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tion specific integrated circuit (ASIC) chips of the tracker plane readout electronics handle

64 consecutive strips per chip, and the data are processed by 12 FPGAs (1 per v-plane and

2 per t-plane) mounted on the same circuit boards that carry the SSDs [44]. This will be

described more accurately in section 3.5.

Figure 3.2: Tracking module with two V layers and two T layers. The strips on pairs of SSDs are wire bonded
together and read out by six ASICs on either end of the board. Each V board has 12 ASICS and each T board
has 24 ASICS. The loose cables visible are for programming the six Xilinx Spartan-6 FPGAs, one per V board
and two per T board [83].

3.4 Residual Energy Detector

The decision of replacing the CsI(Tl) crystal array calorimeter used in the phase I pCT scan-

ner was mainly given by the necessity of a faster system for data acquisition (high data-rate

requirement). In [45] the advantages of using a multistage detector are presented. In partic-

ular, the calorimeter was found to add uncertainty to the WEPL measurement depending

on the thickness of the object scanned and the calorimeter response was found to be non

uniform over its sensitive area. Fig. 3.3 shows a comparison between the responses of a

calorimeter and a multistage energy detector.
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Figure 3.3: Comparison between the responses of a calorimeter (in green) and a multistage detector with n
stages. Image taken from [45].

The multi-stage detector used in the phase II pCT scanner is composed of five UPS-923A

polystyrene scintillators with a sensitive area of 36× 10 cm2 and a thickness of 5.1 cm (Fig.

1b). The total water equivalent thickness of the detector is 26.4 cm, which is sufficient to

stop 200 MeV protons. The scintillating light of protons stopping or traversing a stage is

registered by an R3318 Hamamatsu photomultiplier (PMT) attached to the top of the stage

and converted to a digital value by custom readout electronics [83]. The scintillators were

optically polished and optical epoxy was used to glue the PMT to the scintillators. A layer

of VikuitiTM ESR film, 65 µm thick, was used to wrap the each scintillator-PMT. VikuitiTM

ESR is a reflective material with greater than 98% reflectance. The five stages were finally

enclosed in a steen housing as shown in Fig. 3.4. A detailed description of this novel type

of detector and first performance results have been presented elsewhere [45].

Fig. 3.5 shows an example of the response of the multi-stage detector during five differ-

ent experimental empty runs (no phantom between the tracking planes).
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Figure 3.4: Assembly of the multi-stage detector. Image taken from [45].

Figure 3.5: Examples of energy deposited in the five stages of the multi-stage detector during five different
experimental runs. There was no phantom between the tracking planes (empty run). The distributions are not
perfectly aligned due to fluctuations in the initial beam energy.
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3.5 Data Read Out

The trigger of the pCT data acquisition system (DAQ) is formed by the readout-electronics

of the multi-stage detector. For every proton detected by the multi-stage detector, strip

number, chip number, SSD number, and FPGA number are registered. The read out of front

and rear tracking detectors is performed by a unique CMOS chip, specifically designed for

this purpose. The scanner can measure up to two million proton tracks per second, so it is

crucial that the chip can digitize the data and send them out rapidly. Meanwhile the front-end

amplifiers must be active at all times. 144 custom ASICS were used to fulfil this task, each

of them handling 64 channels (one channel per strip) with a 100 Mbit/s link to an FPGA on

the same board.

Twelve Spartan-6 FPGAs handle the data flow for the tracking planes, two the data flow

for the energy detectors.

The PMT signals are digitised by an ADC that operates at 65 MHz and then processed

and transmitted to the event builder with a custom printed board (PCB).

The complete event is built by a Xilinx Virtex-6 FPGA event builder [83] and then sent to

the DAQ computer that writes all raw data to disk using custom-designed Python software.

A detailed description of the read out system can be found in [44].

3.6 Preprocessing

In order to use the information collected for imaging reconstruction purposes, the raw data

must be preprocessed. Specifically, the strip number needs to be converted in coordinates t

and v (in mm) with respect to the isocenter and the energy needs to be converted into WEPL.

These two steps will be described in sections 3.6.1 and 3.6.3, respectively. Finally, the

converted data must be written in the binary format required as input for the reconstruction

algorithm.
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Figure 3.6: Schematic representation of the pCT data acquisition system. Image taken from [44].

3.6.1 Proton track reconstruction

A fundamental step in the preprocessing phase is the reconstruction of the proton tracks.

Upstream and downstream aluminium cassettes containing the tracking planes are approx-

imately 30 cm a part (see Fig 3.1): the protons track must be accurately reconstructed in

order to associate correctly the hit in the front and rear tracking planes. Using four hits

both in front and rear planes (one hit per plane) it is possible to reconstruct two dimensional

tracks for all the combination of hits. A two dimensional “supertrack” is defined merg-

ing correspondent front and rear two dimensional tracks. The criteria chosen to recognise

matching tracks is the displacement between them: if the displacement is less than 10 mm

at the isocenter (plane u = 0), then the two tracks form a “supertrack”. 10 mm corresponds

to 12.5 standard deviations of the displacement distribution when no degrader is present. A

detailed explanation of the “supertrack” recovery can be found in [82].
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3.6.2 Missing Hits Recovery

It is possible that one of the four hits necessary to reconstruct the front or rear 2D track is

missing. This could happen when a proton goes through the gap between the SSDs (2%)

or through a dead or noisy strip (0.2%). The missing hit can be geometrically recovered

knowing the position of the beam spot at the flange of the accelerator beam pipe. Using this

information as the forth point, it is possible to verify if the missing hit corresponds to a gap.

In this case, the coordinate of the center of the gap is manually attributed to the proton hit.

This procedure is used both for front and rear trackers and the calculated spatial accuracy in

recovering the missing hits are 168 µm and 290 µm, respectively.

3.6.3 Calibration

In order to convert the ADC response into WEPL, an ad-hoc calibration procedure is adopted.

The calibration of the pCT scanner must be done before performing any pCT experimental

measurement because it depends on beam conditions and geometrical set up.

The response of the scintillator depends on the proton path inside of the scintillator there-

fore it is necessary to implement a correction that takes into account the spatial dependency.

The track of the protons exiting the rear trackers are extrapolated, accumulated in 0.5×0.5

cm2 bins and averaged. A quadratic function was used to fit the 3D distribution for each

stage in horizontal (T ) and vertical (V ) direction. From this, the name “T-V correction” was

attributed to this procedure. Note that T and V are used for horizontal and vertical response

as the t-planes and v-planes measure the horizontal and vertical position of the proton hit.

The ADC response is then converted into MeV using a Geant4 [5] model for normalising the

fitting function. It was proven that this correction reduces the spatial variation to 0.4% rms

deviation over almost the entire sensitive area of the detector [45].

Once the T-V correction is applied to the scintillator response, the WEPL conversion can

be performed using an adequate calibration. A custom calibration phantom was built for the
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pCT scanner prototype. It consists of three stepped pyramids of polystyrene (Fig. 3.7) and

a variable number of polystyrene degraders with a RSP of 1.038. Each pyramid contained 8

steps of 6.35 mm physical thickness adding up to a maximum thickness of 5.08 cm. In order

to cover the total range of 200 MeV protons in polystyrene (25.4 cm), the stepped pyramids

are combined with a choice of 0, 1, 2, 3, or 4 polystyrene degraders placed downstream

of the calibration phantom. Every degrader has a physical thickness of 5.08 cm, which is

identical to the maximum thickness of the steps.

Figure 3.7: Step calibration phantom with the addition of four polystyrene degraders. Image taken from [45].

The tracking information and the knowledge of the phantom geometry allow the calcu-

lation of the protons path lengths in the object. The path length is converted into WEPL

multiplying air and polystyrene path length by their corresponding RSP. For that particular

WEPL, the corresponding energy detector response in each stage is recorded and the TV

correction is applied.

The mean value and standard deviation of the detector response for protons stopping in

each stage are calculated fitting the stage responses with Gaussian curves. The mean stop-

ping responses in each plane are fitted with a second order polynomial function WEPL =

p0 + p1E + p2E
2 that represents the calibration curve for each plane.
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Bashkirov et al. [45] showed that the WEPL resolution achievable with this calibration is

about 3 mm, regardless the traversed thickness. Range straggling and leakage of energy due

to nuclear interaction in phantom and detector are the two main causes of uncertainty.

The calibration procedure will be explained in detail in chapter 5.

3.6.4 Conclusions

A prototype pCT scanner has been built and successfully tested in two beam lines. Hardware

and data acquisition have been operated reliably at the design data rate in both synchrotron

and isochronous-cyclotron facilities. The novel multi-stage scintillator combines elements

of calorimetric measurement with proton range measurements, and we have shown that the

range resolution achieved in both simulation and experiment is close to the theoretical limit.

The system supports testing of reconstruction algorithms as well as a thorough evaluation of

pCT in terms of image resolution, RSP measurement, spatial resolution, and dose deposition

in a variety of phantoms.



Chapter 4

Development of a High-Resolution

Digital Head Phantom for Simulation of

New Imaging and Radiation Therapy

Modalities

Development of a High Resolution Voxelised Head Phantom for Medical Physics Applica-

tions by Giacometti V. et al. The work presented in this chapter and partially in chapter 6

(specifically in section 6.4) was published in the Focus Issue “3rd Geant4 School and Monte

Carlo Workshop for Medical Physics” in Physica Medica, 2017.

4.1 Introduction

The development of anthropomorphic phantoms, both physical and computational, is an

active field of investigation in medical physics [84]. Anthropomorphic computational phan-

toms have undergone an evolution from simple stylized phantoms to voxelised phantoms

and, more recently, to hybrid phantoms offering a mixture of surface-based and voxelised

32
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representations [85–87]. Stylized mathematical phantoms [85], which are based on 3D surface

equations for internal organs definition, provide only a rough approximation of the true

anatomy of individual patients. Voxelised [86] and hybrid phantoms [87] are usually generated

from CT and/or MRI data of patients or volunteers. They provide a better anatomical detail,

but are frequently compromised by image noise, partial-volume averaging and imaging arte-

facts. Despite these drawbacks, it has been well established that voxelised phantoms can be

successfully used in a wide range of medical physics applications [88–91]. In this chapter we

describe the development and use of a novel high resolution voxelised head phantom, called

here HighResHead, based on a high resolution CT acquisition of a physical paediatric

head phantom (HN715, CIRS).

The HighResHead was initially created for pCT studies when it became clear that

simple geometrical phantoms such as, for example, the Catphan r 600 series (The Phantom

Laboratory, Salem, New York, USA) were not sufficient to fully characterize pCT, but that

an accurate representation of the human anatomy was necessary.

4.2 Physical Head Phantom

The HighResHead was created from the CT scan of a commercially available tissue-

equivalent dosimetry phantom (ATOMr, Model HN715, CIRS Inc., Norfolk, VA) (Fig.

4.1a). The physical phantom provides very realistic anatomical details of the head and spine

of a 5-year-old child including skeletal and soft tissue features, intra-cranial and paranasal si-

nuses, ear canals, and outer head contours (Fig. 4.1b). The physical phantom is composed of

the following seven tissue-equivalent materials (density in g/cm3): soft tissue (1.055), brain

(1.07), paediatric spinal disc (1.10), paediatric trabecular bone (1.13), 5-year-old compact

bone (1.75), tooth dentine (1.66), and tooth enamel (2.04). All materials of the real phan-

tom are homogeneous in their density and composition; a few minor defects such as small

cavities can be present, which were not included in the HighResHead. The proprietary
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atomic composition of each material is available from CIRS upon request.

