Group meeting May 24th, 2024

Instruction responsibilities

- Classes for Fall 2024:
 - PHY 331:
 - Need to make syllabus
 - PHY 361:
 - Need to make syllabus

Service responsibilities

- Committee:
 - GlueX Compton Analysis Review Committee:
 - Waiting for author response

Group responsibilities

- Undergrad: Met with Dylan on Tuesday
- Need to start writing DOE report that is due early June

Analysis

TPOL:

- Waiting for new cooked files from 2022 data
- Need to run parallel TPOL analysis on 2022 data:
 - Standard
 - compressed

ККπ:

- Agave is alive but the Agave cluster is now dead \otimes
- Need include polarization information in low-mass PWA

Ξ^* : Next slide

Cuts:

• Best combo

 Ξ^* *Q*-factors

Fit with Voigtian:

- Center and width locked to PDG
- Resolution parameter σ allowed to vary

 Ξ^* Q-factors

Fit with Voigtian:

- Center and width locked to PDG
- Resolution parameter σ allowed to vary

Found that the resolution was not consistent between 1st and 2nd Kaons

 $\Xi^* Q$ -factors

Red = first K^{+*} **Blue** = second K^{+*}

 Ξ^* *Q*-factors

Red = first K^{+*} **Blue** = second K^{+*}

• Red and blue consistent for fixed CL cut except at CL > 0.1

 Ξ^* Q-factors

Red = first K^{+*} **Blue** = second K^{+*}

- Red and blue consistent for fixed CL cut except at CL > 0.1
- Generated *Q*-factors using resolution of red to cut out K^* **VASU**

Cuts:

- Best combo
- CL>0.1

Particle			Status as seen in —						
	J^P	Overall status	Ξπ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels		
$\Xi(1318)$	1/2 +	****					Decays weakly		
$\Xi(1530)$	3/2+	****	****						
$\Xi(1620)$,	**	**						
$\Xi(1690)$		***	**	***	**				
$\Xi(1820)$	3/2 -	***	**	***	**	**			
$\Xi(1950)$		***	**	**		*			
$\Xi(2030)$		***		**	***				
$\Xi(2120)$		*		*					
$\Xi(2250)$		**					3-body decays		
$\Xi(2370)$		**					3-body decays		
$\Xi(2500)$		*		*	*		3-body decays		

Table 1. Our estimate of the status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Status as seen in — Overall J^P $\Xi\pi$ Particle ΛK $\Xi(1530)\pi$ ΣK Other channels status $\Xi(1318)$ 1/2+Decays weakly **** $\Xi(1530)$ 3/2+**** **** Looking in this range $\Xi(1620)$ ** ** $\Xi(1690)$ ** *** *** ** 3/2- $\Xi(1820)$ *** ** *** ** ** $\Xi(1950)$ *** ** ** * $\Xi(2030)$ *** *** ** $\Xi(2120)$ * * $\Xi(2250)$ 3-body decays ** $\Xi(2370)$ 3-body decays ** $\Xi(2500)$ 3-body decays * * *

Table 1. Our estimate of the status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Ξ(1530) MASSES

Ξ(1530)⁰ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
1531.80±0.32 OUR FIT Ever includes scale factor of 1.3.							
1531.78±0.34 OUR AV	ERAGE	rror includes scale	e fact	or of 1.4	. See the ideogram		
below.							
1532.2 ± 0.7		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$		
1533 ± 1		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$		
1531.4 ± 0.8	59	BADIER	72	HBC	K [—] р 3.95 GeV/с		
1532.0 ± 0.4	1262	BALTAY	72	HBC	K [—] р 1.75 GeV/с		
1531.3 ± 0.6	324	BORENSTEIN	72	HBC	К р 2.2 GeV/с		
1532.3 ± 0.7	286	KIRSCH	72	HBC	K p 2.87 GeV/c		
1528.7 ± 1.1	76	LONDON	66	HBC	K p 2.24 GeV/c		
• • • We do not use th	ne following	data for averages	, fits,	limits, e	tc. • • •		
1532.1 ± 0.4	1244	ASTON	85 B	LASS	K p 11 GeV/c		
1532.1 ± 0.6	2700	¹ BAUBILLIER	81 B	HBC	$K^- p$ 8.25 GeV/c		
1530 ±1	450	BIAGI	81	SPEC	SPS hyperon beam		
https://pdg.lbl.gov		Page 1		Creat	ed: 5/31/2023 09:08		

