Group meeting August 2nd, 2024

Instruction responsibilities

- Classes for Fall 2024:
 - PHY 331:
 - Made syllabus 😳
 - PHY 361:
 - Need to make syllabus

Service responsibilities

- Committee:
 - GlueX Compton Analysis Review Committee:
 - Waiting for author response

Group responsibilities

- Undergrad: Met with Dylan on Tuesday
- Looks like the next allotment of DOE money has arrived early \bigcirc

Timelines

\bigcap												2	20	2	4													
January							February								March							April						
s	М	т	w	т	F	s	s	м	т	w	т	F	s	S	М	т	W	т	F	s	s	М	т	w	т	F	s	
31	1	2	3	4	5	6	28	29	30	31	1	2	3	25	26	27	28	29	1	2	31	1	2	3	4	5	6	
7	8	9	10	11	12	13	4	5	6	7	8	9	10	3	4	5	6	7	8	9	7	8	9	10	11	12	13	
14	15	16	17	18	19	20	11	12	13	14	15	16	17	10	11	12	13	14	15	16	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	18	19	20	21	22	23	24	24	18	19	20	21	22	23	21	22	23	24	25	26	27	
28	29	30	31	1	2	3	25	26	27	28	29	1	2	31	1	20	3	20	29	6	28	29	30	1	2	3	4	
	May							June							July							August						
۰ ۲	М					e	s	М	т	W	Т	F	s	e	м	т	w	т	-	c	e	м	т́	w	ы т	-	s	
3		-	vv	1	r o	3	26	27	28	29	30	31	1	3	IVI	л О	••	1	F	3	3	111		to	day	Ś	3	
28	29	30	1	2	3	4	2	3	4	5	6	7	8	30	ļ	2	3	4	Э	0	28	29	30	31	1		3	
5	6	7	8	9	10	11	9	10	11	12	13	14	15	7	8	9	10	11	12	13	4	5	6	7	8	9	10	
12	13	14	15	16	17	18	16	17	18	19	20	21	22	14	15	16	17	18	19	20	11	Clas	13 SSeS	star	15	16	17	
19	20	21	22	23	24	25	23	24	25	26	27	28	29	21	22	23	24	25	26	27	18	19	20	21	22	23	24	
26	27	28	29	30	31	1	30	1	2	3	4	5	6	28	29	30	31	1	2	3	25	26	27	28	29	30	31	
	September						October							November							December							
s	М	т	ΔΨa	n Tes	che	S	s	М	т	w	т	F	s	s	М	т	w	т	F	s	s	М	т	w	т	F	s	
1	2	3	4	5	6	7	29	30	1	2	3	4	5	27	28	29	30	31	1	2	1	2	3	4	5	6	7	
8	9	10	11	12	13	14	6	7	8	9	10	DI 11	NP 12	3	4	5	6	7	8	9	8	9	10	11	12	13	14	
15	16.	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21	
22	23	24 strai	25	26	27	28	20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28	
29	30	1	2	3	4	5	27	28	29	30	31	1	2	24	25	26	27	28	29	30	29	30	31	1	2	3	4	
\leftarrow			_							-	-	©	BlankCa	 lendarPa	ges.com		_	-										

												2	20	2	5												
		Ja	anua	ry					Fe	brua	ary					Ν	Marc	h						Apri	l		
S	M		W	T	F	S1;	S	М	т	w	т	F	s	S	М	Т	W	Т	F	S	s	М	т	W	т	F	s
29	30	31		2	3	4	26	27	28	29	30	31	1	23	24	25	26	27	28	1	30	31	1	2	3	4	5
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8	6	7	dêfe	ense	(le	adlii	12
12	13	14	15	16	17	2 18	9 9	/ IO 10	11 gra	a (a 12	13	14	15	16	10	11	12	13 20	14 21	15	13	14	15	16	17	18	19
19	20	21	22	23	24	25	16	17	18	19	20	21	22	23	24	25	26	20	28	29	20	21	rey 22	ision	ns (c	lead	ine
26	27	28	29	30	31	1	23	24	25	26	27	28	1	sche	edule	e de	fens	e (d	eadl	ine)	27	28	29	30	1	2	3
			May							June	9			+ fo	rma	t rev	/iew July	dea	ıdlin	le?			EI A	Ugu	ubn st	nt (c	lead
s	м	т	w	т	F	s	s	м	Т	w	т	F	s	s	М	т	w	т	F	s	s	М	т	w	Т	F	s
27	28	29	30	1	2	3	1	2	3	4	5	6	7	29	30	1	2	3	4	5	27	28	29	30	31	1	2
4	5	6	7	8	9	10	8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	8	9
11	(12)	com 13	14	15	nent	17	15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16
18	19	20	21	22	23	24	22	23	24	25	26	27	28	20	21	22	23	24	25	26	17	18	19 26	20	21	22	23
25	26	27	28	29	30	31	29	30	1	2	3	4	5	27	28	29	30	31	1	2	31	1	20	3	4	29	6
Torton I	5	Sei	otem	ber				=	0	ctob	er				2	No	vem	ber					De	cem	ber		
s	м	т	w	т	F	s	s	м	т	w	т	F	s	s	М	т	w	т	F	s	s	м	т	w	т	F	s
31	1	2	3	4	5	6	28	29	30	1	2	3	4	26	27	28	29	30	31	1	30	1	2	3	4	5	6
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
28	29	30	1	20	20	4	26	20	28	29	30	27	1	23	24	25	26	27	28	29	28	20	30	27	1	20	21
20	23	50		2	0	-+	20	21	20	23	50	©	, BlankCa	3U lendarPa	l ages.com	2	3	4	0	р	20	23		51	1	2	3