4.3 High Resolution CT scans

Eight separate helical CT scans of the entire physical head phantom were acquired with a

64-detector-row CT scanner (Lightspeed, GE Healthcare, Waukesha, WI) at LLUMC using

an image matrix size of 512×512 pixels and a display FOV of 9.6 cm, corresponding to a

pixel size of 0.1875 mm × 0.1875 mm. The slice thickness was 1.25 mm. The display field

of views (FOVs) were partially overlapped so that each part of the phantom was covered by

at least one display FOV (Fig. 4.1c). A single DICOM study with 128 slices and matrix size

of 1024× 1024 pixels was generated from the CT scan with a segmentation study performed

with Matlab (The MathWorks Inc., Natick, MA, USA).

Figure 4.1: (a) Head phantom (HN715, CIRS); (b) lateral x-ray radiograph of the head phantom demonstrating
its anatomical detail; (c) arrangement of eight partially overlapping FOVs represented by the red circles of
9.6cm diameter.

4.4 Segmentation of the anatomy

The different tissue regions of the phantom were segmented in each CT slice using ImageJ

version 1.46r (http://imagej.nih.gov/ij). The HU values of the outer air and most of the tissue
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regions were found to be well described by well-separated Gaussian distributions with mean

and standard deviations listed in Table 4.1.

Step 1 The first step of the segmentation process consisted in identifying continuous

boundaries between the voxelised phantom and the surrounding air, and between the dif-

ferent tissues of the head itself by means of a thresholding process. To detect entire tissue

regions and their boundaries, different windows of HU were selected using a custom thresh-

olding macro in ImageJ. Imperfections in the boundaries were manually edited as guided by

anatomical knowledge or by the fact that they were obvious artefacts.

Step 2 The second step consisted in importing the thresholded ImageJ images in black and

white in Microsoft Paint, where the different tissue regions were assigned to specific colours.

Voxels which were found to deviate from their immediate neighbours in the interior of each

tissue region were assigned to the tissue of the surrounding medium, thus eliminating single-

voxel errors.

Step 3 The third step consisted in assigning the corresponding mean HU value, listed in

Table 4.1, to the voxels of each identified tissue region, to eliminate the noise affecting the

phantom. The regions with sinus, consisting of lung inhale tissue equivalent material in the

physical head phantom, were assigned to the HU value of air in the HighResHead.

Fig. 4.2 illustrates, for a given slice, the steps from the thresholded image to the final

phantom bitmap image.

4.5 HighResHead

After all slices were segmented as described above, the digital head phantom images were

combined into a single DICOM study. A second version of the HighResHead (Fig. 4.3c)

was created by implementing a base of skull tumour and surrounding organs at risk (OAR).
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Table 4.1: Mean and standard deviation (SD) of the HU values 7 tissue-equivalent phantom materials in the
HN715 phantom, ordered from lowest to highest mean value.

Material Mean (HU) SD (HU)

Soft tissue 24 9
Brain 52 8
Spinal disc 92 2
Trabecular bone 197 7
Cortical bone 923 107
Tooth dentin 1280 27
Tooth enamel 2310 80

Figure 4.2: (a) Thresholded ImageJ image; (b) close-up view of the inner table with the DicomWorks viewer
showing a real gap and pseudo gap; (c) final bitmap image after the segmentation process; the pseudo gap has
been eliminated while the real gap has been kept. The image is noiseless. Each tissue is identified with the
corresponding mean HU, as listed in Table 4.1.

In order to visualize these regions, HU values of brain +100 were assigned to tumour and

brain -100 to OARs, respectively. Position, shape, size and HU value of the tumour were

decided under the supervision of Dr. R. W. Schulte, who is a board-certified radiation on-

cologist.

Fig. 4.3 shows a slice of the x-ray CT scan of the physical head phantom, the corre-

sponding image of the HighResHead and the same image with tumour and surrounding

organs.
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Figure 4.3: (a) xRay CT scan of the physical head phantom; (b) corresponding image of the HighResHead;
(c) same image of the modified version of HighResHead with tumour and surrounding OAR.

4.6 ConvHead

Another voxelised virtual phantom, called here ConvHead, was created scanning the same

physical head phantom with the same x-ray CT scanner at LLUMC using an image matrix

size of 512×512 pixels and a display FOV of 37 cm, in order to cover the entire phantom

with one scan. Its spatial resolution is lower than the case of the HighResHead. The pixel

size and slice thickness are 0.72 mm× 0.72 mm and 1.25 mm, respectfully. 171 slices were

collected in a single DICOM study.

The ConvHead was not subjected to any image segmentation process but was devel-

oped to be used as a term of comparison to quantify the effect of adopting a high spatial

resolution and a noiseless virtual phantom, such as the HighResHead, when characteris-

ing a pCT system (chapter 6).

4.7 Discussion and conclusions

A high-resolution digital head phantom was created by converting a 0.18 mm pixel-size

CT study of a detailed anthropomorphic phantom into a noiseless DICOM image set with

8 tissue equivalent materials and air. Eight high resolution CT scans were combined and

treated with a segmentation process creating a noise-free digital phantom.
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A second version of the HighResHead phantom that was created with a prototypic

base of skull tumour and surrounding OAR (Fig. 4.3c) has applications in treatment plan-

ning studies. As a recent application example (unpublished), this digital phantom version

was imported into the research version of RayStation (RaySearch Laboratories, Stockholm,

Sweden) and used for treatment planning studies. The dose delivered to the tumour and

surrounding OAR by a very high energy electron scanning pencil beam (VHEE) plan was

calculated with a Monte Carlo simulation assuming treatment delivery with a scanning elec-

tron pencil beam (Fig. 4.4).

Figure 4.4: Digital head phantom implemented in RayStation for dosimetric evaluation of a VHEE plan.

This example proves the versatility and usefulness of the HighResHead. Other ma-

terial assignments, such human standard tissues or additional tumour studies can be eas-

ily created. Since the HighResHead provides the ground truth of a real-world physical

phantom, it can be used to verify the results of Monte Carlo simulations with experimental

measurements. In chapter 5, the implementation of the HighResHead in a Geant4 sim-

ulation modelling the pCT system (described in chapter 3) is accurately presented and the

ConvHead was used as the term of comparison in the analysis.
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The HighResHead has also applications in planning range verification and experi-

ments with proton CT or other CT modalities. It can be used to simulate new treatment

modalities in treatment planning studies as demonstrated in this work.



Chapter 5

Development of a Software Platform for

the Phase II pCT Scanner Prototype

Software Platform for Simulation of a Prototype Proton CT Scanner by Giacometti V. et

al. The work presented in this chapter and in chapter 6 was submitted for publication and

accepted as an original paper in 2016 in Medical Physics.

5.1 Introduction

Monte Carlo (MC) simulations are a useful tool to study the performance of detectors in

many applications including in medical physics [92]. In proton imaging, this tool not only

allows to understand and optimize the performance of individual detectors in a pCT imaging

system, but it also gives the opportunity for studying the capabilities of pCT and developing

and testing new reconstruction algorithms with realistic pCT data for investigators that do

not have this technology.

A software platform of the pCT system described in chapter 3 consisting of modules

for (1) Geant4 simulation, (2) WEPL calibration, (3) WEPL conversion, and (4) image re-

construction was developed, as schematically shown in Fig. 5.1. The Geant4 simulation

40
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module produces realistic pCT output data using the prototype pCT scanner under study

and the clinical or experimental proton beam line where the pCT scanner is installed. The

WEPL calibration module simulates data with a calibration phantom and establishes a one-

to-one relationship between the response of the multistage scintillator detector and the tra-

versed thickness of the calibration phantom material of accurately known RSP. The output

of the calibration module is used by the WEPL conversion module to process the residual

proton energy from the multistage scintillator when scanning an object in the simulation.

The tracked coordinates and WEPL values of protons are then processed by the image re-

construction module that implements the reconstruction software developed by the pCT

collaboration [93] and produces reconstructed RSP images of the object.

This chapter provides a detailed description of the pCT software platform and its vali-

dation with respect to experimental results obtained on the experimental beam line of the

LLUMC proton synchrotron. Its performance was also benchmarked against theoretical

predictions. Specifically, the modules for (1) Geant4 simulation, (2) WEPL calibration, (3)

WEPL conversion are described in this chapter while the image reconstruction module (4)

will be discussed separately in chapter 6

The pCT software platform will provide a useful scientific and practical tool for fur-

ther development of pCT technology and image reconstruction algorithms to the medical

physics and applied mathematics community, and will allow testing of its characteristics

and usefulness in proton treatment planning and image guidance.

5.2 The Geant4 pCT simulation

The pCT software platform, simulating the prototype CT scanner described above, was im-

plemented in Geant4 version 10.1. Fig. 5.2 shows the schematic geometry of the prototype

pCT scanner as simulated in Geant4 [5,92,94]. The research proton beam line of the medical

proton synchrotron at LLUMC [12] was modelled in the simulation.
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Figure 5.1: Schematic representation of the modular pCT software platform (for details see the introduction
section 5.1).

Figure 5.2: Schematic representation of the Geant4 model of the prototype pCT scanner.
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The initial 200 MeV proton pencil beam was modelled assuming a Gaussian energy

spread with a sigma of 5 keV [95]. The pencil beam was modelled with 0.2 cm diameter and

without angular divergence inside a vacuum enclosed in a stainless steel pipe of 5 cm length,

inner diameter of 3.52 cm, and wall thickness of 2.9 mm. After passing through five 12.7

µm thick aluminium foils, representing the secondary-electron emission monitor (SEM)

integrated detectors in the distal end of the vacuum pipe, the proton beam exits through a

25 µm thick titanium foil. As in the real setup, a lead foil of 1.9 mm thickness was placed

immediately after the SEM exit window to create a proton cone beam of approximately

16 cm full width at half maximum (FWHM) at the entrance of the front tracker. All these

specifics represent exactly the experimental beam line of the LLUMC proton synchrotron

a part from the length of the pipe that is shortened in the simulation. The length of the

simulated pipe was chosen according to the position of the SEM in the real setup.

The SSD strips were modeled as sensitive silicon volumes of identical size and spacing,

as in the real detector. Simulated strips were grouped according to chip, SSD, and FPGA

number used by the DAQ system.

The beam profile at the entrance of the front tracking plane is shown in Fig. 5.3.a.

The lead foil scattered the beam thus creating a cone of approximately 16 cm of FWHM.

Fig. 5.3.b and fig. 5.3.c show the beam profile projected along the horizontal direction and

vertical direction, respectively, fitted with a Gaussian curve.

Figure 5.3: Proton beam profile of the simulated beam line at the upstream tracking plane (a), projected along
the vertical plane (b) and horizontal plane (c), superposed with a Gaussian fit.
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The scanned objects are placed at the scanner isocenter between the trackers. In the

simulations presented in this work, the objects were rotated around a vertical rotation axis

passing through isocenter in discrete steps of 4 degrees. However, a continuous rotation can

be simulated as well. Protons traversing the scanned object typically stop in the multi-stage

detector located 27 cm downstream from isocenter and behind the rear tracker (Fig. 5.2).

The multi-stage detector has been implemented in detail in terms of geometry and materials,

but the light collection process is not simulated and the energy deposited by the protons is

directly retrieved in MeV.

Fig. 5.4 shows the position of the Brag peak in the multi-stage detector when no phantom

is scanned. Most of the protons stop in the last stage of the multi-stage detector since they

did not lose energy traversing any object.

Figure 5.4: Energy deposited in the multi-stage energy detector in function of the position. The Bragg peak
is located in stage 4 of the energy detector when no phantom is scanned.

When running a simulation in Geant4, it is necessary to specify a Physics List class

which defines particles, physics processes and secondary particles production thresholds.

Depending on particles, energies and targets simulated, different physics models can be

included in the simulation. Geant4 provides some pre-packaged Physics Lists that can be

used by users (e.g. hadronic Physics List, electromagnetic Physics List, etc.).

