Group meeting July 12th, 2024

Instruction responsibilities

- Classes for Fall 2024:
 - PHY 331:
 - Need to make syllabus
 - PHY 361:
 - Need to make syllabus

Service responsibilities

- Committee:
 - GlueX Compton Analysis Review Committee:
 - Waiting for author response

Group responsibilities

• Undergrad: Met with Dylan on Thursday

Analysis

Presentations:

• Presentation to cross section meeting

KKpi analysis:

- Work in progress
 - Had to fix energy cut

Ξ^* analysis:

- Requested studies:
 - Vertex dependence on π^0 mass with real and MC data (status: started MC)
 - *t*-cut dependence on Ξ^* spectrum (status: in progress)
 - Vertex angle between momentum and path of Ξ (status: not started)
 - Refine MC generator distributions (status: Initial run with *s* and *t* distributions are complete)
 - Mass fit Ξ for each bin in Ξ^* (status: complete)

• Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying s, t and m_{Y^*}

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying s, t and m_{Y^*}
- Started with Mandelstam *s* and *t*

- Starting with code from Brandon build for $\Xi(1530)$ and modifying for general Ξ^*
- Taking the initial reaction as $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
 - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying s, t and m_{Y^*}
- Started with Mandelstam *s* and *t*
- Will move to m_{Y^*} refinement next time

Note:
$$s = 2E_{\gamma}m_p + m_p^2$$

• Looks OK, but can probably be refined more

-t (fast) looks good, except between 0.4 and 0.7

-t (fast) looks good, except between 0.4 and 0.7

16

Not yet tried to get the Y^* shape to match and the high mass part of distribution already looks good \bigcirc

$KK\pi$ Polarization Setup

Data and cuts

Dataset:

• Spring 2018 data

Restrictions:

- Incident photon timed to be within central peak
- Only best Confidence Level (*CL*) per event kept
- *CL* must be above 10⁻⁴
- Kaons must be forward directed (seen in TOF)
- Kaons must have momentum < 3 GeV
- Missing mass within 3 standard deviations of central peak
- $0.12 \text{ GeV} < \text{Mass}[\pi^0] < 0.15 \text{ GeV}$

Data and cuts

Dataset:

• Spring 2018 data

Restrictions:

- Incident photon timed to be within central peak
- Only best Confidence Level (*CL*) per event kept
- *CL* must be above 10⁻⁴
- Kaons must be forward directed (seen in TOF)
- Kaons must have momentum < 3 GeV
- Missing mass within 3 standard deviations of central peak
- 0.12 GeV < Mass $[\pi^0]$ < 0.15 GeV

Will loosen this cut

• Ran PWA over coherent edge with polarization set to zero

- Ran PWA over coherent edge with polarization set to zero
- Used unique reactions for each polarization orientation and constrained each orientation to one another

- Ran PWA over coherent edge with polarization set to zero
- Used unique reactions for each polarization orientation and constrained each orientation to one another

- Ran PWA over coherent edge with polarization set to zero
- Used unique reactions for each polarization orientation and constrained each orientation to one another

- Ran PWA over coherent edge with polarization set to zero
- Used unique reactions for each polarization orientation and constrained each orientation to one another

32

• Next step completed was to include all of the intensity terms

• Next step completed was for include all of the intensity terms

Intensity

$$\begin{split} I(\Phi,\Omega,\Omega_{H}) &= 2\kappa \sum_{k} \\ \left\{ (1-P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Re(Z) \right|^{2} \right] + \\ (1+P_{\gamma}) \left[\left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z) \right|^{2} + \left| \sum_{i_{N},m} [J_{i}^{N}]_{m,k}^{(+)} Re(Z) + \sum_{i_{U},m} [J_{i}^{U}]_{m,k}^{(-)} Re(Z) \right|^{2} \right] \right\} \end{split}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

where $Z_m^i(\Omega, \Omega_H) = e^{-i\Phi} X_m^i(\Omega, \Omega_H)$ is the phase-rotated decay amplitude and Φ is the angle between the production plane and the photon polarization

Intensity

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

$$I(\Phi, \Omega, \Omega_{H}) = 2\kappa \sum_{k}$$

$$\left\{ (1 - P_{\gamma}) \left[\left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z) \right|^{2} + \left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} \operatorname{Re}(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} \operatorname{Re}(Z) \right|^{2} \right] + \left(1 + P_{\gamma} \right) \left[\left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z) \right|^{2} + \left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} \operatorname{Re}(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} \operatorname{Re}(Z) \right|^{2} \right] \right\}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

$$I(\Phi, \Omega, \Omega_{H}) = 2\kappa \sum_{k} Same \\ \left\{ (1 - P_{\gamma}) \left[\left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} Im(Z) \right|^{2} + \left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} Re(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} Re(Z) \right|^{2} \right] + \left(1 + P_{\gamma} \right) \left[\left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(-)} Im(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(+)} Im(Z) \right|^{2} + \left| \sum_{i_{N}, m} [J_{i}^{N}]_{m,k}^{(+)} Re(Z) + \sum_{i_{U}, m} [J_{i}^{U}]_{m,k}^{(-)} Re(Z) \right|^{2} \right] \right\}$$

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

The $[J_i^{N,U}]_{m,k}^{(\epsilon)}$ are the free complex parameters in the fit for a given reflectivity amplitude.

