Group meeting August 9th, 2024

Instruction responsibilities

- Classes for Fall 2024:
 - PHY 331:
 - Made syllabus 😳
 - PHY 361:
 - Need to make syllabus

Service responsibilities

- Committee:
 - GlueX Compton Analysis Review Committee:
 - Waiting for author response

Group responsibilities

- Undergrad: Met with Dylan on Tuesday
- I approved AY 24/25 offer letters. The letters should have been sent to grad students

Timelines

												2	20	2	5												
		Ja	anua	ry					Fe	brua	ary					Ν	Marc	h						Apri	I		
S	М		W	T	E	S1;	s	М	т	w	т	F	s	S	М	Т	W	т	F	S	s	М	т	w	т	F	s
29	30	31		2	3	4 4	26	27	28	29	30	31	1	23	24	25	26	27	28	1	30	31	1	2	3	4	5
5	6	7	8	9	10	11	2	3	4	15	6	. 7	8	2	3	4	5	6	7	8	6	7	dêfe	ense	(le	adlii	12 ne12
12	13	14	15	16	17	8 18	pply 9	/ IO 10	gra 11	d (d 12	13	14	15	9	10	11	12	13 20	14 21	15 22	13	14	15	16	17	18	19
19	20	21	22	23	24	25	16	17	18	19	20	21	22	23	24	25	26	20	21	22	20	21	rey 22	isior	ıs_(d	lead	line
26	27	28	29	30	31	1	23	24	25	26	27	28	1	sche	edulo	e de	fens	e (d	eadl	ine)	27	28	29	30	1	2	3
			Mav							June	9			+ fo	rma	t rev	<mark>iew</mark> July	dea	dlin	le?			E A	D s lugu	ubr st	nt (c	leac
s	м	т	w	т	F	s	s	м	т	w	т	F	s	s	м	т	w	т	F	s	S	М	т	w	т	F	s
27	28	29	30	1	2	3	1	2	3	4	5		7	29	30	1	2	3	4	5	27	28	29	30	31	1	2
4	5	6	7	8	9	10	8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	8	9
11	12	com	imer	icen	nent	17	15	16	17	18	10	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16
18	10	20	21	22	23	24	22	22	24	25	26	20	21	20	21	22	23	24	25	26	17	18	19	20	21	22	23
25	26	20	21	20	20	24	22	20	24	25	20	21	20	20	21	22	20	24	1	20	24	25	26	27	28	29	30
25	20	21	20	29	30	31	29	30	-	∠ ما ما م	3	4	G	21	20	29 No	vom	bor	1	~	31	1	2	3	4	5	6
	02053	Sep	biem	iber	-84	1.00		80.000×	0	CLOD	er	-50	10000	c	м		wen	ieu T	-	s	0.000	074534	De	cem	ber		1.000
S	М	т	W	Т	F	S	S	М	т	W	Т	F	S	26	27	28	29	30	г 31	1	S	М	т	W	Т	F	S
31	1	2	3	4	5	6	28	29	30	1	2	3	4	2	3	4	5	6	7	8	30	1	2	3	4	5	6
7	8	9	10	11	12	13	5	6	7	8	9	10	11	9	10	11	12	13	14	15	7	8	9	10	11	12	13
14	15	16	17	18	19	20	12	13	14	15	16	17	18	16	17	18	19	20	21	22	14	15	16	17	18	19	20
21	22	23	24	25	26	27	19	20	21	22	23	24	25	23	24	25	26	27	28	29	21	22	23	24	25	26	27
							1							1													

$\Xi^* \rightarrow \Xi \pi^0$ update

- Material for this update is very similar to what I had shown 2 weeks ago
- Biggest change is that all of the studies now include hybrid method of accidental subtraction
- Note: My MC calculations now use same setting as given here: <u>https://halldweb.jlab.org/gluex_sim/SubmitSim.html</u>

$\Xi^* \rightarrow \Xi \pi^0$ update

- Inclusion of hybrid method for accidental subtraction
- Addressing various comments and suggestions

Reaction

where

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi^{-}$

Reaction

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$, $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

Reaction

 $\Lambda \rightarrow p\pi$

where and

• Mass of Ξ^- not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

$\Xi^* \rightarrow \Xi \pi^0$ update

- Inclusion of hybrid method for accidental subtraction
- Addressing various comments and suggestions

Accidental subtraction using hybrid method

Note: Error bars look too big 😕

Ξ^* Analysis

- Requested studies:
 - Refine MC generator distributions
 - Status: Initial attempt with *s* and *t* distributions will be shown today
 - Mass fit Ξ for each bin in Ξ^*
 - Status: First attempt will be shown today
 - *t*-cut dependence on Ξ^* spectrum
 - Status: In progress
 - Vertex dependence on π^0 mass with real and MC data
 - Status: Started MC
 - Vertex angle between momentum and path of \varXi
 - Status: Not started yet
 - Explore sidebands as background shape under Ξ^*
 - Status: Not started yet

• Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and m_{Y^*}
- Started with Mandelstam *s* and *t*
- Will move to m_{Y^*} refinement next time

Confidence level and pathlength significance

- Same confidence level cut: $CL > 10^{-6}$
- Same pathlength significance cut > 4

