\;Jnsu

Group meeting
May 31, 2024

Instruction responsibilities
* Classes:
« PHY 252:
* Finished writing final exam
e Graded final exam
* Posted grades
« PHY 331:
* Finished writing final exam
e Graded final exam
* Posted grades

i e Undergraduate independent study and research:
* No current undergrads
* Potential new undergrad: Dylan Loew-Garrelts

Service responsibilities

e Committee:

\;/Asu

GlueX Compton Analysis Review Committee:

Waiting for author response

Pre Award Faculty Panel:

Status : Done ©

Group responsibilities

* Met with Katelyn Tuesday

* Sent (another) email to Lee Pettit asking if the paperwork for the
summer hires (Katelyn and Alan) 1s completed. Was informed
that all paperwork is in order ©

\!/nsu

Analysis

* Working on passing additional information from trees to PWA

\ynsu

Analysis

* Working on passing additional information from trees to PWA

\ynsu

Analysis

* Working on passing additional information from trees to PWA

What [want:

\;Jnsu

Analysis

* Working on passing additional information from trees to PWA
What I want:

* To include the polarization information (angle and degree) in the flattened
tree (instead of breaking files into separate polarization types)

\;/Asu

Analysis

* Working on passing additional information from trees to PWA
What I want:

* To include the polarization information (angle and degree) in the flattened
tree (instead of breaking files into separate polarization types)

* Access the new tree information inside our AmpTools PWA calculation

\!/nsu

Redefining our calcAmplitude function

\;/Asu

Redefining our calcAmplitude function

In SAMPTOOLS/ITUAmpTools/Amplitude.h

11

Redefining our calcAmplitude function

In SAMPTOOLS/ITUAmpTools/Amplitude.h

-

This is the user-defined function that computes a single complex amplitude
for a set of four-vectos that describe the event kinematics. As discussed
above this function should be factorized as much as possible and not
include permutations of particles. The user must override this function
in his or her amplitude class.

‘\param[in] pKin a pointer to a single event. pKin[0][0-3] define E, px,
py, pz for the first particle, pKin[1][©-3] for the second, and so on

B T

S,

virtual complex= GDouble > calcAmplitude(GDouble** pKin) const ;

\gfnsu

12

Redefining our calcAmplitude function

In SAMPTOOLS/ITUAmpTools/Amplitude.h

*

This is the user-defined function that computes a single complex amplitude
for a set of four-vectos that describe the event kinematics. As discussed
above this function should be factorized as much as possible and not
include permutations of particles. The user must override this function
in his or her amplitude class.

‘\param[in] pKin a pointer to a single event. pKin[0][0-3] define E, px,
py, pz for the first particle, pKin[1][©-3] for the second, and so on

(:E:EEEEE:EGmplgxﬂ GDouble = calcAmplitude(GDouble** pKin) EEEEE:E:::>

What we currently use

£ ¥ X ¥ £ ¥ £ £ £ £ ¥

=

\gfnsu

13

Redefining our calcAmplitude function

What we currently use

@mmpl@xa GDouble = calcAmplitude(GDouble** pKin) ED

\gfnsu

14

Redefining our calcAmplitude function

What we currently use

(:EEEEEEE:EGmplgxa GDouble = calcAmplitude(GDouble** pKin) c%EEE:Z::)

III.I":*:*

This is the user-defined function that computes a single complex amplitude
for a set of four-vectos that describe the event kinematics.

For the user to utilize user-defiend data in the amplitude calculation,
this function must be overridden by the derived class. Either this function
or the function above must be defined for any Amplitude class.

‘\param[in] pKin a pointer to a single event. pKin[0][0-3] define E, px,
py, pz for the first particle, pKin[1][®-3] for the second, and so on

‘param[in] userVars is an optional pointer to the user data block associated
with this event and this permutation of particles. It can be used to store
intermediate portions of the calculation in the case that calcAmplitude

must be called multiple times during the course of a fit. The userVars
memory block is filled in calclUserVars.

#F F X ¥ £ X X F ¥ E £ X X ¥ ¥

*/

<:EEEEEEE:;0mpIQK¢ GDouble > calcAmplitude(GDouble** pKin, j::::::::>
GDouble* userVars) const;

What I want to use

\;fnsu

15

Redefining our calcAmplitude function

What we currently use

(:EEEEEEE:EGmplgxa GDouble = calcAmplitude(GDouble** pKin) c%EEE:Z::)

III.I":*:*

This is the user-defined function that computes a single complex amplitude
for a set of four-vectos that describe the event kinematics.

For the user to utilize user-defiend data in the amplitude calculation,
this function must be overridden by the derived class. Either this function
or the function above must be defined for any Amplitude class.

‘\param[in] pKin a pointer to a single event. pKin[0][0-3] define E, px,
py, pz for the first particle, pKin[1][®-3] for the second, and so on

‘param[in] userVars is an optional pointer to the user data block associated
with this event and this permutation of particles. It can be used to store
intermediate portions of the calculation in the case that calcAmplitude

must be called multiple times during the course of a fit. The userVars
memory block is filled in calclUserVars.

