Group meeting June 14th, 2024

Instruction responsibilities

- Classes for Fall 2024:
 - PHY 331:
 - Need to make syllabus
 - PHY 361:
 - Need to make syllabus

Service responsibilities

- Committee:
 - GlueX Compton Analysis Review Committee:
 - Waiting for author response

Group responsibilities

• Undergrad: Worked with Dylan on Tuesday

Analysis

Presentations:

• None

KKpi analysis:

- Polarization setup in progress
- Ξ^* analysis:
- Vertex analysis

KK π Polarization Setup

Test 1

- Standard was run prior to separation of files based on polarization
- Test 1:
 - Separation of files based on polarizations
 - Run through stage2, stage2Q, chop (performs E_{γ} cut)
 - Added back together and run through PWA

Test 1: Passed 🕲

Test 2

Test 2:

• Process the four polarization files as different reactions within the AmpTools framework

Test 2 is not going well \otimes

- Jobs are taking a very long time to complete
- 8 failed jobs
- 2 dead nodes

Decided to kill the rest \otimes

Bump hunt part II

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$

where

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi^{-}$

where and

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0,$ $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

 $\Lambda \rightarrow p\pi$

where and

ullet

Mass of Ξ^{-} not constrained

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

 $\Xi \rightarrow \Lambda \pi$

IMPORTANT POINT

- At this point, I am looking for interesting bumps
- Any mass[Ξπ] bump, other than the Ξ*(1530), is to be taken as merely suggestive

$\Xi(1620)$: From 1-star

Nucleon resonances are rated using the "star" system:* Poor evidence of existence

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: *
J, P need confirmation.

OMITTED FROM SUMMARY TABLE

What little evidence there is consists of weak signals in the $\Xi\pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

Ξ(1620) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
≈ 1620 OUR ESTIMA	TE				
1624 ± 3	31	BRIEFEL	77	HBC	<i>К р</i> 2.87 GeV/ <i>с</i>
1633 ± 12	34	DEBELLEFON	75B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606 ± 6	29	ROSS	72	HBC	$K^- p$ 3.1–3.7 GeV/ c

$\Xi(1620)$: From 1-star to 2-star

Nucleon resonances are rated using the "star" system:

- Poor evidence of existence
- ****** Fair evidence of existence

*

$$J^P$$
) = $\frac{1}{2}(?^{?})$ Status:
P need confirmation.

OMITTED FROM SUMMARY TABLE

What little evidence there is consists of weak signals in the $\Xi\pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

Ξ(1620) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
≈ 1620 OUR ESTIM	ATE				
1624 ± 3	31	BRIEFEL	77	HBC	K p 2.87 GeV/c
1633 ± 12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606 ± 6	29	ROSS	72	HBC	K ⁻ p 3.1–3.7 GeV/c

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Ξ(1620)

 $I(J^P) = \frac{1}{2}(?^?)$ Status: ** J, P need confirmation.

OMITTED FROM SUMMARY TABLE

- HBC 1972 - HBC 1975

HBC 1977 BELL 2019

1.7

1.75

The clearest evidence is a peak in $\Xi^-\pi^+$ seen by SUMIHAMA 19. Older low-statistics experiments (e.g., BORENSTEIN 72 and HAS-SALL 81) have looked for the state but have not seen any effect.

Ξ(1620) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
≈ 1620 OUD ESTIMA	II E				
$1610.4\pm \ 6.0^{+6.1}_{-4.2}$		SUMIHAMA	19	BELL	$\Xi_c^+ \rightarrow \Xi(1620) \pi^+$
1624 ± 3	31	DRIEFEL	77	HBC	n p 2.87 GeV/c
1633 ±12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606 ± 6	29	ROSS	72	HBC	K ⁻ p 3.1–3.7 GeV/c

Assumed bump structure, compared to PDG Narrow bump Wide bump

Assumed bump structure, compared to PDG Narrow bump Wide bump

Assumed bump structure, compared to PDG Narrow bump Wide bump

1.64

GlueX

1.58

1.6

1.62

HBC 1972

HBC 1975

HBC 1977

BELL 2019

1.62

1.6

Mass(E nº)/GeV

1.64

Target shoot Belle:

Target shoot Belle:

• Changing CL cut to CL>10⁻⁴

Target shoot Belle:

- Changing CL cut to CL>10⁻⁴
- Removing *Q*-factors

Target shoot Belle:

- Changing CL cut to CL>10⁻²
- Removing *Q*-factors
- Change fit range to match that of Belle

Background (red) : [First order polynomial]*[sigmoid]

• Looks reasonable 😊

Reaction: $\gamma p \rightarrow K^+ K^+ X$

- Reaction: $\gamma p \rightarrow K^+ K^+ X$
- Here, *X* represent the missing particle(s)

- Reaction: $\gamma p \rightarrow K^+ K^+ X$
- Here, *X* represent the missing particle(s)
- Ostensibly, X is Ξ^{-} or Ξ^{-*}
 - from $\gamma p \to K^+ Y^*$, where $Y^* \to K^+ \Xi^-$

- Reaction: $\gamma p \rightarrow K^+ K^+ X$
- Here, *X* represent the missing particle(s)
- Ostensibly, X is Ξ^{-} or Ξ^{-*}
 - from $\gamma p \to K^+ Y^*$, where $Y^* \to K^+ \Xi^-$
 - $E_{\gamma} < 5.4 \text{ GeV}$

- Reaction: $\gamma p \rightarrow K^+ K^+ X$
- Here, *X* represent the missing particle(s)
- Ostensibly, X is Ξ^{-} or Ξ^{-*}
 - from $\gamma p \to K^+ Y^*$, where $Y^* \to K^+ \Xi^-$
 - $E_{\gamma} < 5.4 \text{ GeV}$
- A lot of background from many types of final states
 - $\gamma p \rightarrow K^+ K^+ X$ is very inclusive of Ξ^{-*} type states with decays NOT limited to
 - Ξπ
 - $\Xi^*\pi$
 - *AK*
 - *K*\Sigma
 - or ?

34

35

36
CLAS comparison

37

CLAS comparison

38

Reaction

where and

- $\gamma p \longrightarrow K^{+}K^{+}\Xi^{-}\pi^{0},$ $\Xi^{-} \longrightarrow \Lambda\pi^{-}$ $\Lambda \longrightarrow p\pi^{-}$
- Mass of Ξ^- not constrained
- The Ξ^- has a long lifetime

<u>-</u> MEAN LIFE

Measurements with an error $> 0.2 \times 10^{-10}$ s or with systematic errors not included have been omitted.

VALUE (10^{-10} s)	EVTS	DOCUMENT ID		TECN	COMMENT			
1.639±0.015 OUR AVERAGE								
$1.65 \pm 0.07 \pm 0.12$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays			
$1.652 \!\pm\! 0.051$	32k	BOURQUIN	84	SPEC	Hyperon beam			
$1.665 \!\pm\! 0.065$	41k	BOURQUIN	79	SPEC	Hyperon beam			
1.609 ± 0.028	4286	HEMINGWAY	78	HBC	4.2 GeV/ <i>c K</i> [−] <i>p</i>			
1.67 ± 0.08		DIBIANCA	75	DBC	4.9 GeV/ <i>c</i> K [−] d			
1.63 ± 0.03	4303	BALTAY	74	HBC	1.75 GeV/c K ⁻ p			
$1.73 \ {}^{+0.08}_{-0.07}$	680	MAYEUR	72	HLBC	2.1 GeV/ <i>c K</i>			
1.61 ± 0.04	2610	DAUBER	69	HBC				
1.80 ± 0.16	299	LONDON	66	HBC				
1.70 ± 0.12	246	PJERROU	65 B	HBC				
1.69 ± 0.07	794	HUBBARD	64	HBC				
$1.86 \begin{array}{c} +0.15 \\ -0.14 \end{array}$	517	JAUNEAU	63 D	FBC				

Reaction

 $\Xi \rightarrow \Lambda \pi^{-}$

where and

 $\Lambda \rightarrow p\pi^{-}$

 $\gamma p \longrightarrow K^+ K^+ \Xi^- \pi^0$,

- Mass of Ξ^- not constrained
- The Ξ has a long lifetime
 - Can cut on Δ Vertex

=⁻ MEAN LIFE

Measurements with an error $> 0.2 \times 10^{-10}$ s or with systematic errors not included have been omitted.