The Livermore EM Physics List [96] was selected to model electromagnetic interactions.
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The threshold of production of secondary particles (cuts) was optimized to speed up the

simulation without compromising the accuracy of its results. The secondary particles unable

to travel at least the range cut distance chosen, were not produced. The Geant4 region class

described in [97] was used with the following cuts in different geometrical components: 10

µm in the SEM, 5 µm in the energy detector, and 1 cm everywhere else. Low and high

energy cut thresholds were 250 eV and 100 GeV, respectively. The range cut distances were

chosen to optimise the speed of the simulation without losing important information about

the proton energy deposition.

The G4HadronPhysicsQGSPBICHP and the G4HadronElasticPhysicsHP Physics Lists

were chosen to describe inelastic and elastic scattering of hadrons, respectively. The neutron

High Precision (HP) Model was selected to describe neutron interactions up to 20 MeV. Ion

hadronic interactions were described by means of the G4IonBinaryCascadePhysics Physics

List.

The output of the simulation consists of (1) the position of the proton intersection with

the tracking planes and (2) the energy deposited by each proton in every stage of the multi-

stage detector. The user can select from two output formats of the hit positions:

• hit coordinates (in mm) with respect to the origin of the isocenter of the pCT scanner

coordinate system;

• strip, chip, SSD, and FPGA numbers of the strips hit by the protons in each tracking

plane; this option serves to simulate the prototype pCT data bit stream for testing

purposes.

The user can choose the number of projections or simulate a continuous scan. In the

work presented here, all simulated pCT scans were obtained with 90 projections (4-degree

intervals). The total number of proton histories generated for each projection was 6×106,

which corresponds to a central proton fluence of approximately 100 protons/mm2and is
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approximately the same as the fluence used in the real pCT scan with the current prototype

scanner.

5.3 Scanner calibration

A detailed description of the calibration procedure of the multistage scintillator detector can

be found in [45]. This procedure was also simulated in the pCT software platform in order to

realistically reproduce the performance of the pCT prototype system.

For a single proton, its WEPL is defined as the integral of the object RSP along the total

path length l of the proton through the object, where the RSP is defined as the ratio of the

stopping power (SP) of a material and the SP of water.

WEPL =
∫
l

RPS(E)dl =
∫
l

SP (E)material

SP (E)water
dl (5.1)

In principle, knowing the residual energy of protons, the WEPL can be calculated by

numerically solving the integral on the right side of equation 5.1 using Bethe-Bloch theory,

which is accurate above 10 MeV [98]. Rather than Bethe Bloch theory, which requires an as-

sumption about the mean excitation potential I , a practical approach consists of calibrating

the energy detector response against known water-equivalent thickness using a calibration

phantom with accurately known RSP [45,99]. Here, the calibration was determined by cor-

relating the signal generated by protons stopping in the multi-stage detector to the known

thickness traversed in the simulated calibration phantom, accurately described in section

3.6.3 (Fig. 3.7).

Specifically, equation 5.1 then becomes:

WEPL = RSPpolystirene · x (5.2)

where x is the physical thickness traversed in the calibration phantom and RSPpolystirene
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is known to be 1.038 for the calibration phantom used in this work. This calibration proce-

dure establishes a one-to-one relationship between energy detector response and WEPL that

allows measuring the WEPL of protons traversing any object, knowing the energy response

in the scintillator stage where they stopped.

The calibration procedure was simulated with Geant4; to reproduce the experimental

scanning procedure, five calibration simulations with 106 histories each were executed, one

with the stairs alone, and four with the 1, 2, 3, or 4 degraders placed after the stairs, respec-

tively. The polystyrene thickness traversed by the protons and the energy deposited in each

stage of the multi-stage detector were recorded for each incident proton. To avoid ambi-

guities, protons entering a step of the stairs within 0.35 mm from its edge were excluded.

Also, protons that were recorded to have entered more than one step were excluded. Fig. 5.5

shows the simulated geometrical set up for the calibration with the stairs and 4 polystyrene

degraders.

Figure 5.5: The Geant4 simulated calibration setup. The green panels represent the silicon detectors; the
yellow parallelepipeds with truncated corners at PMT ends represent the 5 stages of the multistage scintillator.
The calibration phantom comprised of the stepped pyramids in orange and up to 4 polystyrene degraders
(parallelepiped in red) are located between the two front and rear tracker. Protons enter the scanner from the
right.

For each polystyrene step thickness, the mean energy deposited in every stage was eval-
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uated with a Gaussian fit centred approximately in correspondence of the peak of the his-

tograms of the scintillator responses. Polynomial curves of energy vs polystyrene step thick-

ness were fit to those mean energy values. One should note that with the exception of the

most distal stage, every stage had two types of response: a response from protons traversing

the stage and a response from protons stopping in the stage. Fig. 5.6 shows simulated scat-

ter plots superimposed with polynomial fitsv, in every stage. The plots show polystyrene

step thickness vs. energy deposited. The distinction between stopping (upper segments)

and traversing (lower segments) responses are clearly seen. From the calibration curves of

stopping protons, the proton WEPL corresponding to the response recorded by the stage

where the proton stopped was derived using equation 5.2. Only for protons that apparently

stopped within 2 mm from an interface between two stages, ambiguities were resolved by

taking into account the response of the upstream stages for traversing protons, statistically

weighting the stopping and traversing contributions.

Figure 5.6: Scatter plots and calibration curves (red lines) of polystyrene step thickness vs. detector response
derived from fitting energy response distributions to the simulated calibration data. The plots show the polyno-
mial calibration curve segments corresponding to stopping protons (upper segment) and to traversing protons
(lower segment) in each stage, except for stage 4, which only recorded stopping protons.

A standard error propagation procedure was used to calculate the WEPL uncertainty
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∆(WEPL) associated to the calibration curve chosen [100]:

∆WEPL = σE(x)df(x)
dx

(5.3)

where x is the thickness traversed by the protons, and f(x) is the generic polynomial

fitting the collected data; σE(x) is the standard deviation of the Gaussian curve fitting the

energy response E(x) of each energy detector stage at x. Several polynomial fitting curves

fS(x) and fT (x) were tested and ∆(WEPL) were compared.

5.4 pCT software platform validation

The single modules forming the pCT software platform were validated separately.

The Geant4 simulation module was validated by comparing the tracker detector re-

sponses with experimental measurements. In particular, the horizontal and vertical pro-

ton beam profiles reconstructed from the proton hit frequencies in all tracking planes were

compared. To validate WEPL calibration and conversion modules, the simulated WEPL

distributions of protons passing through polystyrene degraders of three different thicknesses

of 50.8 mm, 101.6 mm, and 203.2 mm, respectively, were compared with the experimental

WEPL distributions. In addition, both experimental and simulated mean WEPL values, ob-

tained from a Gaussian fit to the central part of the distributions, were compared with the

expected value of RSP = 1.038 times the physical thickness of the degraders.

The image reconstruction module of the pCT platform was validated by comparing re-

constructed RSP values with experimental results for a variety of phantoms as described in

chapter 6.
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5.5 Results

5.5.1 Tracker response

For validating the simulated tracker responses, simulated and experimental horizontal and

vertical beam profiles in the front and rear tracking planes were compared for a run without

any phantoms in the beam path. Fig. 5.7 shows a comparison between the simulated and

experimental tracker responses to a broad Gaussian-shaped proton beam generated by the

1.9 mm lead foil, normalized with respect to the total number of histories traversing each

tracking plane. Since the t-planes are four time longer than the v-planes, their responses

show a typical Gaussian shape, whereas the responses of the v-planes only show the central

part of the Gaussian profile.

The shapes of the profiles in the respective planes with horizontal strips (v-planes) and

vertical strips (t-planes) was generally very similar, validating the correctness of the beam

line simulation. During the experiment, the system was carefully aligned to the room beam

line laser, avoiding shift and tilt errors relative to the vertical axis. However, the cone beam

axis was slightly tilted relative to the vertical scanner axis in the experiment causing asym-

metry of the beam profile in the v-planes. The peak of counts at +40 mm in the first rear

v-planes is caused by noisy strips. The Geant4 simulation correctly reproduced the drop in

tracking efficiencies due to the vertical gaps in sensitivity between individual SSDs also seen

in the experimental profiles. One should note that the missing coordinates due to the gaps

were reconstructed based on the information from the other tracking planes and knowledge

of the gap coordinates [82].

5.5.2 Multi-stage scintillator response and scanner calibration

Table 5.1 shows the WEPL uncertainty ∆(WEPL), calculated using eq. 5.3, and associ-

ated to the polynomial fit fS(x) and fT (x) chosen for responses to stopping and traversing



5.5. Results 51

Figure 5.7: Simulated (red) vs experimental (blue) responses of each tracker plane to a broad Gaussian-shaped
proton beam. The two left panels show the t-plane responses with drops in counts in the graph corresponding
to the gaps between SSDs. The right two panels show the v-plane responses, in this cases the protons are
registered without any dead zones. Note that the horizontal scales in the graphs on the left and on the right are
different.
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protons, respectively.

The smallest ∆(WEPL) was achieved using a 4th grade polynomial curve for fT (x) and

a 2nd grade polynomial curve for fS(x).

Table 5.1: WEPL uncertainty associated to different polynomial fitting curves.

∆(WEPL) for fT (x) ∆(WEPL) for fS(x)

Stage 0 Stage 1 Stage 2 Stage 3 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

2nd grade polynomial 9.391 6.177 5.317 3.482 3.516 3.477 3.496 3.499 4.156

3rd grade polynomial 9.135 6.775 5.321 3.300 4.199 3.954 3.960 3.948 4.463

4th grade polynomial 9.129 6.492 5.036 3.463 4.135 3.835 3.860 3.864 4.642

5th grade polynomial 9.430 6.924 4.779 9.639 4.687 4.317 4.298 4.259 4.638

For validating the simulated multi-stage scintillator detector, the simulated WEPL distri-

bution of protons passing through polystyrene degraders of 50.8 mm, 101.6 mm, and 203.2

mm thickness, respectively, were compared with the experimental WEPL distributions (Fig.

5.8). In Table 5.2, the mean WEPL values calculated for experimental and simulated data

are compared with the theoretical values calculated using equation 5.2, where x is the physi-

cal thickness of the degraders. The agreement between measured and theoretical WEPL was

within 0.7% both for experimental and simulated data. The difference between experimental

and simulated WEPL was below 1%.

Figure 5.8: WEPL distribution of 1 slab (a), 2 slabs (b) and 4 slabs (c) of polystyrene using experimental data
(in blue) and simulated data (in red).
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Table 5.2: Comparison of experimental, simulated and theoretical WEPL (eq. 5.2) from the scan of 1, 2 and
4 polystyrene bricks.

Experimental WEPL Simulated WEPL

Number of Thickness Theoretical Mean ± SD Difference1 Mean ± SD Difference2 WEPL
polystyrene [mm] WEPL [mm] [%] [mm] [%] Difference3

degraders [mm] [%]

1 50.8 52.73 52.36 ± 3.38 -0.70 52.80 ± 3.48 0.13 0.84

2 101.6 105.46 104.80 ± 3.31 -0.62 105.50 ± 3.42 0.03 0.66

3 203.2 210.92 211.17 ± 3.17 0.08 211.10 ± 3.39 0.08 -0.009
1 (experimental - theoretical)/theoretical
2 (simulated - theoretical)/theoretical
3 (simulated - experimental)/experimental

5.6 Discussion and Conclusions

In this chapter, the validation of the modules for (1) Geant4 simulation, (2) WEPL calibra-

tion, (3) WEPL conversion of a pCT software platform modelling a prototype pCT scanner

was performed. The comparison of the responses of the tracking detectors to the scattered

proton cone beam and the response of the 5-stage scintillator detectors used to calculate the

WEPL of individual protons were performed. The validation of the image reconstruction

module (4) will be discussed separately in chapter 6.