WILLOU LIEV	V15	DOCOMENTID		ILC/W	COMMENT
1620 OUR ESTIMATE					
1624 ± 3	31	BRIEFEL	77	HBC	K p 2.87 GeV/c
1633 ± 12	34	DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1606 ± 6	29	ROSS	72	HBC	K ⁻ p 3.1–3.7 GeV/c

Ξ(1690) MASSES

MIXED CHARGES VALUE (MeV)

DOCUMENT ID

1690±10 OUR ESTIMATE his is only an educated guess; the error given is larger than the error on the average of the published values.

Ξ(1690)⁰ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1686±4	1400	ADAMOVICH	98	WA89	Σ^{-} nucleus, 345 GeV/c
1699 ± 5	175	¹ DIONISI	78	HBC	K ⁻ p 4.2 GeV/c
1684 ± 5	183	² DIONISI	78	HBC	$K^- p$ 4.2 GeV/c

Ξ(1690)- MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$1691.1 \pm 1.9 \pm 2.0$	104	BIAGI	87	SPEC	Ξ^{-} Be 116 GeV
1700 ±10	150	³ BIAGI	81	SPEC	Ξ Η 100, 135 GeV
1694 \pm 6	45	⁴ DIONISI	78	HBC	K p 4.2 GeV/c

 Ξ^* Analysis

 Ξ^* Analysis

Counts

60

50

40

30 1

10

이 1.5

 Ξ^* Analysis

 Ξ^* Analysis

Ξ^* Side Band check

• The side-band subtraction technique should yield similar results as the *Q*-factor method

Ξ^* Side Bands

Blue = Center of Ξ peak **Red** = Side bands

Ξ^* Side Bands

Blue = Center of Ξ peak **Red** = Side bands

Ξ^* Side Bands

- Blue= Center of Ξ peakRed= Side bandsBlack= Side band subtracted
- Bump structure more pronounced after side-band subtraction

37

Reduced χ^2 vs. *p*-value for kinematic fit

Note:

- *p*-value = 10^{-8} when $\chi_r^2 \sim 5.44$
- *p*-value = 10^{-1} when $\chi_r^2 \sim 1.57$
- *p*-value ~ 0.44 when $\chi_r^2 = 1.0$

¥asu

Reduced χ^2 vs. *p*-value for kinematic fit

Note:

- *p*-value = 10^{-8} when $\chi_r^2 \sim 5.44$
- p-value = 10⁻¹ when $\chi_r^2 \sim 1.57$
- *p*-value ~ 0.44 when $\chi_r^2 = 1.0$

Probably about as extreme as we would ever want to go

Ξ^* Analysis: mass[$\Lambda\pi^-$]

Ξ^* Analysis: mass[$\Lambda\pi^-$]

Ξ^* Analysis: mass[$\Lambda\pi^-$]

χ_r^2 versus mass[$\Lambda\pi$]

χ_r^2 versus mass[$\Lambda\pi$]

• Looks like we could make a cut at about $\chi_r^2 < 0.5$ (CL>0.905) to remove nearly all of the $\Sigma(1385)$ background

 χ_r^2 versus mass $[\Lambda \pi]$

• Looks like we could make a cut at about $\chi_r^2 < 0.5$ (CL>0.905) to remove nearly all of the $\Sigma(1385)$ background

Track- χ_r^2 versus mass $[\Lambda \pi]$

Define:

Track- χ_r^2 as [tracking χ_r^2 of 1st K^+] + [tracking χ_r^2 of 2nd K^+]

• Looking to see if there are any obvious cuts to make on Track- χ_r^2

Track- χ_r^2 versus mass[$\Lambda \pi$]

Mass[An]/GeV

48

Mass[Ant]/GeV

Track- χ_r^2 versus mass[$\Lambda \pi$]

Mass[An]/GeV

50

Mass[An]/GeV