$\Xi^* \rightarrow \Xi \pi^0$ update

- Created talk that I did not present \otimes
- Material from the talk only contained 1 slide that is new to the group: Hybrid method slide

Accidental subtraction using hybrid method

$KK\pi$ update

- Presented a few slides on inclusion of polarization in our code
- Made a slide about the ψ variable for Σ of vector mesons
- I have some new material on DIRC

The polarized cross section has the form $\sigma = \sigma_u [1 - P\Sigma \cos(2\psi)]$, where

- σ_u = unpolarized cross section
- P =degree of polarization
- Σ = Beam asymmetry
- ψ shown on next slide

ψ angle for determination of Σ (ρ^0 decay)

Here, P_{γ} is the degree of linear polarization of the photon; Φ is the angle of the photon electric polarization vector with respect to the production plane measured in the over-all (γp) c.m. system; θ and ϕ are the polar and azimuthal angles of the π^+ in the ρ^0 rest frame. (See Fig. 12 and Ref. 36.)

J. Ballam, et. al., Phys. Rev. D 5 545 (1972)

Note: The angle Φ is the same as in our typical intensity expressions (sometimes called big phi) and if *z*-axis is taken along direction of γ , then φ given here is the azimuthal angle in the Gottfried-Jackson frame.

FIG. 12. Angles used in the study of ρ^0 decay. The angle α is zero in the Gottfried-Jackson system.

Can define $\psi_{\xi} = \psi + \xi$, where

• ξ is the lab-angle of the polarization relative to the floor

Can define $\psi_{\xi} = \psi + \xi$, where

• ξ is the lab-angle of the polarization relative to the floor

Now $\sigma_{\xi} = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi} - 2\xi)]$

Can define $\psi_{\xi} = \psi + \xi$, where

• ξ is the lab-angle of the polarization relative to the floor

Now $\sigma_{\xi} = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi} - 2\xi)]$

This means that

$$\sigma_0 = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi})]$$

Can define $\psi_{\xi} = \psi + \xi$, where

• ξ is the lab-angle of the polarization relative to the floor

Now $\sigma_{\xi} = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi} - 2\xi)]$

This means that

$$\sigma_0 = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi})]$$

and

$$\sigma_{90} = \sigma_u [1 + P\Sigma \cos(2\psi_{\xi})]$$

Can define $\psi_{\xi} = \psi + \xi$, where

• ξ is the lab-angle of the polarization relative to the floor

Now $\sigma_{\xi} = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi} - 2\xi)]$

This means that

$$\sigma_0 = \sigma_u [1 - P\Sigma \cos(2\psi_{\xi})]$$

and

sign flip

$$\sigma_{90} = \sigma_u [1 + P\Sigma \cos(2\psi_{\xi})]$$

- Mass[$KK\pi$] = 1425 MeV
- Error bars not correct (did not take car of covariance)

Charged particle moves from point A to point B

Charged particle moves from point A to point B At point A, the particle radiates light

$$\cos(\theta) = c_{mat}/v$$

$$\cos(\theta) = c_{mat}/v$$
 and $n = c/c_{mat}$

$$\cos(\theta) = c_{mat}/v \text{ and } n = c/c_{mat}$$

so
 $\beta = 1/[n \cos(\theta)]$

$$\cos(\theta) = c_{mat}/v \text{ and } n = c/c_{mat}$$

so
 $\beta = 1/[n \cos(\theta)]$

$$\beta = 1/[n\cos(\theta)]$$

SO

or

$$(\gamma\beta)^2 = 1/[n^2\cos^2(\theta)-1]$$

which implies

$$p^{2}c^{2}/(m^{2}c^{4}) = 1/[n^{2}\cos^{2}(\theta)-1]$$

Set effective index of refraction n = 1.4805 to get above plot

$$mc^{2} = pc[n^{2}\cos^{2}(\theta)-1]$$

Cerenkov opening angle vs momentum for different likelihood scenarios

28

Cerenkov opening angle vs momentum for different likelihood scenarios

mass[$K^+K^-\pi^0$] With and Without DIRC

mass[$K^+K^-\pi^0$] With and Without DIRC

mass[$K^+K^-\pi^0$] With and Without DIRC