The simulation software has built-in flexibility in terms of geometry of the scanner and

scanned objects, including the calibration object, allowing different calibration procedures

to be tested and compared. The reconstruction procedure is straightforward once the output

files are produced using Geant4 but the reconstruction module can also be changed by the

user allowing different reconstruction algorithms to be used and added. The work conducted

by Dr. Tai Dou at UCLA shown in in Fig. 5.9 proved the versatility and flexibility of the

simulation software.

The pCT software platform can be used as a versatile tool for studying and improving

the performance of clinical pCT without having access to an experimental pCT scanner.

In the present work we implemented the experimental proton beam line at LLUMC. Other

beam line models can be implemented as well, e.g. the NMCPC beam line. Note that

the possibility of implementing patient anatomy in the form of DICOM studies within the
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Geant4 simulation makes it possible to study the feasibility of pCT in treatment planning

and pretreatment plan verification based on real patients in a virtual fashion. For example,

the developed pCT software platform was recently used to simulate and reconstruct a pCT

scan using an imported CT DICOM image of a lung cancer patient [101]. Since the existing

scanner is only suitable for head scans, the geometry of the simulation and the proton energy

were changed to accommodate the chest scan. The space between the two tracking modules

was enlarged, and the active area of the SSDs was increased. In order to provide sufficient

residual energy for all the projection angles, the proton energy was also increased to 230

MeV. An additional scintillating stage was added to the multi-stage detector to cover the total

proton range, and new calibration curves were defined to convert the energy response into

WEPL. The reconstructed chest image is shown in Fig. 5.9 and demonstrates the usefulness

of the pCT software platform to study pCT in new applications and different anatomical

regions.

Figure 5.9: proton CT reconstruction of a realistic human chest performed using simulated data. The sticks
artefacts can be eliminated increasing the statistics of the simulation.

In addition, the pCT software platform will allow the development and test of new re-

construction algorithms, for example, for reconstructing 4D pCT image sets from breathing



5.6. Discussion and Conclusions 55

patients. Target motion can cause severe geometrical distortion during a scan such as the

displacement of the centre of the image or the lengthening/shortening of the target in the

final image [69,102]. Therefore, using the pCT software platform it would be possible to sim-

ulate both the scan and the image reconstruction of a moving object in order to investigate

and finally reduce (and possibly eliminate) the image artifacts caused by the motion.



Chapter 6

Evaluation of the Image Quality

Achieved with the Phase II pCT Scanner

Prototype

6.1 Introduction

The image reconstruction of pCT aims at calculating a 3D RSP map of the scanned object

from the tracking and WEPL data for each single proton recorded. The reconstructed 3D

RSP map consists of a sequence of images (pCT slices) in which each pixel corresponds to

one RSP value.

Several reconstruction algorithms, specifically designed for pCT reconstruction, have

been developed and published in recent years [103,104] . These algorithms use individual

proton histories and calculate their estimated path through the object either based on the

MLP [6] or cubic spline [105,106] formalisms. A review of iterative pCT image reconstruction

techniques based on projections onto convex sets and MLP formalism is presented in [107].

FBP was one of the first image reconstruction techniques used in pCT [37] because of its

common use in xCT. It consists of integrating all possible rays that pass through the same

56
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point, i.e. “backprojecting” them and then filtering the image produced. In xCT individual

projections are rendered in terms of x-ray attenuation coefficient while in pCT in terms

of WEPL [10]. Iterative reconstruction techniques are a valid alternative to FBP, nowadays

the preferred reconstruction methods used in pCT. They lead to a better image resolution

and curved proton path can be incorporated in the reconstruction algorithm but they are

computationally more intensive.

In this chapter, the image reconstruction module of the pCT platform was validated by

comparing reconstructed RSP values with experimental results for a variety of phantoms.

Specifically, the sensitometry module of the Catphanr 600 series was used to compare both

reconstructed experimental and simulated RSP with the RSP values measured with the Peak-

Finder (PTW, Freiburg, Germany) at the Heidelberg Ion-Beam Therapy (HIT) Centre. The

comparison of simulated and reconstructed modulation transfer function (MTF) was real-

ized using the pCT reconstructed images of the linepair module of the Catphanr 600 series.

The HN715 pediatric head phantom was used to compare both reconstructed experimental

and simulated RSP. Operationally it was not possible to use the PeakFinder to measure the

RSP of the different tissues in the phantom because the phantom cannot be opened in order

to extract different materials. Therefore, it was calculated analytically, and a specific Geant4

simulation was built to collect the data required in the analytical formula.

Images reconstructed performing stardard pCT and cone beam CT (CBCT) scans of the

sensitometry module were also compared. In addition, the dose delivered during a pCT and

a CBCT scan were compared using the CTP554 dose phantom of the Catphanr 600 series.

This preliminary dosimetric evaluation of the phase II pCT scanner prototype was entirely

performed using the pCT software platform described in chapter 5.
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6.2 Image reconstruction

In the current version of the pCT software platform, the block-iterative diagonally relaxed

orthogonal projections (DROP) algorithm has been implemented for image reconstruction

of experimental and simulated phantom pCT data. This image reconstruction algorithm

performs feasibility seeking steps integrated with a total variation superiorization (TVS)

scheme [103] and only considers protons entering into and exiting from the cylindrical re-

construction volume that enclosed the phantom object. Three-sigma cuts on WEPL, angle

and vertical and horizontal deviation were implemented to remove protons that underwent

large-angle scattering and/or large energy losses due to inelastic nuclear interactions. The

accepted proton histories were binned into equal intervals of beam projection angles, lateral

coordinates and vertical coordinates. The binned data were used as input to the Feldkamp-

Davis-Kress (FDK) algorithm, the cone beam version of the FBP algorithm. The resulting

FBP image was used to define the object boundary and as the starting point of the iterative

reconstruction algorithm.

In brief, WEPL and position and direction of individual protons traversing the silicon

detectors generate a linear system of equations of the form Ax = b which is then solved

iteratively with the DROP-TVS algorithm. The elements aij of the matrix A correspond to

the intersection length of the ith proton with the jth voxel, x is the unknown RSP vector, and

b is the vector of WEPL measurements. The algorithm partitioned the proton histories into

40 blocks and, and 8 cycles of iterating through all histories are completed. The relaxation

parameter of the DROP algorithm was set to 0.1 [10].

The DROP-TVS algorithm was executed on a single graphical processing unit (GPU)

workstation, which is part of a computer cluster at the California State University San

Bernardino. The cluster is composed of 8 nodes connected with 20 GB Infiniband and 1

GB Ethernet. Each node consists of a dual 6-core Xeon (48GB of RAM, 1 TB of Raid, 1.5

TB of data added storage). A GPU NVIDIA GTX-780 was used for the image reconstruc-
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tion.

In this work, all simulated and experimental pCT scans were obtained with 90 pro-

jections (4-degree intervals) and the total number of proton histories per projection was

∼ 8 × 106. For comparative analysis, the RSPs of the different materials were determined

using ImageJ.

6.3 Catphan Modules

6.3.1 Catphan Modules - Image Reconstruction

The validation of the performance of the simulated pCT scanner was performed with the

sensitometry and line pair modules of the Catphan r 600 series (The Phantom Laboratory,

Salem, New York, USA) and a pediatric anthropomorphic head phantom (model HN715,

CIRS, Norfolk, Virginia, USA), as described below.

The CTP 404 sensitometry module (diameter 15 cm) contains eight cylindrical cavities

of 1.22 cm diameter, six of which are filled with different materials, and two that are filled

with air (Fig. 6.1a). The RSP evaluation of the reconstructed images was conducted with

ImageJ version 1.46r, a Java-based open source image-analysis software package that was

downloaded from the US National Institute of Health website (http://imagej.nih.gov/ij). A

circular area of approximately 1 cm diameter was selected within the boundaries of each

insert and the mean RSP and standard deviation were calculated using standard ImageJ

functions.

In addition, direct RSP measurements of the six CTP404 inserts were performed at

the Heidelberg Ion-Beam Therapy Center (HIT) with the PeakFinder (PTW, Freiburg, Ger-

many), a variable water column equipped with two plane-parallel ionization chambers, each

of 4.08 cm radius [108]. The water equivalent thickness (WET) of each phantom insert and

the phantom body were measured with a carbon beam of 310.82MeV/u (range 18.02 cm
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in water) with 4.4 mm FWHM spot size at the isocenter. The measured RSP values were

compared with the RSPs reconstructed from simulated and experimental pCT data using the

iterative image reconstruction algorithm described in section 6.2. The use of carbon ions

for measuring the RSP of materials for protons was validated with a separate measurement

comparing data obtained with protons and carbon ions for different tissue equivalent ma-

terials using the same experimental setup. The RSP values obtained for carbon ions and

protons were the same within the accuracy of the measurements, confirming that carbon

ions can be used to measure the RSP of tissue-equivalent materials for protons. The advan-

tage of utilizing carbon beams for the RSP measurements was the smaller spot size and the

reduced multiple Coulomb scattering of the heavier ions compared to protons, making the

measurement more suitable for the small inserts (12 mm diameter) of the CTP404 module.

The sharper Bragg peak also allows easier WET interpretation from the measured Bragg

curves.

The CTP528 line pair module (diameter 15 cm) provides 21 groups of high-contrast

aluminum bars ranging from 1 to 21 line pairs per cm arranged such that all patterns share

the same distance from the center of the phantom (Fig. 6.1b). This was used to compare

the spatial resolution measured in images of the phantom reconstructed from simulated data

to those measured in images reconstructed from experimental pCT data. For quantitative

comparison of the spatial resolution, the MTF was calculated for both cases using a custom-

script written in the Python programming language [109]. For each of line-pair patterns with

lp = 1-5 line pairs, the average reconstructed RSP of the aluminum peaks and the average

RSP of the base material troughs were calculated. The MTF for each analyzed line pair

group was then calculated as:

MTF (lp) = < RSPpeak(lp) > − < RSPtrough(lp) >
< RSPAl > − < RSPbase >

(6.1)

where < RSPpeak(lp) > and < RSPtrough(lp) > are the average reconstructed RSP values
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for the aluminum peaks and base material troughs for a given line-pair number, respectively,

and < RSPAl > and < RSPbase > are the energy-averaged RSP values for aluminum (2.11)

and the base material (1.14), respectively, which were calculated as described for the head

phantom materials in section 6.4.2.

Figure 6.1: (a) Geant4 model of the CTP404 sensitometry module with color-coded materials as indicated.
The density of each material, in parenthesis, is expressed in g/cm3. (b) Geant4 model CTP528 line pair
phantom with aluminium bars embedded in a polymer. Note that the base material of both phantoms is the
same (epoxy).

6.3.2 Catphan Modules - Image Reconstruction Analysis

Fig. 6.2 shows the reconstructed images of the CTP404 sensitometry module using simu-

lated and experimental data (slices thickness 2.5 mm, reconstructed field of view 18 cm,

pixel size 0.7 mm). Table 2 shows the comparison between PeakFinder-measured and re-

constructed RSP values (experimental and simulated) for the insertions in the sensitometry

module. The difference between simulated and experimental RSP is below 1% for all the

materials except PMP. The difference between simulated and experimental RSP for PMP is

1.6%: the simulated RSP is in full agreement with the expected value, but slightly lower than

the experimental one. Fig. 6.3 shows the agreement between experimental/simulated RSP

and PeakFinder-measured RSP. The coefficients of determination of 0.9999 for experimental

data and 0.9998 for simulated data reflect the excellent predictability of directly measured
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Figure 6.2: Catphan r 600 sensitometry module pCT reconstruction using experimental (a) and simulated (b)
data. The insertions are: PMP (1), LDPE (2), Polystyrene (3), Epoxy (4), PMMA (5), Delrin (6), Teflon (7),
Air (8, 9).