Note: $s = 2E_{\gamma}m_p + m_p^2$

• -*t*(fast) looks reasonable

Not yet tried to get the Y^* shape to match and the high-mass part of distribution already looks good \bigcirc

- Attempting to remove all non-Ξ⁻ background by fitting the Ξ⁻ for each mass[Ξ⁻ π⁰] bin
- Since lifetime of Ξ^- is 1.6e-10, I set width of the ground state Ξ^- to detector resolution found from Monte Carlo study.
- Some of the fits are not great, but we can still get a sense of the contribution to mass[Ξ⁻ π⁰] from the non-Ξ⁻ background

From 1477.5 to 1557.5 MeV

Next: From 1567.5 to 1647.5 MeV

Next: From 1657.5 to 1737.5 MeV

Last: From 1747.5 to 1777.5 MeV

E(1690):

- Prior fits had shape of $\Xi(1690)$ due entirely to detector resolution
- In general: Not enough statistics for the $\Xi(1690)$
- If we can say anything at all, the best we can do for the $\Xi(1690)$ will probably be an upper limit

Ξ(1690):

- Prior fits had shape of $\Xi(1690)$ due entirely to detector resolution
- In general: Not enough statistics for the $\Xi(1690)$
- If we can say anything at all, the best we can do for the $\Xi(1690)$ will probably be an upper limit

- *Ξ*(1530):
 - Center = 1536(2) MeV
 - Width = 13(17) MeV

Note: Error bars look too big \otimes

Note: Error bars look too big \mathfrak{S}

Ξ(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV

<i>Ξ</i> (1530) ⁻	MASS				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1535.0 ± 0.6	OUR FIT				
1535.2 ± 0.8	OUR AVERAGE				
1534.5 ± 1.2		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1535.3 ± 2.0		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
1536.2 ± 1.6	185	KIRSCH	72	HBC	<i>К[—] р</i> 2.87 GeV/ <i>с</i>
1535.7 ± 3.2	38	LONDON	66	HBC	<i>К[—] р</i> 2.24 GeV/ <i>с</i>
• • • We do	not use the following d	lata for averages	, fits,	limits,	etc. ● ● ●
1540 ±3	48	BERTHON	74	HBC	Quasi-2-body σ
1534.7 ± 1.1	334	BALTAY	72	HBC	<i>K</i> ⁻ <i>p</i> 1.75 GeV/ <i>c</i>

<i>Ξ</i> (1530) ⁻ WIDTH VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9.9 ^{+1.7} OUR AVERAGE				
9.6±2.8	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
8.3±3.6	ROSS	7 3B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
$7.8^{+3.5}_{-7.8}$	BALTAY	72	HBC	$K^- p$ 1.75 GeV/ c
16.2 ± 4.6	KIRSCH	72	HBC	$\Xi^-\pi^0$, $\Xi^0\pi^-$

- *Ξ*(1530):
 - Center = 1536(2) MeV
 - Width = 13(17) MeV

 $\Xi(1620)$:

- Center = 1597(7) MeV
- Width = 28(39) MeV

Note: Error bars look too big \otimes

Ξ(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV

 $\Xi(1620)$:

- Center = 1597(7) MeV
- Width = 28(39) MeV

Ξ(1620) MASS

<u>1</u>	VALUE (M		<u>TS</u>	DOCUMENT ID	<u>TEC</u>	$\frac{2N}{2} \frac{CON}{2}$	MMENT			
	<i>Ξ</i> (1620) WIDTH									
	1606	± 6	29	ROSS	72	HBC	<i>K⁻ p</i> 3.1–3.7 GeV/ <i>c</i>			
	1633	± 12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$			
	1624	± 3	31	BRIEFEL	77	HBC	<i>К[—] р</i> 2.87 GeV/ <i>с</i>			
	1610.4	$\pm 6.0^{+6.1}_{-4.2}$		SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi(1620) \pi^+$			
$1000. \text{ Lift of ours fork too org} \bigcirc \frac{1}{2}$	≈ 1620	OUR ESTIM	ATE							
Note: Error hars look too hig 🙉	VALUE (M	eV)	EVTS	DOCUMENT ID		TECN	COMMENT			

 $59.9 \pm 4.8^{+2.8}_{-7.1}$

31

34

29

 22.5 ± 7.5

 40 ± 15

 21 ± 7

2)

SUMIHAMA 19 BELL $\Xi_{-}^{+} \rightarrow \Xi(1620) \pi^{+}$

- *Ξ*(1530):
 - Center = 1536(2) MeV
 - Width = 13(17) MeV
- *E*(1620):
 - Center = 1597(7) MeV
 - Width = 28(39) MeV

- *Ξ*(1530):
 - Center = 1538(2) MeV
 - Width = 7(14) MeV
- *Ξ*(1620):
 - Center = 1592(9) MeV
 - Width = 14(34) MeV

• I have some new material on DIRC

Let:

• $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$

Let:

- $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$
- ε_{Bad} : Efficiency for identifying $K^+\pi^-\pi^0$ as $K^+K^-\pi^0$

Let:

- $\varepsilon_{\text{Good}}$: Efficiency for correctly identifying $K^+K^-\pi^0$
- ε_{Bad} : Efficiency for identifying $K^+\pi^-\pi^0$ as $K^+K^-\pi^0$

We want the ratio $\varepsilon_{\rm Bad}/\varepsilon_{\rm Good}$ to be small