VALUE (10^{-10} s)	EVTS	DOCUMENT ID		TECN	COMMENT			
1.639±0.015 OUR AVERAGE								
$1.65 \pm 0.07 \pm 0.12$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays			
$1.652\!\pm\!0.051$	32k	BOURQUIN	84	SPEC	Hyperon beam			
$1.665 \!\pm\! 0.065$	41k	BOURQUIN	79	SPEC	Hyperon beam			
1.609 ± 0.028	4286	HEMINGWAY	78	HBC	4.2 GeV/c K ⁻ p			
1.67 ± 0.08		DIBIANCA	75	DBC	4.9 GeV/c K ⁻ d			
1.63 ± 0.03	4303	BALTAY	74	HBC	1.75 GeV/c K ⁻ p			
$1.73 \ {}^{+0.08}_{-0.07}$	680	MAYEUR	72	HLBC	2.1 GeV/ $c~K^-$			
1.61 ± 0.04	2610	DAUBER	69	HBC				
1.80 ± 0.16	299	LONDON	66	HBC				
1.70 ± 0.12	246	PJERROU	65 B	HBC				
1.69 ± 0.07	794	HUBBARD	64	HBC				
$1.86 \begin{array}{c} +0.15 \\ -0.14 \end{array}$	517	JAUNEAU	63 D	FBC				

 Different combinations of CL and ∆Vertex cuts can yield very similar results

• With vertex cut, the Ξ signal can become very clean!

• Need to study different vertex cuts with different CL cuts

• Yield extraction: $+/- 3\sigma$ of Ξ^- peak

• Yield extraction: $+/- 3\sigma$ of Ξ^- peak

$\Delta vertex > 7 cm$

$\Delta vertex > 10 cm$

Overall best (lowest value of $\sigma_{\rm Y}/{\rm Y}$)

• $\Delta \text{Vertex} > 8 \text{cm}$

- CL>10⁻⁴
- $\Delta \text{Vertex} > 0 \text{ cm} (\text{NO} \Delta \text{Vertex cut})$
- *Ξ*⁻ cut:
 - Kept event when $1.30 < mass[\Lambda \pi^{-}]/GeV < 1.35$
- K^* cut: None

- CL>10⁻⁴
- $\Delta \text{Vertex} > 0 \text{ cm} (\text{NO} \Delta \text{Vertex cut})$
- *Ξ*⁻ cut:
 - Kept event when $1.30 < mass[\Lambda \pi]/GeV < 1.35$
- K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.95$

- CL>10⁻⁴
- $\Delta \text{Vertex} > 8 \text{ cm}$
- Ξ^{-} cut:
 - Kept event when $1.30 < mass[\Lambda \pi^-]/GeV < 1.35$
- K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.95$

Sidebands

- $CL > 10^{-4}$, $\Delta Vertex > 8cm$
- For a quick background subtraction

- CL>10⁻⁴
- $\Delta \text{Vertex} > 8 \text{ cm}$
- *Ξ*⁻ cut:
 - Kept event when $1.30 < mass[\Lambda \pi]/GeV < 1.35$
- K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.9$
Comparison to Belle

Cuts on GlueX data:

- CL>10⁻⁴
- $\Delta \text{Vertex} > 8 \text{ cm}$
- Ξ^{-} cut:
 - Kept event when $1.30 < mass[\Lambda \pi^-]/GeV < 1.35$
 - K^* cut:
 - Remove event when $0.85 < mass[K^+\pi^0]/GeV < 0.9$

Error bars way too big with respect to bump height 🛞

Comparison to Belle