RSP values with the reconstructed RSP values for both simulated and experimental pCT

reconstructions. Finally, even if the difference between simulated and experimental RSP is

below 1%, the protons stopping in the interfaces between the scintillators cause different

outcomes in the final WEPL evaluation, as proven by the ring artefacts in the simulated

reconstructed image.

Fig. 6.3 shows the reconstructed images of the line pair module using simulated and

experimental data (slices thickness 2.5 mm, reconstructed field of view 18 cm, pixel size

0.7 mm). Fig. 6.5 shows simulated and experimental MTF calculated for the first five

groups of line pairs, where the gaps between the beads are still slightly visible. Simulated

results are slightly higher than experimental MTFs but the difference never exceeds 0.026

and is always within one standard deviation.
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Figure 6.3: Catphan r 600 sensitometry module reconstructed RSP from simulated data (in red) and ex-
perimental data (in blue). The dashed trend lines show the agreement between PeakFinder-measured and
reconstructed RSPs. The number in brackets corresponds to the material labels listed in Tab. 6.1 and shown in
Fig. 6.2. The coefficient of determination is 0.99 for both simulated and experimental data.

Table 6.1: Comparison between PeakFinder-measured and experimental and simulated recon-
structed RSP values for the materials of the sensitometry module.

Reconstructed RSP (experimental) Reconstructed RSP (simulated)

(Insert #) PF-measured Mean ± SD Difference Mean ± SD Difference Difference
Material RSP [%]1 [%]2 [%]3

(1) PMP 0.883±0.002 0.895±0.008 1.39 0.880±0.003 -0.30 -1.68

(2) LDPE 0.979±0.002 0.988±0.008 0.91 0.989±0.010 1.02 0.10

(3) Polystyrene 1.204±0.001 1.033±0.005 0.91 1.029±0.008 0.52 -0.39

(4) Epoxy 1.144±0.001 1.145±0.002 0.11 1.154±0.009 0.90 0.79

(5) PMMA 1.160±0.001 1.162±0.003 0.14 1.161±0.004 0.06 -0.09

(6) Delrin 1.359±0.003 1.360±0.002 0.04 1.362±0.024 0.19 0.15

(7) Teflon 1.790±0.002 1.782±0.008 -0.46 1.792±0.074 0.10 0.56
1 (experimental - PFmeasured)/PFmeasured
2 (simulated - PFmeasured)/PFmeasured
3 (simulated - experimental)/experimental
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Figure 6.4: Catphan r 600 Line pair module pCT reconstruction using experimental (a) and simulated (b)
data.

Figure 6.5: Catphan r 600 Line pair MTF calculated for experimental data (in red) and simulated data (in
blue).
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6.4 Head Phantom

6.4.1 HighResHead vs ConvHead

The HighResHead was included in the pCT software platform (Fig. 6.6) described in

chapter 5. In particular, it was implemented in the Geant4 DICOM extended example [110],

which was then integrated in the Geant4 simulation module of the pCT software platform.

The Geant4 DICOM extended example creates a Geant4 voxelised geometry based on the

information of input DICOM files, using the Geant4 Parameterised Volumes geometry func-

tionality (G4VPVParameterisation). By default, in the Geant4 example, the HU value of

each voxel, information contained in the input DICOM study, is converted into the corre-

sponding density based on the stoichiometric calibration method, described by Schneider

et al. [21]. In addition, in the DICOM example, lower and upper bounds of density intervals

must be defined by the user in order to assign corresponding tissue materials.

The uncertainties introduced by converting HU numbers into tissue materials using a

calibration curve were investigated by Paganetti et al. for proton dose calculations and range

verification studies [111–113]. It was shown that when the conversion is based on a proper

stoichiometric calibration, the proton beam range uncertainty is about 0.2%. Therefore, the

calibration curve based on the characteristic of the LLUMC CT scanner was used to model

the ConvHead in the Geant4 DICOM application. Since the HighResHead contains only

8 HU values, resulting from the segmentation work described in Chapter 4, it was decided

to assign each HU value directly to the corresponding material of the physical phantom,

bypassing the stoichiometric calibration curve.

RSP values reconstructed from simulated pCT data obtained with the HighResHead

and the ConvHead were compared with those derived from experimental pCT data of the

underlying physical head phantom. For a better statistics, the total number of proton histo-

ries generated for each projection was 12× 106.
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Figure 6.6: Visualisation of the Geant4 application set-up modelling the phase II pCT scanner prototype
including the HighResHead.

6.4.1.1 HighResHead vs ConvHead - Image Reconstruction Analysis

Fig. 6.7 shows the visualisation of the ConvHead and HighResHead in Geant4. Fig.

6.8 shows the pCT images reconstructed from (a) simulated ConvHead data, (b) simulated

HighResHead data, and (c) experimental data with the physical phantom. Approximately

the same number of protons per projection were used for each image reconstruction. The

mean and standard deviation (SD) of tissue RSP values in the three different images were

calculated and are compared in Table 6.2.

It is obvious that the different tissues in the ConvHead (Fig. 6.7(a)) were not as well

defined as in the HighResHead (Fig. 6.7(b)). For example, in ConvHead, many soft

tissue voxels were incorrectly modelled as brain voxels. Also, in ConvHead, the extent

of the cortical bone region was overestimated, and spinal disc voxels were found in regions

close to cortical bone where they are not present anatomically. The noiseless digital phan-

tom HighResHead, on the other hand, not only has a higher spatial resolution but also

provides a more accurate representation of the physical head phantom. This lead to a more
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Figure 6.7: (a) ConvHead and (b) HighResHead, visualized in Geant4.

accurate reconstruction of RSP values when simulating the pCT scanner as shown in Table

6.2. On average, the RSP improved by 1.4% when using the HighResHead. The recon-

structed RSP of different tissue-equivalent materials when compared to RSP reconstructed

from experimental pCT data was within 1.5% for the HighResHead and 4.9% for the

ConvHead.

6.4.1.2 HighResHead vs ConvHead - Discussion

The use of the HighResHead in the application of simulating the performance of a pre-

clinical proton CT scanner led to an improvement of the resolution of the reconstructed RSP

compared to experimental data by a factor 2 when compared to the version of the phantom

created with standard voxel size. Thus, the phantom is more suitable representing the real-

world phantom in that simulation application.

Having a counterpart in the real world has the advantage that performance of an ex-

perimental CT system can be predicted and optimized in the virtual world before the actual

scanner is being built or as part of an iterative process of simulations and obtaining real-time

data with stepwise improvement of the scanner hardware. The simulated data are also help-
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Figure 6.8: pCT image reconstruction of (a) simulated ConvHead (b) simulated HighResHead and (c)
experimental real phantom. The visible radial strikes are reconstruction imaging artefacts.

Table 6.2: Comparison between mean ± standard deviation (SD) of RSP values derived from ex-
perimental data and simulated data of the anthropomorphic pediatric head phantom.

Experimental Simulated Simulated
RSP ConvHead HighResHead

Material Mean ± SD Mean ± SD Difference Mean ± SD Difference RSP
[%]1 [%]2 Difference [%]3

Soft Tissue 1.032 ± 0.025 1.025 ± 0.018 -0.7 1.026 ± 0.014 -0.6 -0.1

Brain Tissue 1.044 ± 0.008 1.038 ± 0.012 -0.6 1.043 ± 0.012 -0.1 -0.5

Spinal Disc 1.069 ± 0.017 1.089 ± 0.025 1.9 1.053 ± 0.039 -1.5 3.4

Trabecular bone 1.111 ± 0.008 1.122 ± 0.028 1.0 1.110 ± 0.020 -0.1 1.1

Cortical bone 1.331 ± 0.032 1.288 ± 0.046 -3.2 1.312 ± 0.082 -1.4 -1.8

Tooth Dentin 1.524 ± 0.122 1.551 ± 0.089 1.8 1.521 ± 0.080 -0.2 2.0

Tooth Enamel 1.651 ± 0.050 1.732 ± 0.078 4.9 1.640 ± 0.064 -0.7 5.6
1 (simulatedConvHead - experimental) / experimental
2 (simulatedHighResHead - experimental) / experimental
3 (simulatedConvHead - simulatedHighResHead) / experimental
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ful in analysing and understanding the origin of real-world reconstruction artefacts. Having

an accurate representation of the real-world phantom in the Geant4 simulation turned out to

be very helpful in this respect. For example, the precision of the MLP algorithm could be

tested knowing the exact position of the protons inside of the simulated phantom, the image

artefacts could be analysed comparing experimental, simulated and ideal (simulated) energy

detector, the dose deposited inside the phantom could be calculated, etc.

A modified version of the commercial phantom 715-HN (CIRS) with a film stack insert

in the posterior fossa also exists for range error measurements in proton therapy. Range

error experiments can be simulated ahead of time in the corresponding modified version of

the HighResHead.

6.4.2 Head Phantom - Image Reconstruction

The HN715 pediatric head phantom was used to compare the reconstructed simulated and

experimental RSP values of a realistic anatomical object with each other and with theoretical

values based on Bethe Bloch theory.

Theoretical absolute stopping power values of each head phantom material and water

were determined using a separate Geant4 simulation. Note that Geant4 uses Bethe Bloch

theory to calculate the energy loss of protons when their kinetic energy is higher than 2

MeV [5]. Monoenergetic protons were tracked inside of a cubic volume. The threshold

of production of secondary particles was high enough not to generate delta electrons, and

energy loss fluctuation was not included in the simulation. This procedure to calculate the

stopping power is described in [114]. The stopping power was calculated as the ratio between

energy deposited and the step length in the first step of protons for initial kinetic energy

between E0 = 100 MeV and E1= 210 MeV using equally spaced intervals of 0.5 MeV. The

stopping power calculated for each energy was then fitted with a fourth-degree polynomial,
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which was integrated to obtain the energy-averaged stopping power < SPtheo >:

< SPtheo >=
∫ E1
E0
SP (E)dE∫ E1
E0
dE

(6.2)

This simulation was performed for each phantom material and water. The energy-averaged

theoretical RSP for each material (< RSPtheo material >) was then calculated as:

< RSPtheo material >= < SPtheo material >

< SPtheo water >
(6.3)

As before, the RSP calculated from reconstructed simulated and experimental data was

determined using ImageJ with the same procedure used for the CTP404 sensitometry mod-

ule. Since some material regions in the head phantom, e.g. enamel and cortical bone, had

very limited spatial extension, RSP was calculated by combining the results from several re-

constructed CT slices (typically from 5 - 10 slices). For each selected tissue material region,

mean RSP and standard deviation were calculated.

6.4.3 Head Phantom - Image Reconstruction Analysis

Fig. 6.9 shows representative reconstructed images of the pediatric head phantom using

simulated and experimental data, respectively (slices thickness 1.25 mm, reconstructed field

of view 24 cm, pixel size 0.9 mm). Table 6.3 shows the comparison between experimen-

tal and simulated reconstructed RSP values of the solid tissue equivalent materials of the

pediatric head phantom. The agreement between simulated and experimental reconstructed

RSP was found to be within 1.5%. Cortical bone and spinal disc simulated and experimental

RSPs present a 1.4% of discrepancy. The cortical bone and enamel are very thin (1-2 mm),

thus making it very difficult to select homogeneous regions to measure its RSP. Moreover,

due to limited spatial resolution, such small regions are not resolved, so the reconstructed

RSP values are much lower than the theoretical values due to partial volume averaging with
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surrounding soft or brain tissue. The spinal disc was difficult to distinguish from brain in

the reconstructed images causing more uncertainty in its RSP values.

Figure 6.9: Representative head phantom pCT images reconstructed using experimental (a) and simulated (b)
data.