#F F X ¥ £ X X F ¥ E £ X X ¥ ¥

*/

<:EEEEEEE:;0mpIQK¢ GDouble > calcAmplitude(GDouble** pKin, j::::::::>
GDouble* userVars) const;

What I want to use

\;fnsu

16

Redefining our calcAmplitude function

What we currently use

(:EEEEEEE:EGmplgxa GDouble = calcAmplitude(GDouble** pKin) c%EEE:Z::)

III.I":*:*

This is the user-defined function that computes a single complex amplitude
for a set of four-vectos that describe the event kinematics.

For the user to utilize user-defiend data in the amplitude calculation,
this function must be overridden by the derived class. Either this function
or the function above must be defined for any Amplitude class.

‘\param[in] pKin a pointer to a single event. pKin[0][0-3] define E, px,
py, pz for the first particle, pKin[1][®-3] for the second, and so on

‘param[in] userVars is an optional pointer to the user data block associated
with this event and this permutation of particles. It can be used to store
intermediate portions of the calculation in the case that calcAmplitude

must be called multiple times during the course of a fit. The userVars
memory block is filled in calclUserVars.

¥ OE X ¥ £ ¥ X £ X K £ X X ¥ ¥

*/

<:EEEEEEE:;0mpIQK¢ GDouble > calcAmplitude(GDouble** pKin, j::::::::>
GDouble* userVars) const;

What I want to use

\;fnsu

17

Additional things to think about

*

If the user intendends to store intermediate calculations that are
static but associated with each event and each permutation of this
particles, then this method should be overriden with a function that
returns the number of user variables that will be stored. It is
recommended these are indexed with an enum. The user must also define
the calcUserVars method.

x= & ® £ £ £ * *

s

virtual unsigned int numUserVars() const { return @; }

\gfnsu

18

*

x= & ® £ £ £ * *

s

Additional things to think about

If the user intendends to store intermediate calculations that are
static but associated with each event and each permutation of this
particles, then this method should be overriden with a function that
returns the number of user variables that will be stored. It is
recommended these are indexed with an enum. The user must also define
the calcUserVars method.

virtual unsigned int numUserVars() const { return @; }

\gfnsu

19

Additional things to think about

If the user intendends to store intermediate calculations that are
static but associated with each event and each permutation of this
particles, then this method should be overriden with a function that
returns the number of user variables that will be stored. It is
recommended these are indexed with an enum. The user must also define
the calcUserVars method.

virtual unsigned int numUserVars() const { return 0; }

virtual bool needslUserVarsOnly() const { return false; }

\;fnsu

IT the user ce ‘e The amplitude from only the user-computed
data block and there is no need for the four-vectors, then the

user should override this function and return true. If all amplitudes
in a fit can be calculated from user data then the memory consumption
in GPU fits can be optimizes as the raw four-vectors will not

be copied to the GPU.

20

\;Jnsu

Wants/Problems/Solutions

Wants/Problems/Solutions

Wants:
| want to use variables from a root tree to set userVars

\;/Asu

22

Wants/Problems/Solutions

Wants:
| want to use variables from a root tree to set userVars
* [want to access my userVars within my amplitude function

23

Wants/Problems/Solutions

Wants:

| want to use variables from a root tree to set userVars
* [want to access my userVars within my amplitude function

Problems:
* [do not know how to do the above tasks ®

Wants/Problems/Solutions

Wants:
| want to use variables from a root tree to set userVars
* [want to access my userVars within my amplitude function

Problems:
* [do not know how to do the above tasks ®

Potential solutions:
* Read code [1n progress]

\!/nsu

Wants/Problems/Solutions

Wants:
| want to use variables from a root tree to set userVars
* [want to access my userVars within my amplitude function

Problems:
* [do not know how to do the above tasks ®

Potential solutions:
* Read code [1n progress]
* Contact Matt Shepherd [sent email this morning]

\iifnsu

Wants/Problems/Solutions

Wants:
| want to use variables from a root tree to set userVars
* [want to access my userVars within my amplitude function

Problems:
* [do not know how to do the above tasks ®

Potential solutions:

* Read code [1n progress]

* Contact Matt Shepherd [sent email this morning]

* Start testing code modifications [details next slide]

\iifnsu

Code modifications

* Changed calcAmplitude to have 2 arguments:

complex< GDouble =
Amp R::calcAmplitude(GDouble** pKin , GDouble* userVars) const {

28

\ynsu

Code modifications

* Changed calcAmplitude to have 2 arguments:

complex< GDouble =

Amp R::calcAmplitude(GDouble** pKin A\ GDouble* userVarsj] const {

New

29

\ynsu

Code modifications

* Changed calcAmplitude to have 2 arguments:

complex< GDouble =

Amp_R:

\Qnsu

:calcAmplitude(GDouble** pKin ,

* Code compiled ©
* Code successfully ran ©

GDouble* userVars) const {

30

\ynsu

\ynsu

\ynsu

\ynsu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