Constrained:

- A1 to D1
- A2 to D2
- B1 to C1
- B2 to C2

Good to see the agreement, but otherwise: A waste of time 😕

Good to see the agreement, but otherwise: A waste of time 😕

Justin Stevens, https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4858

PWA

• Next step: Turn on polarization!

Ξ^* bump hunt

Reaction

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$

 $\Xi \rightarrow \Lambda \pi^{-}$

where

Reaction

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi^{-}$ $\Lambda \rightarrow p\pi$

Reaction

 $\Lambda \rightarrow p\pi$

where and

ullet

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

Pathlength study

- Vertex analysis now uses pathlength significance as given on page 13 of https://halldweb.jlab.org/DocDB/0046/004607/004/DSelectorDoc.pdf
- As was suggested, I made sure that the end of the Ξ^- path was downstream of the origin

Ξ

Σ(1385)

1.34

1.33

1.35 mass[Λπ]/GeV

52

ρΤ

bΖ

bb

Overall best (lowest value of σ_Y/Y)

- Threw 3.4 million events (so far)
- Generated flat in mass[$\Xi^{-}\pi^{0}$] from 1.46 GeV to 1.75GeV

- Threw 3.4 million events (so far)
- Generated flat in mass[$\Xi^{-}\pi^{0}$] from 1.46 GeV to 1.75GeV

- Threw 3.4 million events (so far)
- Generated flat in mass[$\Xi^{-}\pi^{0}$] from 1.46 GeV to 1.75GeV

- Threw 3.4 million events (so far)
- Generated flat in mass[$\Xi^{-}\pi^{0}$] from 1.46 GeV to 1.75GeV

- Threw 3.4 million events (so far)
- Generated flat in mass[$\Xi^{-}\pi^{0}$] from 1.46 GeV to 1.75GeV

• [Mass True – Mass Reconstructed] versus Mass True

• [Mass True – Mass Reconstructed] versus Mass True

- [Mass True Mass Reconstructed] versus Mass True
- Will zoom in on masses near the $\Xi(1530)$, $\Xi(1620)$ and $\Xi(1690)$

¥ASU

¥ASU

¥asu

The fit:

• Background: 2nd order polynomial multiplied by sigmoid

The fit:

- Background: 2nd order polynomial multiplied by sigmoid
- Three Ξ^* , each represented by a Voight function with appropriate smearing parameter σ (as determined in prior slide)

The fit:

- Background: 2nd order polynomial multiplied by sigmoid
- Three Ξ^* , each represented by a Voight function with appropriate smearing parameter σ (as determined in prior slide)

Note on what will be shown:

• The $\Xi(1530)$ that will be shown have no serious issues

The fit:

- Background: 2nd order polynomial multiplied by sigmoid
- Three Ξ^* , each represented by a Voight function with appropriate smearing parameter σ (as determined in prior slide)

Note on what will be shown:

- The $\Xi(1530)$ that will be shown have no serious issues
- The $\Xi(1620)$ that will be shown might be real (but might not \mathfrak{S})

The fit:

- Background: 2nd order polynomial multiplied by sigmoid
- Three Ξ^* , each represented by a Voight function with appropriate smearing parameter σ (as determined in prior slide)

Note on what will be shown:

- The $\Xi(1530)$ that will be shown have no serious issues
- The $\Xi(1620)$ that will be shown might be real (but might not \mathfrak{S})
- The Ξ(1690) that will be shown all have zero width and are probably a statistical fluctuation. The line shapes (cyan) will be entirely due to the resolution of the reconstructed mass(Ξ⁻π⁰)

- Using best σ_{Y}/Y :
 - CL>10⁻⁶
 - Ξ track-length significance > 4

- Using best σ_{Y}/Y :
 - CL>10⁻⁶
 - Ξ track-length significance > 4
- Ξ^{-} cut:
 - Kept event when $1.30 < mass[\Lambda \pi^{-}]/GeV < 1.35$

- Using best σ_{Y}/Y :
 - CL>10⁻⁶
 - Ξ track-length significance > 4
- Ξ^{-} cut:
 - Kept event when $1.30 < mass[\Lambda \pi^{-}]/GeV < 1.35$
- K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.95$

Cuts on GlueX data:

- Using best σ_{Y}/Y :
 - CL>10⁻⁶
 - Ξ track-length significance > 4
- Ξ^{-} cut:
 - Kept event when $1.30 < mass[\Lambda \pi]/GeV < 1.35$
- K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.95$

Other:

• Explored various mass binning

Ξ(1530):

- Center = 1538(2) MeV [PDG: 1535.2 +/- 0.8 MeV]
- Width = 16(10) MeV [PDG: $9.9^{+1.7}_{-1.9}$ MeV]

Ξ(1530):

- Center = 1538(2) MeV [PDG: 1535.2 + -0.8 MeV]
- Width = 16(10) MeV [PDG: $9.9^{+1.7}_{-1.9}$ MeV]

Ξ(1620):

- Center = 1598(8) MeV
- Width = 34(37) MeV

Ξ(1530):

- Center = 1538(2) MeV [PDG: 1535.2 + -0.8 MeV]
- Width = 16(10) MeV [PDG: $9.9^{+1.7}_{-1.9}$ MeV]

E(1620): • Center = 1598(8) MeV

• Width = 34(37) MeV

 $I(J^P) = \frac{1}{2}(?^?)$ Status: ** J, P need confirmation.

OMITTED FROM SUMMARY TABLE

The clearest evidence is a peak in $\Xi^- \pi^+$ seen by SUMIHAMA 19. Older low-statistics experiments (e.g., BORENSTEIN 72 and HAS-SALL 81) have looked for the state but have not seen any effect.

I

Ξ(1530):

- Center = 1538(2) MeV [PDG: 1535.2 + -0.8 MeV]
- Width = 16(10) MeV [PDG: $9.9^{+1.7}_{-1.9}$ MeV]

Ξ(1620):

• Center = 1598(8) MeV • Width = 34(37) MeV $\Xi(1620)$ $I(J^P) = \frac{1}{2}(?^{?})$ Status: ** J, P need confirmation.

OMITTED FROM SUMMARY TABLE

The clearest evidence is a peak in $\Xi^- \pi^+$ seen by SUMIHAMA 19. Older low-statistics experiments (e.g., BORENSTEIN 72 and HAS-SALL 81) have looked for the state but have not seen any effect.

Ξ(1620) MASS

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
≈ 1020 OUR E	STIMATE				
1610.4 ± 6.0	+6.1 -4.2	SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi(1620) \pi^+$
1624 ± 3	31	BRIEFEL	77	HBC	K p 2.87 GeV/c
1633 ±12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606 ± 6	29	ROSS	72	HBC	К [—] р 3.1–3.7 GeV/с

Ξ(1530):

- Center = 1538(2) MeV [PDG: 1535.2 + -0.8 MeV]
- Width = 16(10) MeV [PDG: $9.9^{+1.7}_{-1.9}$ MeV]

E(1620):

- Center = 1598(8) MeV
- Width = 34(37) MeV

Ξ(1620)

 $I(J^P) = \frac{1}{2}(?^2)$ Status: ** J, P need confirmation.

OMITTED FROM SUMMARY TABLE

The clearest evidence is a peak in $\Xi^- \pi^+$ seen by SUMIHAMA 19. Older low-statistics experiments (e.g., BORENSTEIN 72 and HAS-SALL 81) have looked for the state but have not seen any effect.

Ξ(1620) MASS

VALUE (Me	V)	EVTS	DOCUMENT ID		TECN	COMMENT
≈ 1620	OUR ESTIMAT	TE .				
1610.4	$\pm 6.0^{+6.1}_{-4.2}$		SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi$ (1620) π^+
1624	± 3	31	BRIEFEL	77	HBC	K p 2.87 GeV/c
1633	±12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606	± 6	29	ROSS	72	HBC	K ⁻ p 3.1–3.7 GeV/c

Ξ(1620) WIDTH

VALUE (MeV)EVTS	DOCUMENT ID	TECN	COMMENT
32 + 8 OUR AVERAGE	Error includes scale	e factor of 2.	2. See the ideogram below.
$59.9 \pm \ 4.8 {+2.8 \atop -7.1}$	SUMIHAMA	19 BELL	$\Xi_c^+ \rightarrow \Xi(1620)\pi^+$
22.5± 7.5 31	¹ BRIEFEL	77 HBC	K p 2.87 GeV/c
40 ±15 34	DEBELLEFON	75B HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
21 ± 7 29	ROSS	72 HBC	$K^{-}p \rightarrow \Xi^{-}\pi^{+}K^{*0}(892)$

Comparison to Belle

Comparison to Belle

The other fits

I have put all of the other fits (each CL and track-length significance) on the following slides

TUZ

TUR

TOP

TOP

τυδ

TOA

PeakV3

Peak V2 (only L0S0, L1S0, L0S1)

111