6.5 Simulated dosimetric study

Dose, image quality, and range prediction accuracy are closely related; therefore the calcu-

lation of the dose delivered during a pCT scan is crucial for characterizing a pCT scanner.

Given that the relevant energy range for pCT is 100-250 MeV [69], the Bragg peak does not

occur in the scanned phantom, therefore the deposited dose is minimal in the patient. In

2013 Testa et al. [115] conducted a study in which the dose rate produced in a medium was

used to identify a unique pattern in time at each point along the beam path thus finding the

WEPL and reconstructing the image. They calculated that the dose required to produce a

proton radiographic image with their setup was approximately 0.7 cGy.

The Geant4 simulation developed for the pCT software simulation platform described in
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Table 6.3: Comparison between RSPs reconstructed from experimental and simulated reconstructed
data for the anthropomorphic pediatric head phantom. The theoretical RSP was calculated using
equation 6.3.

Reconstructed RSP (experimental) Reconstructed RSP (simulated)

Theoretical Mean ± SD Difference Mean ± SD Difference Difference
Material RSP [%]1 [%]2 [%]3

Soft Tissue 1.037 1.032±0.025 -0.52 1.026±0.014 -1.10 -0.58

Brain Tissue 1.047 1.044±0.080 -0.25 1.043±0.012 -0.35 -0.10

Spinal Disc 1.060 1.069±0.017 0.81 1.053±0.039 0.70 -1.50

Trabecular Bone 1.108 1.111±0.008 0.26 1.110±0.020 0.17 -0.09

Cortical Bone 1.585 1.331±0.032 -16.03 1.312±0.082 -17.23 -1.43

Tooth Dentin 1.513 1.524±0.122 0.72 1.521±0.080 0.52 -0.20

Tooth Enamel 1.788 1.651±0.050 -7.68 1.640±0.064 -8.29 -0.67
1 (experimental - theoretical)/theoretical
2 (simulated - theoretical)/theoretical
3 (simulated - experimental)/experimental

chapter 5, was here used to study the dosimetric performance of the prototype pCT scanner

described in chapter 3.

106 protons per projection incident on the Catphan CTP554 16 cm acrylic dose phantom

(The Phantom Laboratory, Greenwich, NY) representing a human head, were simulated,

and the dose to water deposited in the centre and 4 peripheral locations was calculated (Fig.

6.10). This phantom is a standard phantom used for calculating the computed tomography

dose index (CTDI) for quality assurance of CT scanners [116]. The phantom was placed at

the centre between the tracking planes (isocentre) and rotated on a vertical axis in discrete

steps of 4 degrees, using the same set-up adopted for reconstructing sensitometry CTP404

module, linepair CTP528 module and head phantom.

As term of comparison, the effective source spectrum and full bow-tie filter attenuation

of a Varian OBI CBCT scanner [117] were used as input for a second Geant4 simulation.

Since the energy spectra was provided by the authors, it was not necessary to model any

beam line. The Geant4 version (10.1) and Geant4 physics list were the same as in the pCT

software platform Geant4 simulation (chapter 5). Photons were incident on the phantom

and, again, the dose to water deposited in the centre and 4 peripheral locations of the dose
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Figure 6.10: Schematic representation of the Catphan CTP554 16 cm acrylic dose phantom (The Phantom
Laboratory, Greenwich, NY) representing a human head, used to measure the dose to water in the simulated
pCT scans. The blue circles indicate the centre and the 4 peripheral locations where the dose to water was
calculated.

phantom was calculated.

In the simulated CBCT scan, the low-dose head protocol (100 kVp, 360mAs, 36 sec

scan, 20ms pulse width) was adopted according to [117].

Preliminary experimental measurements started recently to be conducted at the North-

western Medicine Chicago Proton Center (NMCPC) in Warrenville (Illinois) to determine

the dose delivered during a pCT examination.

6.6 Simulated dose results

Fig. 6.11 shows the reconstructed images of the Catphan sensitometry module. In the simu-

lated pCT scan, 90 projections with 200 MeV protons were acquired with a central fluence

of ∼100 protons/mm2, typical a high-quality (low noise) pCT scan. The representative OBI

CBCT image of the same phantom and similar image quality (noise) was taken from [118].
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The absorbed dose to water at the central location and the average dose at the 4 peripheral

locations of the dose phantom is shown in Table 6.4. For CBCT, a standard head protocol

with an angular coverage of 204◦ and a full bow-tie filter was assumed [117].

Figure 6.11: Catphanr 600 sensitometry module reconstructions: (a) OBI CBCT scan (taken from [118]); (b)
pCT scan (simulation). The high-density lines in the CBCT scan correspond to metal wires not included in the
pCT simulation.

Table 6.4: Comparison of the absorbed dose at central and peripheral dose phantom locations in pCT and
CBCT head phantom scans. Thedose is calculated by means of Geant4 simulations.

pCT dose [mGy] CBCT dose [mGy]

Centre 0.37 4.6
Periphery (average) 0.30 4.4

6.7 Discussion

The RSP values of materials inside the different scanned objects reconstructed from exper-

imental and simulated data agreed to better than 1.5%. The reconstructed RSP values from

data created by the Geant4 simulation with the pCT software platform were found in good

agreement with theoretical RSP values, except for those materials that suffered from partial

volume effects due to small geometric dimensions (dentine and cortical bone in the head
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phantom). The spatial resolution limit was of the order of 5 lp/cm for both experimental

and simulated reconstructions with good agreement between the MTF of both modalities,

demonstrating that the simulation correctly reproduces the factors limiting the spatial reso-

lution of pCT reconstruction, in particular multiple Coulomb scattering in the object and the

silicon planes.

The validation results presented here show a good agreement between experimental and

simulated data, demonstrating that the simulation can accurately reproduce the performance

of the actual pCT scanner.

The simulated dose deposited during a full pCT at LLUMC was also calculated and

compared with the dose deposited during a CBCT, adopting the standard low-dose head

protocol [117]. The simulated results show that the dose deposited in a pCT scan is approxi-

mately 10 times lower than with CBCT.

Preliminary experimental dose measurements recently started to be performed at NM-

CPC. The Catphan CTP554 16 cm acrylic dose phantom was used to measure the dose to

water during a typical pCT scan, as done in the simulated dosimetric study. The preliminary

experimental dose to water, after the background correction, was 1.46 mGy in the periph-

eral location and 1.48 mGy in the central location (practically uniform across the phantom).

The simulated dose calculated in this work is lower than the preliminary experimental one.

This can be attributed to different exposure times and incident proton beam characteristics.

Future work, which will not be part of the PhD project presented, includes modelling and

implementation of the NMCPC beam line in the pCT software platform.

6.8 Conclusion

In this work, validation of the image reconstruction module of the pCT software platform

described in chapter 5 was performed.

The validated pCT software platform described in chapter 5 is a versatile tool for pCT
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performance and application studies. The platform is flexible and can be modified to sim-

ulate not just existing versions of pCT scanners but also higher proton energies than those

currently clinically available. In particular, in this chapter, the pCT software platform was

used to conduct a dosimetric study on the pCT scanner prototype.



Chapter 7

A Medipix Study of Proton Paths

Through Heterogeneous Materials

During pCT Data Acquisition

7.1 Introduction

In the previous chapters pCT was presented as an imaging technique that provides RSP of

protons for better proton range accuracy in treatment planning than currently possible with

xCT based planning [2].

For image reconstruction purposes, the path of a proton through the scanned object has

to be estimated knowing entrance and exit position of that proton. The MLP of each proton

history is in fact used by iterative reconstruction techniques such as algebraic reconstruction

techniques (ART) [119] or parallelizable algorithms [107] to reconstruct the traversed object. As

mentioned in chapter 2, the main limiting factor for pCT spatial resolution is MCS. MCS

impacts the correctness of the estimation of proton MLP, therefore it is necessary to have an

MLP algorithm that takes this into account.

Currently, all existing MLP formalisms [6,105,120] are based on the assumption of homo-

77



7.2. Materials and Methods 78

geneous medium (water), which is not generally valid when imaging patients.

It is well know that protons scatter more in heterogeneous medium because of the change

in density at the interface between two adjacent materials and Sawakuchi et al. [121] proved

that the Bragg peak degradation is mainly caused by MCS at the interface between two

different tissues.

In this chapter, we report on the use of the pixelated Medipix detector to study the effect

of heterogeneities on the accuracy of the MLP. Medipix detectors have been previously used

for ion beam therapy studies [122] . In this work the Medipix was successfully integrated with

the experimental prototype pCT scanner built by the pCT collaboration [4] and described in

chapter 3.

7.2 Materials and Methods

7.2.1 Medipix Detector

The Medipix is a pixelated detector that consists of a semiconductor sensor chip which is

made of one of several different materials (Si, GaAs, CdTe, Y) and is bonded to a readout

chip. In particular, a 256×256 square pixels matrix is connected by the bump-bonding

technique to a readout ASIC chip containing an amplifier, two discriminators and a 13-bit

counter for each pixel [123]. The pixel size is 55 µm. Each pixel can work in one of three

modes: Medipix mode (counting incoming particles), Timepix mode (the counter works as a

timer and measures the time when the particle is detected) and Time Over Threshold (TOT)

mode (the counter allows direct energy deposited measurement in each pixel) [124].

The Medipix used in this study consisted of a 150 µm silicon detector chip operated

in the Timepix mode. The detector was configured to receive an outside trigger to start

recording data. The trigger was given by the first scintillator stage of the multistage detector

of the pCT scanner. Medipix frames were recorded for a time interval of 1 ms; each frame



7.2. Materials and Methods 79

contained the coordinates of the hit pixels and the time when the hit occurred.

Pixelman [125] was the software package used to control the Medipix data acquisition.

7.2.2 Experimental Setup

A custom made PMMA plate was built to hold the Medipix in one of 5 different locations

between the tracking planes. Several measurements were performed inserting the Medipix

between different tissues equivalent slabs (CIRS, Norfolk, VA) to determine the proton path

and the accuracy of the MLP estimate in heterogeneous objects (Fig. 7.1). In particular, a

human chest configuration was created by symmetrically arranging slabs of cortical bone,

soft tissue, and lung on either side of the phantom centre; a human head configuration was

created by symmetrically arranging slabs of cortical bone, soft tissue, trabecular bone and

brain. Additional measurements were performed for the same locations but using only one

type of tissue equivalent slabs: lung, brain, soft tissue, or cortical bone. The configurations

used in this experiment are summarised in Table 7.1, including the slabs thickness’s.

The Medipix was located at the centre of each configuration, specifically (1.3 ± 0.5)

mm upstream from the isocentre. The exact horizontal and vertical positions of the Medipix

were (29.90 ± 0.01) mm right of the beam centre and (0.10 ± 0.01) mm below the beam

centre.

The output of the experiment consisted in:

• pCT bit stream output consisting of:

1. the coordinates of the proton hits in the tracking planes (measured in mm);

2. the energy deposited in the multistage energy detector;

3. the timestamp of each proton traversing the tracking planes.

• Pixelman output consisting of:
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Table 7.1: Slabs configurations. B stands for brain, L for lung, CB for cortical bone, ST for soft tissue, TB for
trabecular bone

.
Configuration Name Run Configuration Description

Empty 43 Medipix at centre, nothing else

B1 44 Medipix + 8 cm B
B2 47 8 cm B + Medipix + 8 cm B
B3 48 8 cm B + Medipix

L1 52 Medipix + 5 cm L
L2 53 5 cm L + Medipix + 5 cm L
L3 54 5 cm B + Medipix

CB-ST1 59 1 cm CB + 5 cm ST + Medipix
CB-ST2 60 5 cm ST + 1 cm CB + Medipix
CB-ST3 61 Medipix + 1 cm CB + 5 cm ST
CB-ST4 62 Medipix + 5 cm ST + 1 cm CB

Chest 55 1 cm CB + 2 cm ST + 7 cm L + Medipix + 7 cm L + 2 cm ST + 1 cm CB

Head 58 1 cm CB + 0.2 cm ST + 3 cm TB + 8 cm B + Medipix + 8 cm B + 3 cm TB + 0.2 cm ST + 1 cm CB

1. the coordinates of the proton hits in Medipix (measured pixel number); note that

the pixels are numbered from 1 to 256 in x and y direction;

2. the timestamp of each proton traversing the detector.

PCT and Medipix timestamps were used to match the events recorded by the two sys-

tems.

During the data collection, the scattering lead foil placed immediately after the SEM

exit window to spread the proton beam, was removed (Fig. 5.2). In fact, the Medipix size

is very small compared to the size of the tracking planes therefore a scattered beam was not

necessary.

7.2.2.1 Medipix and pCT data collection

The pCT DAQ sent a trigger to the Medipix when detecting a proton. The Medipix opened

a frame to accumulate events for 1 ms, and sent a busy signal back to pCT. pCT continued

taking data for 1 ms but it set a flag on the event that opened the frame, to know the starting

frame on the pCT side. The pCT waited for the Medipix readout to finish (i.e. it waited for

the busy signal to be removed), and then it waited another extra 10 ms (extra safety margin).
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Figure 7.1: Experimental setup for the Medipix-pCT study. Here the Medipix was located in the center of the
slab phantom between 2 slabs of lung (7 cm), 1 slab of soft tissue (2 cm) and 1 slab of cortical bone (1 cm),
forming the “chest configuration”. The figure insert shows how the Medipix was positioned.

Several empty runs were performed before starting the data collection in order to check

that the number of triggers transmitted to the Medipix by the pCT scanner corresponded to

the number of frames recorded by the Medipix.

The timestamp recorded in each Medipix pixel corresponds to the time interval from

when the protons hit the pixels until when the Medipix frame is closed and it is measured in

clock cycle (9.6 Mhz per clock). The Medipix accumulated events for 1 ms (approximately

9600 clocks) to prevent pixels from reaching the saturation.

The data collected from pCT scanner and Medipix detector were synchronized. The

synchronization was based on the time of the occurrence of the events. The Medipix time

recorded in clock cycle was converted into seconds in order to match the timestamp provided

by the pCT scanner.

When a proton hit the Medipix, it usually deposited enough energy to generate a cluster

of hit pixels. The cluster size depends on the energy deposited by the proton: the larger the

energy deposited, the larger the cluster. The center of gravity of each cluster was calculated

and associated to a pCT event according to the timestamp recorded.
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The pixels presenting a high number of counts for every run (hot spot), independently

from the configuration chosen, were neglected (masked). They correspond to noisy pixels

that are for some reasons damaged and always receiving a signal. The “masked” pixels must

be neglected because they represent false positive results.

7.2.2.2 Medipix Calibration

Once the matching pixel were identified, two calibration curves were created to find the

correspondence between pixel number and coordinates, in mm. The calibration curves were

obtained plotting the coordinates of the hits in the pCT trackers and the respective pixel

number of the hits in the Medipix. The data used for the calibration were collected during

an empty run (empty configuration) and the hit coordinates of the front tracking plane were

used. The plot was fit with a straight line and the equation of the line was used to convert

pixel numbers in mm in every configuration set up .

7.2.3 Geant4 Modeling of the Medipix

The medipix-pCT system was modelled in the Geant4 simulation included in the pCT soft-

ware platform described in chapter 5. 5× 103 proton histories were generated per each scan

and the scanned phantoms were the slabs configurations described in Table 7.1.

The output of the simulation consists of:

1. the coordinate of the proton hits in the tracking planes (measured in mm);

2. the coordinate of the proton hits in Medipix (measured in mm).

Note that with the simulated data, the Medipix calibration was not necessary anymore

since the coordinates of the Medipix hit were retrieved directly.
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7.2.4 Most Likely Path

7.2.4.1 Most Likely Path formalism

Several approaches describe the calculation of the MLP of charged particles, and protons in

particular, in literature [6,105,120]. For the MLP study presented in this chapter, the approach

described by R. W. Schulte et al. [6] was used since that is the formalism adopted in the image

reconstruction algorithm for the phase II pCT scanner prototype.

This statistical formalism is based on the assumption that protons traverse a reconstruc-

tion volume made of water. Considering position and direction of protons entering and

exiting the object, it is possible to estimate the lateral displacement and direction at any

depth in the object.

In particular, y0 = (t0, θ0), y2 = (t2, θ2) and y1 = (t1, θ1) are respectively the posi-

tion and direction calculated at the entrance position u0, at the exit position u2 and at any

positions u1. Fig. 7.2 shows a schematic example of these positions.

Figure 7.2: Schematic of the MLP formalism.

In Bayesian statistics, the prior likelihood L(y1|entry data) and the posterior likelihood

L(y1|exit data) can be combined according to Bayes’ theorem:

L(y1|exit data) = L(exit data|y1)L(y1|entry data) (7.1)
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Maximizing L(y1|exit data), it is possible to find the MLP of a particle as:

yMLP = (Σ−1
1 +RT

1 Σ−1
2 R1)−1(Σ1R0y0 +RT

1 Σ−1
2 y2) (7.2)

The scattering matrix are:

Σ1 =

 σ2
t1 σ2

t1θ1

σ2
t1θ1 σ2

θ1

 (7.3)

Σ2 =

 σ2
t2 σ2

t2θ2

σ2
t2θ2 σ2

θ2

 (7.4)

The elements of the scattering matrix correspond to the variance and covariance of t1 and θ1

calculated. They depend on the depth of the proton and on the energy loss.

σ2
t1(u0, u1) = E2

0

(
1 + 0.038 ln

u1 − u0

X0

)2
×

u1∫
u0

(u1 − u)2

β2(u)p2(u)
du

X0
(7.5)

σ2
θ1(u0, u1) = E2

0

(
1 + 0.038 ln

u1 − u0

X0

)2
×

u1∫
u0

1
β2(u)p2(u)

du

X0
(7.6)

σ2
t1θ1(u0, u1) = E2

0

(
1 + 0.038 ln

u1 − u0

X0

)2
×

u1∫
u0

u1 − u
β2(u)p2(u)

du

X0
(7.7)

σ2
t2(u1, u2) = E2

0

(
1 + 0.038 ln

u2 − u1

X0

)2
×

u2∫
u1

(u2 − u)2

β2(u)p2(u)
du

X0
(7.8)

σ2
θ2(u1, u2) = E2

0

(
1 + 0.038 ln

u2 − u1

X0

)2
×

u2∫
u1

1
β2(u)p2(u)

du

X0
(7.9)

σ2
t2θ2(u1, u2) = E2

0

(
1 + 0.038 ln

u2 − u1

X0

)2
×

u2∫
u1

u2 − u
β2(u)p2(u)

du

X0
(7.10)
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where E0 = 13.6MeV/c is an empirical constant and X0 = 36.1 cm is the radiation

length of water [126].

The rotation matrices are expressed as:

R0 =

1 u1 − u0

0 1

 (7.11)

R1 =

1 u2 − u1

0 1

 (7.12)

1/β2(u)p2(u) was estimated using a fifth degree polynomial curve fitting the results of

a Geant4 simulation retrieving position and kinetic energy of 200 MeV protons traversing a

uniform water phantom [119].

1
β2(u)p2(u) = (E(u) + Ep)2c2

(E(u) + 2Ep)2E2(u) (7.13)

Since vertical and lateral scattering can be considered as two independent statistical

processes, the derivation of the MLP can be calculated for each plane independently.

7.2.4.2 Most Likely Path calculation

In this study, the coordinates of the hits at entrance and exit tracking planes were used to re-

construct the proton MLP. The reconstruction volume selected was a cube with a side length

of 26 cm, which corresponds to the largest thickness configuration set up experimentally

built. The proton path between the trackers and the reconstruction volume was assumed to

be a straight line, since protons travelled in air. The MLP was reconstructed for discrete

depths within the reconstruction volume. Knowing the depth at which the Medipix is lo-

cated, the coordinates of the hits on the Medipix were predicted using the MLP formalism.

For both horizontal and vertical coordinates, the accuracy of the prediction was calculated
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as:

∆(MLP ) = MLPmeasured −MLPpredicted (7.14)

Equation 7.14 was used to calculate ∆(MLP ) both for simulated (∆(MLP )sim) and

experimental (∆(MLP )exp) data. A Gaussian fit was then applied to the distribution of

∆(MLP ) and mean and standard deviation were calculated.

To further quantify the accuracy of the predicted coordinates, the correlation coefficient

between MLPmeasured and MLPpredicted was also calculated.

7.3 Results

7.3.1 Accuracy of the predicted MLP

The set up of the Geant4 simulation used to calculate the fifth degree polynomial curve

fitting 1/β2(u)p2(u) was briefly described in section 7.2.3.

Fig. 7.3.a represents the proton energy loss by 200 MeV protons when traversing an

increasing thickness of water as calculated by means of the pCT Geant4 simulation. Fig.

7.3.b represents the correspondent 1/β2(u)p2(u) curve.

Figure 7.3: (a) Energy loss by 200 MeV protons when traversing an increasing water thickness in the simula-
tion set-up described in section 7.2.3. (b) 1/β2(u)p2(u) curve obtained using the energy plotted in (a).
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7.3.2 Experimental results

7.3.2.1 Medipix and pCT synchronization and calibration

Several empty runs were performed to test the correspondence between the number of trig-

gers transmitted to the Medipix by the pCT scanner and the number of frames recorded by

the Medipix.

Initially, approximately half of the trigger signals were not detected by the Medipix. This

problem was solved making the pCT trigger signal 3 times longer. Afterwards the agreement

between number of triggers transmitted and number of frames recorded was 100%.

Fig. 7.4 shows the matching events measured during an empty run. Fig. 7.4.a shows

all the hits recorded in the front tracking plane while Fig. 7.4.b shows the matching hits

between Medipix and tracking plane. Approximately 4% of the total recorded events were

measured by the Medipix. This can be explained by the fact that the area of the Medipix is

approximately 100 times smaller than the sensitive area of the tracking planes.

Fig. 7.5.a shows the clusters of pixel hit while figure 7.5.b shows the correspondent

centres of gravity retrieved for each cluster.

Figure 7.4: (a) Entries in the front tracker (b) Entries in the front tracker that are matching the entries in the
Medipix.

Fig. 7.6 shows the calibration curve for the horizontal and vertical direction. The

Medipix position was shifted 0.1 mm in the vertical direction and 2.9 cm in the horizon-
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Figure 7.5: (a) Hits in the Medipix (clusters). (b) Centre of gravity of the clusters created by the hits.

tal direction as shown in Fig.. 7.6.a and Fig. 7.6.b, respectively.

The calibration curves were plotted both using front and rear trackers and the calibration

coefficients variation found was less than 2%; although, the calibration curve generated

using the front tracker was selected because of the lower proton scattering.

The calibration curves can be represented by the general equation of a line y = p1x+p0.

The calibration coefficients p0 and p1, necessary for converting pixel number in x and y

coordinates, can be found in Tab. 7.2.

Figure 7.6: Calibration curve between pixel number and (a) vertical and (b) horizontal coordinates in mm.
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Table 7.2: Calibration coefficients for x and y coordinates.

x coordinates y coordinates
p0 −37.000 ± 0.035 7.582 ± 0.051
p1 0.0538 ± 0.0003 −0.0535 ± 0.0003

7.3.3 Verification of experimental and Geant4 results with respect to

theoretical calculations

Fig. 7.7 and 7.8 show the comparison between ∆(MLP )sim and ∆(MLP )exp for an empty

run configuration and a chest configuration, respectively. The data are more spread out in

the chest configuration because of the increased scattering due to the presence of the tissue

equivalent slabs.

Figure 7.7: Comparison between ∆(MLP )sim (red) and ∆(MLP )exp (blue) in the empty configuration.

Figure 7.8: Comparison between ∆(MLP )sim (red) and ∆(MLP )exp (blue), in the chest configuration.

Fig. 7.9 and 7.10 shos the comparison between linear correlation of simulated and ex-

perimental data for the same empty run and chest configuration, respectively.
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Table 7.3: Experimental and simulated ∆(MLP ) and correlation factor along x and y axis for all the config-
urations of the experiment.

Experimental Simulated

Configuration ∆(MLP )x ± SD rx ∆(MLP )y ± SD ry ∆(MLP )x ± SD rx ∆(MLP )y ± SD ry

Empty 0.004 ± 0.317 0.993 0.109 ± 0.350 0.994 0.001 ± 0.256 0.993 0.013 ± 0.269 0.994

B1 0.225 ± 0.448 0.980 0.129± 0.481 0.985 0.002 ± 0.317 0.993 0.002 ± 0.319 0.994
B2 0.291 ± 0.540 0.972 0.090± 0.581 0.975 -0.006 ± 0.483 0.982 0.006 ± 0.478 0.987
B3 0.273 ± 0.417 0.983 0.107 ± 0.429 0.987 -0.002 ± 0.443 0.987 0.008 ± 0.433 0.989

L1 0.299 ± 0.388 0.981 0.092 ± 0.434 0.987 -0.002 ± 0.255 0.995 0.003 ± 0.269 0.994
L2 0.374 ± 0.542 0.968 0.004 ± 0.564 0.979 0.004 ± 0.283 0.991 -0.004 ± 0.289 0.993
L3 0.320 ± 0.433 0.983 0.060 ± 0.458 0.989 0.006 ± 0.288 0.992 0.003 ± 0.300 0.993

CB-ST1 0.252 ± 0.415 0.984 0.178 ± 0.451 0.988 -0.012 ± 0.407 0.988 0.014 ± 0.408 0.991
CB-ST2 0.270 ± 0.413 0.982 0.150 ± 0.447 0.987 0.016 ± 0.461 0.982 0.015 ± 0.440 0.988
CB-ST3 0.293 ± 0.436 0.979 0.091 ± 0.429 0.984 -0.001 ± 0.364 0.990 -0.012 ± 0.351 0.991
CB-ST4 0.305 ± 0.399 0.988 0.149 ± 0.418 0.990 0.003 ± 0.313 0.993 -4.861e-05 ± 0.319 0.994

Chest 0.199 ± 0.650 0.974 0.213 ± 0.682 0.979 0.005 ± 0.512 0.985 0.007 ± 0.543 0.985

Head 0.215 ± 0.528 0.979 0.195 ± 0.564 0.983 0.028 ± 0.912 0.957 0.011 ± 0.972 0.957

Table 7.3 shows mean, standard deviation (SD) and correlation coefficient (r) of simu-

lated and experimental ∆(MLP ) along x and y direction for all the configurations.

Figure 7.9: Comparison between simulated (red) and experimental (blue) correlated points during an empty
run, fitted with a line of best fit.

7.4 Discussions

In this work, the integration of a Medipix pixelated detector with a prototype pCT scanner

was successfully realised. The Medipix was used as an extra detector between the pCT
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Figure 7.10: Comparison between simulated (red) and experimental (blue) correlated points in the chest
configuration, fitted with a line of best fit.

tracking planes to study the proton MLP accuracy and, in particular, the effect of hetero-

geneities in the MLP calculation. The same experimental set up was also modelled in the

Geant4 simulation described in chapter 5.

Table 7.3 summarises experimental and simulated results. The agreement between ex-

perimental and simulated results was very good: ∆(MLP )exp and ∆(MLP )sim always agree

within one standard deviation. ∆(MLP )sim is closer to zero than ∆(MLP )exp denoting that

the simulated MLP prediction is more accurate. The margin of error in the experimental

data can be partially explained by the uncertainty of the calibrations coefficients p0 for x

and y coordinates (the uncertainty on p1 is negligible). Moreover, there is a big uncertainty

in the Medipix position along the z direction (1.3± 0.5) mm because of the safety measures

adopted to protect the silicon detector. A rectangular circuit board with a square hole in cor-

respondence of the silicon detector was positioned right above the pixelated detector (see

Fig. 7.11) in order to protect it from hitting any objects. Therefore, even using a calliper,

it is very difficult to measure the exact z coordinate of the silicon detector, i.e. the depth

u where the MLP is calculated. This work evaluated for the first time experimentally the

accuracy of the MLP algorithm. For the future, it is recommended to evaluate the effects of
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the detector position uncertainty on the detector response.

Figure 7.11: Close-up view of the Medipix detector protection.

The correlation coefficients along vertical and horizontal direction are close to 1 for all

the configurations showing a good agreement between predicted and measured data. For the

configurations B2 and L2, rx and ry are lower than for the configurations B1, B3 and L1, L3,

both for experimental and simulated data. This can be explained by the extra slab of tissue

equivalent material in the latter configurations. No substantial differences were noticed in

measurements with the same slabs positioned either upstream or downstream the Medipix.

These results confirm the validity of the MLP algorithm chosen since ∆(MLP ) is al-

ways close to zero. A similar analysis was conducted by Wong et al. [127] using a sym-

metrical inhomogeneous phantom with bone, air and water slabs. The novelty of the work

here reported is the use of experimental data collected with high spatial resolution pixelated

detector Medipix.

7.5 Conclusions

A Medipix pixelated detector was successfully integrated a with the phase II pCT scanner

prototype. The analysis of the data taken in the experiment was used to (1) analyse the accu-

racy of the MLP calculated based on the assumption of homogeneous water phantom while

the phantom was heterogeneous, and (2) validate the Geant4 simulation of the Medipix-pCT
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system to further investigate the MLP calculation during pCT image reconstruction.

The MLP algorithm was proven to be not significantly effected by heterogeneities. A

possible future study derived from this work, would be the use of Medipix in a full 360◦

pCT scan in order to directly associate any variations in the MLP accuracy with the corre-

spondent reconstructed image. If a substantial correlation will be found, the MLP formalism

could be improved including heterogeneities once they are detected in a first reconstruction

run thus leading to an improvement of the overall accuracy and spatial resolution of pCT

reconstruction. It would be useful to repeat this study in the future using more realistic

phantoms/geometries to have a better idea of the MLP behaviour inside of a patient.



Chapter 8

Discussions and Outlook

This thesis investigated several aspects of pCT using experimental and simulated data. In

particular, the existing phase II pCT scanner prototype was modelled using MC methods:

RSP accuracy, MLP correctness and dose delivered during a pCT scan were investigated.

The candidate own contribution to the work can be summarized in:

1. modelling the entire pCT system with all its modular components in a software plat-

form;

2. modelling a high resolution digital head phantom and implementing it in the previ-

ously mentioned platform;

3. studying how to improve the calibration of the pCT system;

4. reconstructing several phantoms, both using experimental and simulated pCT data;

5. conducting preliminary measurements of the dose deposited during both an experi-

mental and a simulated pCT scan;

6. evaluating the MLP accuracy in heterogeneous materials, both experimentally and by

means of MC simulations.

94
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The results presented in the previous chapters, however, represent just the tip of the

iceberg. During this four years PhD project, considerable progress has been made. Specifi-

cally:

• the phase II pCT scanner prototype was able to operate at an event rate of 1 MHz;

• a large area (9×18 cm2) was covered by the tracking plane with minimal loss events

due to the gaps between SSDs;

• an algorithm recovering missing hits was developed in order to reduce even more the

number of lost events;

• a pCT scan of an detailed anthropomorphic head phantom was performed;

• a pCT scan of a human chest was simulated implementing DICOM images in a soft-

ware platform of the pCT system;

• a Medipix detector was successfully integrated and synchronized with the phase II

pCT scanner prototype;

• a WEPL resolution of 2.8 mm was achieved;

• a RSP accuracy within 1.5% was achieved;

• a preliminary dosimetric evaluation of pCT was performed proving the dosimetric

validity of pCT.

At the same time, all these encouraging results lead towards upgrades that could further

strengthen the validity of pCT as an imaging technique.
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8.1 Phase II pCT system: possible improvements

8.1.1 Tracking planes

Several tracking planes system already implemented in pCT were mentioned in chapter 2.

In particular both scintillating fibers used at NIU and INFN [46,47,55,56] and solid state silicon

micro-strip sensors (Micron Semiconductor Ltd, 150 µm) used by the PRaVDA Consortium

seem to be promising detectors. In particular it is very interesting the PRaVDA solution of

positioning the detectors at a 60◦ angle with respect to each other to precisely measure the

proton hit coordinates.

Two alternative technologies that could be used for tracking protons are plasma panel

sensors (PPS) and gas microstrip detectors (GMDs) but they have never been used before

for this purpose so they are still under investigation. Pixelated detectors (like Medipix) could

also be used as tracking device but cost and size represent currently a major issue.

The dimension of the tracking planes should also be increase in order to be able to scan

bigger object, and eventually, also animals.

8.1.2 Energy detector

The 5-stage scintillator detector was chosen to improve the performance of the segmented

array of thallium doped caesium iodide CsI(Tl) crystal calorimeter. The multistage detector

was definitely an improvement but the trade off was that developing adequate electronics for

the device and establishing a satisfactory calibration for the system was time consuming and

very complicated. The range straggling was the main complication encountered, causing

problems in distinguishing stopping or transiting protons near the interfaces between the

stages of the detector.

A valid alternative was proposed in 1989 by Takada et al. [128] who suggested using mag-

netic spectrometer for pCT. This system might be too expensive but it is definitively a pos-
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sibility to be explored.

The sixty polystyrene layers of scintillating fibers proposed at INFN [55,56] could be a

short term more feasible solution. This system, theoretically, should also allow for high

rates event acquisition therefore could be a valid alternative for replacing the multistage

energy detector

8.1.3 Image reconstruction algorithm

Iterative reconstruction algorithms have proven to work very well in pCT [107]. A possible

improvement in the reconstruction code currently used was proposed by Karbasi, Schultze

and Schubert at Baylor University (Texas, USA). In primis, the use of space carving tech-

niques for hull detection [129] thus replacing the currently used FBP, would reduce image

blurring and artefacts. Secondly, the complete parallelization of the code would improve the

reconstruction speed, doing a step forward toward the on-fly pCT image reconstruction.

Other algorithms being studied include

1. a modified FBP algorithm, which uses distance-driven-binning along the MLP, rather

than a straight-line projection algorithm, in order to achieve a higher-quality image

with a fast FBP-based algorithm [130];

2. a proton-attenuation algorithm which uses the proton MLP and the ratio of protons

emitted to detected, similar as in xCT [131].

Finally, an important topic that should be investigated is the applicability of pCT for

organs in motion. Nowadays breath hold CT, slow CT, gated CT and 4DCT are some possi-

ble options adopted to overcome the organ motion during a CT scan [132,133] The possibility

of using pCT for the same purpose would largely reduce the dose delivered to the patient.

One of the advantages would be that tumour motion (and shrinking) could better monitored

repeating the scan more often without delivering an excessive amount of radiation to the

patient.
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8.2 Conclusions

PCT is a promising modality for low-dose image guidance and adaptive proton therapy.

Improved proton range accuracy may be achieved with pCT, because it provides a direct

measurement of RSP from proton energy loss measurements [36]. The uncertainty and thus

the added planning margin may be reduced to 1% or less of the proton range in most cases,

and the dose delivered to the patient can also be reduced compared to CBCT [134], which

makes pCT an attractive alternative for in-room image guidance.

Promising results were presented in this PhD thesis but lots of aspects can still be im-

proved: the investigation in proton imaging is far to be over.
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